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Abstract

Body fluid biomarkers have great potential for different clinical purposes, including diagnosis, prognosis, patient
stratification and treatment effect monitoring. This is exemplified by current use of several excellent biomarkers, such as
the Alzheimer’s disease cerebrospinal fluid (CSF) biomarkers, anti-neuromyelitis optica antibodies and blood neurofilament
light. We still, however, have a strong need for additional biomarkers and several gaps in their development and
implementation should be filled. Examples of such gaps are i) limited knowledge of the causes of neurological diseases,
and thus hypotheses about the best biomarkers to detect subclinical stages of these diseases; ii) the limited success
translating discoveries obtained by e.g. initial mass spectrometry proteomic low-throughput studies into immunoassays
for widespread clinical implementation; iii) lack of interaction among all stakeholders to optimise and adapt study designs
throughout the biomarker development process to medical needs, which may change during the long period needed
for biomarker development.
The Society for CSF Analysis and Clinical Neurochemistry (established in 2015) has been founded as a concerted follow-
up of large standardisation projects, including BIOMARKAPD and SOPHIA, and the BioMS-consortium.
The main aims of the CSF society are to exchange high level international scientific experience, to facilitate the
incorporation of CSF diagnostics into clinical practice and to give advice on inclusion of CSF analysis into clinical
guidelines. The society has a broad scope, as its vision is that the gaps in development and implementation of
biomarkers are shared among almost all neurological diseases and thus they can benefit from the activities of the society.
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Background
Introduction to the use of biomarkers for
neurological diseases
Biomarkers in body fluids, such as cerebrospinal fluid
(CSF) and blood, play an important role in clinical practise
of neurological diseases. For example, CSF analysis of 14-3-
3 proteins and aggregated prion proteins provides the final

diagnosis for sporadic Creutzfeldt Jakob’s disease [1], and
the presence of oligoclonal IgG bands has been the corner-
stone of multiple sclerosis diagnosis [2]. Likewise, the dis-
covery of antibodies against aquaporin 4 has completely
changed the diagnostic criteria of neuromyelitis optica
(NMO) and significantly enhanced knowledge on patho-
genesis [3]. More recently, amyloid Aβ42, tTau and pTau
levels are positioned at the core of the diagnostic guidelines
for Alzheimer’s disease (AD). Appropriate use criteria
(AUC) for these AD CSF biomarkers are under
development, which is a project led by the Alzheimer’s
Association. Moreover, biomarkers are increasingly
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important due to evidence that there is a long presymptom-
atic pathological phase in neurological diseases. This had
been recognised for a long time for Parkinson’s disease, for
which we know that motor features become detectable only
after a 60% reduction in striatal neurons [4]. In addition,
the CSF biomarkers amyloid Aβ42, tTau and pTau, more
and more used in clinical practise, appear to decline up to
25 years before clinical symptoms are visible [5, 6]. The
Aβ42/Aβ40 ratio is useful for differentiating AD from De-
mentia with Lewy Bodies (DLB) patients independent of
the technology [7, 8] or increases the concordance with
amyloid measurement, in comparison to Aβ42 alone [9]. In
addition, the increase in pTau is quite specific for AD com-
pared to other dementia types [10]. These biomarkers very
consistently show marked differences in sporadic AD de-
mentia and moreover in prodromal AD [11]. This has led
to the prominent use of these biomarkers in guidelines for
defining preclinical diagnosis of AD and to increase
the confidence in the diagnosis in the prodromal and
dementia phases [12, 13]. Even though early treat-
ment may be absent, currently for several neuro-
logical diseases, a biomarker-based diagnosis can help
to better inform patients and caregivers, and will be
important in treatment development [14].
CSF biomarkers, as they are in close interaction with

brain tissue, can give a glimpse into brain biochemistry
and the underlying pathophysiology of brain disorders
such as AD. Biomarkers measured in such body fluids
should therefore help us to track pathological events at
early stages. Likewise, an important current concept is
that the full diversity of mechanisms occurring in pre-
clinical stages of neurological diseases are reflected in
the CSF’s molecular make up, and possibly also in blood.
These biomarkers can therefore be used to support early
diagnosis and prognosis, as implemented for the bio-
markers amyloid Aβ42, tTau and pTau for AD [12, 13].
Another important use of such biomarkers is in stratifi-
cation of patients in clinical trials, where patients with
the targeted pathology can be selectively treated [15–
18]. For example, patients that are amyloid positive (low
CSF amyloid Aβ42 values) will be the ones that will
benefit from amyloid targeting drugs such as BACE in-
hibitors, anti-tau immunisation, etc. [16]. On top of that,
biomarkers will play an even more important role in sec-
ondary prevention trials, i.e. trials aimed at prevention
of pathological progression in asymptomatic subjects
with positive biofluid or imaging biomarkers. So far, all
epidemiological studies and the few intervention studies
for dementia have been based on clinically diagnosed de-
mentia. Therefore, epidemiological studies employing
biomarkers will be key to identify risk factors for neuro-
degeneration. Further, a biomarker-based diagnosis will
be the cornerstone to identify patients with preclinical
disease during the long prodromal stage of neurological

diseases. Moreover, no clinical outcome measures will be
available in this preclinical phase by definition, when pa-
tients are selected based on biomarker profiles. Fluid
biomarkers can then be used to monitor treatment ef-
fects on pathologically relevant pathways, such as
changes in Aβ production and in Aβ species in BACE
inhibitor trials [19, 20], or reduced neurofilament light
chain levels in aggressive anti-inflammatory treatment in
multiple sclerosis [21–23].
Blood-based central nervous system-specific biomarkers

are also upcoming and the expectation is that they will aid
in prescreening at-risk subjects. Due to the lower invasive-
ness and absence of a risk for headache of a venepuncture,
blood-based biomarkers are strongly preferred for popula-
tion screening and monitoring requiring repeated sampling.
With advances in novel ultrasensitive technologies, analysis
of brain-specific proteins in the blood compartment be-
comes within reach. The high expectation that blood-based
biomarker analysis for neurodegenerative and neuroinflam-
matory diseases will provide information on brain path-
ology in individual patients is fuelled by recent findings on
blood levels of the axonal dysfunction biomarker neurofila-
ment light. The blood levels of this protein correlate
strongly with CSF levels [24–26], are increased in a broad
range of neurodegenerative diseases [24–31]) and are
almost as sensitive as CSF analysis to monitor therapeutic
responses in individual patients [21, 32].

Need for biomarkers for neurological disorders
Evidence for the clinical benefit of AD CSF biomarkers
suggests that even more specific CSF and blood bio-
markers for neurