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Abstract

Background: Low haemoglobin is highly prevalent among the elderly and has been associated with dementia.
However, the mechanisms underlying this association with cognitive dysfunction, either through cerebrovascular
disease or neurodegeneration, remain poorly understood. We aimed to examine the association of decreased
haemoglobin levels with markers of cerebral small vessel disease (CSVD), neurodegeneration and cognitive
impairment in an elderly Asian population.

Methods: A total of 796 Chinese, Malay and Indian participants aged 60 years and older from the Epidemiology
of Dementia in Singapore study were included in this study. After providing information on demographics,
anthropometry and cardiovascular risk factors, participants underwent 3-T brain magnetic resonance imaging
(MRI) to measure markers of CSVD, including cerebral microbleeds, cortical cerebral microinfarcts, lacunes,
enlarged perivascular spaces and white matter hyperintensities, as well as neurodegenerative markers, including
cortical thickness and subcortical structure volumes quantified using FreeSurfer. Cognition was assessed using a
detailed neuropsychological assessment. Logistic and linear regression models were constructed, adjusting for
age, gender, education, race, body mass index, smoking, hypertension, hyperlipidaemia, diabetes, glomerular
filtration rate and other MRI markers, to test the association between haemoglobin levels and the MRI markers
and cognition.

Results: Decreased haemoglobin levels were associated with cerebral microbleeds, specifically lobar microbleeds
(OR, 1.21; 95% CI, 1.04–1.40; p = 0.015). Decreased haemoglobin levels were also associated with occipital cortical thinning
(mean difference, − 0.011; 95% CI, − 0.019, − 0.004; p= 0.003) and smaller accumbens volume (mean difference, − 0.01;
95% CI, − 0.02, 0.00; p = 0.005). A significant association was also observed between decreased haemoglobin levels
and poorer global cognitive performance (mean difference, − 0.04; 95% CI, − 0.09, 0.00; p = 0.048). In cognitive
domain analysis, associations were again observed between decreased haemoglobin levels and worse
performance on attention (mean difference, − 0.05; 95% CI, − 0.10, − 0.01; p = 0.028) and language (mean
difference, − 0.06; 95% CI, − 0.12, 0.00; p = 0.048) domains; however, these associations did not survive multiple
comparison.
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Conclusions: Decreased haemoglobin levels were associated with lobar microbleeds, neurodegenerative
markers and cognitive dysfunction. Future studies should ascertain whether iron, folate or vitamin B12
supplementation is able to ameliorate the onset and progression of cognitive impairment and dementia
associated with low haemoglobin.
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Background
There is growing evidence that anaemia is a common
condition in the elderly; it has a prevalence exceeding
10% in people aged 65 years or older [1]. About
one-third of anaemia diagnoses in the elderly are attrib-
uted to nutritional deficits which are easily treatable by
adequate nutritional support with iron, vitamin B12 and
folate supplements [2]. Recently, it has been suggested
that even modest decreases in haemoglobin concentra-
tions among those not classified as anaemic are associ-
ated with increased morbidity and mortality [3–5].
Although previous studies have shown that decreased
haemoglobin levels are associated with cognitive impair-
ment [6] and risk of dementia [7–9], these associations
are inconsistent [10].
Non-invasive magnetic resonance imaging (MRI)

markers of cerebral small vessel disease (CSVD) include
lacunes, white matter hyperintensities, cerebral micro-
bleeds and cortical cerebral microinfarcts, whereas sur-
rogate markers of neurodegeneration include cortical
and subcortical atrophy. Limited data has shown that
anaemia is associated with a chronic hypoxic state that
contributes to increased cerebrovascular burden, result-
ing in increased white matter hyperintensity volume
[11–13]. However, a recent study showed no association
between lower haemoglobin levels and the presence or
progression of CSVD [14]. Moreover, the association of
haemoglobin with cerebral microbleeds, and cortical
cerebral microinfarcts remain unstudied. With respect
to neurodegenerative markers, only one study reported
that lower haemoglobin levels are linked to cortical thin-
ning among cognitively normal women [14]. These dif-
ferences in results may be attributed to heterogeneity in
defining anaemia (binary criteria vs. percentiles) or small
sample sizes, or they may be related to the study of par-
ticular disease populations (dementia, chronic kidney
disease and hypertension). Hence studies from a general
population are needed to investigate the relationship be-
tween decreased haemoglobin levels and markers of
CSVD and neurodegeneration to investigate the under-
lying mechanisms. Such findings would have potential
clinical significance for preventing cognitive impairment
and improving cognitive function in the elderly.
We aimed to examine the association of haemoglobin

with markers of CSVD (cerebral microbleeds, cortical

cerebral microinfarcts, lacunes, enlarged perivascular
spaces and white matter hyperintensities) and neurode-
generation (cortical thickness and subcortical structure
volume). We also examined the effects of decreased
haemoglobin levels on cognitive performance in a
multi-ethnic Asian population. We hypothesize that de-
creased haemoglobin levels induce a hypoxic state lead-
ing to ischemia as well as atrophy in subcortical and
cortical regions.

Methods
Study population
The Epidemiology of Dementia in Singapore study re-
cruited individuals from the Singapore Epidemiology of
Eye Disease study, which comprised participants be-
tween 40 and 85 years old who participated in the
Singapore Chinese Eye Study, the Singapore Malay Eye
Study and the Singapore Indian Eye Study [15]. Briefly,
participants aged 60 years and older were screened with
the Abbreviated Mental Test (AMT) and a self-reported
history of forgetfulness. Screen-positives were defined on
the basis of education-based cut-offs on AMT (AMT ≤ 6
in subjects with ≤ 6 years of formal education or ≤ 8
among those with > 6 years of formal education) or if
the caregiver confirmed progressive forgetfulness. Thus
the inclusion criteria of the study included (1)
screen-positive on AMT or Present Functioning Ques-
tionnaire and (2) written informed consent given by par-
ticipants or their legally acceptable representatives. Of
these 1598 screen-positive participants, 957 agreed to
participate in the second phase, which included brain
MRI and extensive cognitive assessment. Exclusion cri-
teria included participant or legally acceptable represen-
tative not willing to provide written informed consent.
Ethics approval was obtained from the Singapore Eye
Research Institute and the National Healthcare Group
domain-specific review board, and written consent was
obtained from participants.

Blood tests
Participants were required to fast for at least 8 h prior to
blood tests. Fasting blood samples were sent to the Na-
tional University Hospital Laboratory for measurements
of the following: full blood count, glucose, lipid panel
and creatinine. Haemoglobin was measured with the
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Sysmex XN-Series automated haematology analyser
2012 version (Streck, Omaha, NE, USA). The lipid panel
comprised total cholesterol, low-density lipoprotein,
high-density lipoprotein and triglyceride levels.

Neuroimaging
MRI scans were obtained using a 3-T MAGNETOM
Trio Tim scanner (Siemens, Erlangen, Germany) with a
32-channel head coil at the Clinical Imaging Research
Centre, National University of Singapore. Subjects with
claustrophobia, with contraindications for MRI, or who
were unable to tolerate the procedure were excluded.
STRIVE (Standards for Reporting Vascular Changes on
Neuroimaging) criteria were used for grading of lacunes
on fluid-attenuated inversion recovery (FLAIR) and
T2-weighted sequences [16]. Cortical cerebral microin-
farcts were graded on FLAIR, T1- and T2-weighted im-
ages and were defined as hypointense lesions on
T1-weighted images, restricted to the cortex, < 5 mm in
diameter, and perpendicular to the cortical surface.
These lesions were further confirmed as hyperintense or
isointense on T2-weighted and FLAIR images as previ-
ously described [17] and were analysed as a categorical
variable. Cerebral microbleeds were graded using the
Brain Observer Microbleed Scale [18] and are classified
as lobar or deep microbleeds as dichotomous variables.
Enlarged perivascular spaces were categorized as ≤ 10 vs.
≥ 11 to compare moderate to severe enlarged perivascu-
lar spaces with mild to absent perivascular spaces [19].
Total intracranial volume was quantified using T1- and

T2-weighted images, whereas white matter hyperintensity
volume was quantified with FLAIR images using automatic
segmentation at the Erasmus University Medical Centre,
the Netherlands. A model-based automated procedure
(FreeSurfer version 5.1.0) was used for measurements of
cortical thickness and subcortical structure volumes on
T1-weighted images. Briefly, cortical thickness was mea-
sured by taking the shortest distance between the white–
grey matter boundary and pial surface for regional lobes
and the whole brain at each vertex. Cortical thickness of
the frontal, insular, limbic, occipital, parietal and temporal
regions was measured, and a parcellation guide on the
gyral and sulcal structures of the cerebral cortex was used
in calculating the average cortical thickness of the left and
right lobes [20]. Volumes of subcortical structures of each
hemisphere (accumbens, amygdala, brainstem, caudate,
hippocampus, putamen, pallidum and thalamus) were cal-
culated by segmentation using rigid-body registration and
subjected to non-linear normalization with respect to a
probabilistic brain atlas [21].

Covariate assessment
Demographic and cardiovascular risk factors were col-
lected during the interview and included age, gender,

education, smoking history, height, weight, hypertension,
hyperlipidaemia and diabetes mellitus. A digital auto-
matic blood pressure machine (HEM-7203; OMRON,
Kyoto, Japan) was used for measurement of two systolic
and diastolic blood pressure readings taken 5 min apart
after the participant had rested for 5 min. Hypertension
was defined as the use of anti-hypertensive medication
or systolic blood pressure ≥ 140 mmHg and/or diastolic
blood pressure ≥ 90 mmHg. Diabetes mellitus was de-
fined as the use of diabetic medications or a glycosylated
haemoglobin ≥ 6.5%. Hyperlipidaemia was defined as the
use of lipid-lowering medications or total cholesterol
level ≥ 4.14 mmol/L. Education was categorized as ≤
6 years or > 6 years of formal education. Body mass
index (BMI) was calculated by weight in kilograms di-
vided by height in meters squared. Smoking was catego-
rized into ever vs. never smokers. Socio-economic status
was defined by monthly income and housing. A low
socio-economic status was categorized by monthly in-
come < 2000 Singapore dollars per household and living
in ≤ 2-room public housing flats.

Cognitive assessment
All participants underwent detailed cognitive assessment
using validated methods [15]. The following seven do-
mains were tested: attention, executive function, lan-
guage, visual memory, verbal memory, visuomotor speed
and visuoconstruction. Each domain was tested using
the following cognitive tests:

� Attention: Digit Span, Visual Memory Span [22] and
Auditory Detection [23]

� Executive function: Frontal Assessment Battery [24]
and Maze Task [25]

� Language: Boston Naming Test [26] and Verbal
Fluency [27]

� Verbal memory: Word List Recall [28] and Story
Recall

� Visual memory: Picture Recall, Wechsler Memory
Scale–Revised (WMS-R) Visual Reproduction [22]

� Visuoconstruction: WMS-R Visual Reproduction
Copy Task [22], Clock Drawing [29], and Wechsler
Adult Intelligence Scale–Revised subtest of block
design [30]

� Visuomotor speed: Symbol Digit Modality Test [31]
and Digit Cancellation [32].

For each participant, raw scores from each individual
test within a domain were first transformed to standard-
ized Z-scores using the mean and SD of that test in this
cohort. Subsequently, for each participant a mean Z-score
for each domain was calculated by averaging the Z-scores
of all the individual tests within that domain. These mean
Z-scores of each domain were then standardized using the
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mean and SD of that domain-specific Z-score. Finally, a
composite Z-score reflecting global cognitive functioning
was calculated by averaging the seven domain-specific
mean Z-scores, which were also standardized using the
corresponding mean and SD.

Statistical Analysis
Comparisons between included and excluded partici-
pants were performed using the chi-square test for cat-
egorical variables and Student’s t test for continuous
variables. Binary logistic regression models with ORs
and 95% CIs were constructed to determine the associ-
ation of haemoglobin with microbleeds, cortical cerebral
microinfarcts, lacunes and enlarged perivascular spaces,
whereas linear regression models were used to deter-
mine the association between haemoglobin and white
matter hyperintensity volumes with mean differences
and 95% CIs. Linear regression models were again con-
structed to determine the association of haemoglobin
with global and regional cortical thickness, subcortical
structural volume, and cognitive domains. Models were
initially adjusted for age, gender, race, smoking status and
education (in analysis with cognition) (model I). Further
adjustments were made for vascular risk factors, which in-
cluded diabetes mellitus, hyperlipidaemia, hypertension,
glomerular filtration rate and BMI (model II). In the fully
adjusted model (model III), socio-economic status (in ana-
lysis with cognition) and MRI markers (microbleeds, cor-
tical cerebral microinfarcts, lacunes, enlarged perivascular
spaces, white matter hyperintensity volume, microbleeds)
were included to investigate the independent effects of
haemoglobin on cortical thickness, subcortical structure
volume, and cognition. Mean differences or ORs, 95% CIs
and their corresponding p values in the tables correspond
to the effect estimate for each gram per decilitre drop in
haemoglobin. p values < 0.05 were considered significant.
In view of the multiple testing performed in cortical thick-
ness, subcortical structures and cognition models, the
Bonferroni correction was applied with the significance
levels set at p = 0.025 (0.05/2) for CSVD, p = 0.0083 (0.05/
6) for cortical thickness, p = 0.00625 (0.05/8) for subcor-
tical structures and p = 0.0071 (0.05/7) for cognition. All
statistical analyses were performed using standard statis-
tical software (IBM SPSS Statistics version 24; IBM,
Armonk, NY, USA).

Results
Assessment of subjects was performed from August 12,
2010, to July 24, 2015. Among 957 subjects, 46 were diag-
nosed with dementia, 96 had ungradable MRI scans and
19 had no haemoglobin results available. The final sample
consisted of 796 subjects. Table 1 presents the baseline
data of the included (n = 796) and excluded (n = 756) sub-
jects. The excluded group consisted of positive-screened

non-responders, persons with ungradable MRI scans or
absent haemoglobin levels. Briefly, excluded subjects were
older, more likely to be female, to be less educated and to
have hypertension and less likely to have hyperlipidaemia.
Table 2 presents the association of haemoglobin with

MRI markers of CSVD. Decreased levels of haemoglobin
were associated with cerebral microbleeds (OR, 1.16;
95% CI, 1.01–1.33), specifically those located in the lobar
region (OR, 1.21; 95% CI, 1.04–1.40) in the multivariable
model (even after adjusting for multiple comparisons).
Although decreased levels of haemoglobin were associ-
ated with lacunes (OR, 1.25; 95% CI, 1.07–1.46) in the
models adjusted for age, gender, race and smoking, the
association became attenuated in the presence of cardio-
vascular risk factors and other MRI markers of CSVD.
Table 3 presents the associations of haemoglobin with

global and regional cortical thickness. Decreased haemo-
globin levels were associated with smaller global (mean
difference, -0.006, 95% CI: -0.013; − 0.001) and occipital
(mean difference, − 0.012; 95% CI, − 0.020, − 0.005) cor-
tical thickness after controlling for demographic and car-
diovascular risk factors. These associations remained
significant after additional adjustment for markers of
CSVD and intracranial volume. When we applied the
Bonferroni correction, decreased haemoglobin levels
remained significantly linked with occipital cortical thin-
ning. With respect to the subcortical structures, de-
creased levels of haemoglobin were associated with
smaller accumbens volume (mean difference, − 0.02;
95% CI, − 0.03, − 0.01) in the demographic and cardio-
vascular risk factors model. These associations remained
unaltered after controlling for MRI markers and sur-
vived multiple testing. No association was observed with
other subcortical structure volumes (Table 4).
Decreased levels of haemoglobin were also signifi-

cantly associated with poor cognitive performance (mean
difference in global cognitive z-scores, − 0.06; 95% CI, −
0.10, − 0.01) as well as with individual cognitive domains
of attention (mean difference, − 0.06; 95% CI, − 0.11, −
0.01) and language (mean difference, − 0.07; 95% CI, −
0.13, − 0.02) after adjustment for demographic and car-
diovascular risk factors. Adjustment for socio-economic
status and other MRI markers of CSVD rendered similar
results, suggesting that the associations of haemoglobin
with cognition were not mediated by these variables
(Table 5). However, these associations did not reach the
revised level of significance after the Bonferroni correc-
tion was applied.

Discussion
Our results showed that decreased levels of haemoglobin
were associated with lobar microbleeds, global and occipi-
tal cortical thinning, and smaller accumbens volume inde-
pendent of cardiovascular risk factors and other MRI
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markers. Moreover, people with decreased haemoglobin
levels had worse cognition specifically in the domains of
attention and language, albeit these results were
non-significant after correcting for multiple comparisons.
Few studies have explored the link between decreased

haemoglobin levels and neuroimaging markers of CSVD,
and the results remain controversial. One study has re-
ported a link between anaemia and white matter hyper-
intensity progression among patients with hypertension
[13], whereas a recent study failed to find an association
with white matter hyperintensity volume in a large
community-based study [14]. The latter study also did
not find any significant link with lacunes and cerebral
microbleeds [14]. Although we observed a significant as-
sociation with lacunes in the initial model, the associ-
ation was attenuated after adjustment for other markers
of CSVD. Similarly, we did not observe any significant
association with white matter hyperintensity volumes,
which is consistent with the previous data. To date, this
is the first study exploring the association between
haemoglobin and enlarged perivascular spaces. Consist-
ent with lacunes and white matter hyperintensities, we
also did not observe an association with enlarged peri-
vascular spaces, suggesting a similar underlying mechan-
ism for the development of these lesions. On the
contrary, we report an association of decreased haemo-
globin levels with cerebral microbleeds, specifically with
those located in the lobar region, which may reflect

subclinical cerebral amyloid angiopathy. It has been sug-
gested that prolonged decreased concentrations of
haemoglobin may contribute to microvascular damage
[33] and that they exacerbate cerebral ischemia by creat-
ing a state of chronic cerebral hypoxia [34]. This hypoxic
state increases amyloid-β 1–42 levels via upregulation of
β-secretase cleavage of amyloid precursor protein and
β-secretase enzyme [35, 36], which promote amyloid
plaque formation and contribute to neuronal death. In
addition, cerebral microvascular smooth muscle cell
damage resulting from hypoxic conditions further en-
hances amyloid angiopathy [37] and exacerbates chronic
cerebral hypoxia [38].
With regard to neurodegenerative markers, only one

previous study reported an association between de-
creased haemoglobin levels and cortical thinning in the
frontal and parietal-temporal-occipital lobes in women
[14]. Our results support previous findings by reporting
associations between decreased haemoglobin levels and
occipital cortical thinning. Furthermore, the effect esti-
mates observed are consistent in both studies for the
occipital lobe (β = − 0.011 mm; 95% CI, − 0.019 to −
0.004 mm; compared with β = − 0.011 mm; 95% CI, −
0.019 to − 0.003 mm) [14]. The chronic hypoxic state in-
duced by decreased haemoglobin levels may accelerate
cortical thinning and hence neurodegeneration. More-
over, as indicated above, chronic hypoxia may induce
amyloidogenic processing, leading to brain atrophy.

Table 1 Baseline characteristics of included and excluded subjects

Included (n = 796) Excluded (n = 756)a p Value

Age, years, mean (SD) 70.0 (6.6) 71.9 (6.9) < 0.001

Female sex, n (%) 432 (54.3) 433 (57.3) 0.015

Education (≤ 6 years), n (%) 489 (61.4) 554 (73.3) < 0.001

Ethnicity < 0.001

Chinese, n (%) 273 (34.2) 333 (44.0)

Malay, n (%) 263 (33.0) 194 (25.7)

Indian, n (%) 260 (32.7) 229 (30.3)

Diabetes mellitus, n (%) 289 (36.3) 260 (34.4) 0.430

Hypertension, n (%) 621 (78.0) 634 (83.9) 0.003

Hyperlipidaemia, n (%) 586 (73.6) 498 (65.9) 0.001

Smoking, n (%) 198 (24.9) 185 (24.4) 0.854

BMI, kg/m2, mean (SD) 23.4 (4.6) 23.6 (4.6) 0.982

Mean arterial blood pressure, mmHg, mean (SD) 97.4 (10.4) 97.8 (11.3) 0.282

Total cholesterol, mmol/L, mean (SD) 5.1 (1.2) 5.2 (1.2) 0.354

Random blood glucose, mmol/L, mean (SD) 7.1 (3.1) 7.1 (3.1) 0.846

Haemoglobin, g/dl, mean (SD) 13.4 (1.4) – –

Creatinine, μmol/L, median (IQR) 72 (30) – –

eGFR, ml/min, mean (SD) 91 (29) – –

BMI Body mass index, eGFR Estimated glomerular filtration rate
aExcluded subjects were screened positive non-responders, had ungradable magnetic resonance imaging scans or absent haemoglobin levels
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Interestingly, our study showed a consistent pattern in
the association of decreased haemoglobin with micro-
bleeds as well as with occipital thinning. Of note, the oc-
cipital cortex has the largest accumulation of cerebral
amyloid angiopathy-related pathology on brain autopsy
[39, 40]. The occipital lobe is susceptible to neurotoxic ef-
fects of amyloid [41, 42], and the extent of amyloid burden
correlated with the severity of cortical thinning and me-
tabolism in these regions [43]. Taken together, a chronic
hypoxic state could contribute to vascular amyloid forma-
tion selectively in the occipital lobe as compared with
other lobes. Concomitantly, we also observed a significant
association of decreased haemoglobin with smaller ac-
cumbens volumes. The accumbens is more susceptible
than other subcortical structures to amyloid deposition
[44], and thus its vulnerability to hypoxia-mediated amyl-
oid insults is increased.
Our study also found an association between de-

creased haemoglobin levels and poorer cognitive func-
tion specifically in the domains of attention and
language. It has been suggested that cerebral hypoxia or
reduced aerobic capacity as a consequence of chronic
low haemoglobin levels may contribute to cognitive de-
cline. It has also been suggested that the accumbens nu-
cleus is more vulnerable to amyloid and tau deposition.
Moreover, it is reported that the accumbens is directly
connected to the medial temporal lobe, cingulate gyrus
and precuneus, which are associated with language and
learning and hence impairments in these domains. This
is in line with a previous study which showed a link be-
tween decreased haemoglobin levels and verbal fluency,
a task assessing language [6]. However, these associa-
tions in our study did not reach the revised level of sig-
nificance after applying the Bonferroni correction.
Nevertheless, the direction of the effect estimates does
suggest that there is a link between decreased lower
haemoglobin levels and cognitive dysfunction. It is
noteworthy that most of the individuals in this study
were cognitively normal or in the preclinical stages of
dementia, where mild to moderate decrease in haemo-
globin concentrations may have less effect on oxygen
delivery to the brain through compensatory mecha-
nisms such as vascular dilation to maintain cerebral
blood flow and hence produce less deleterious effects on
cognition. It is also possible that decreased haemoglobin
levels may simply be a marker of chronic inflammation,
frailty and declining health status, the conditions associ-
ated with cognitive impairment and dementia. Similarly,
CSVD is associated with underlying neuroinflammatory
response, and could reflect global inflammatory status [45,
46], which in turn could result in lower haemoglobin
levels. However, the interactions between CSVD and
haemoglobin remain poorly investigated and should be
addressed in future studies.

Our results suggest that decreased haemoglobin levels
may lead to measurable brain parenchymal damage.
Hence, persons with low haemoglobin levels might
benefit from iron, folate and vitamin B12 supplementa-
tion to improve cognitive performance. Although there
have been previous clinical trials on exploring the bene-
ficial effects of iron [47, 48], folate [49] and vitamin B12

[50–52] on reducing cognitive impairment, these studies
have not yielded promising results. However, it remains
possible that a subgroup of the population with anaemia
could benefit from vitamin B or iron supplementation.
This has not been investigated to date in post hoc ana-
lyses of these trials, and it could be a potential area for
further research.
Strengths of our study include that it is a large

multi-ethnic Asian population-based study; standard-
ized and automated imaging techniques were used to
measure cortical thickness, volumes of white matter
hyperintensity and subcortical structures; and exten-
sive neuropsychological assessment. Limitations of the
study include the following:

1. Forty-nine percent of screened-positive subjects
were not included in the second phase of the
study. Compared with the included subjects,
excluded subjects were older, more likely to be
female, to be less educated and to have
hypertension and less likely to have hyperlipidaemia,
which might suggest that these excluded subjects
were more likely to be cognitively impaired. Despite
this non-participation, we found significant
associations between decreased levels of
haemoglobin and MRI markers and cognitive
impairment, suggesting that the true effect esti-
mates must have been larger.

2. Owing to the cross-sectional design of our study,
we were unable to examine the temporal associa-
tions of haemoglobin with development of cognitive
impairment, and incident MRI.

3. Microbleeds as detected on MRI may provide an
indirect measure of amyloid deposition, and other
imaging modalities such as amyloid positron
emission tomography could allow more accurate
measurement of total (vascular and parenchymal)
amyloid deposition in the brain.

4. We did not exclude or adjust for several other
chronic conditions, such as chronic kidney
disease, or immunocompromised diseases, such
as cancer or human immunodeficiency virus,
which may have the potential to decrease
haemoglobin levels in blood. However, because
this is a subsample of a population-based study,
the influence of such diseases is estimated to be
minimal.
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Conclusions
Our study showed significant associations of decreased
haemoglobin levels with lobar microbleeds, cortical thin-
ning, accumbens atrophy and cognitive impairment in a
large multi-ethnic Asian cohort. Because modest reduc-
tion in haemoglobin may be able to induce subtle brain
changes and hence cognitive impairment, future studies
should ascertain whether iron, folate or B12 supplemen-
tation is able to ameliorate the onset and progression of
anaemia-associated cognitive impairment and dementia.
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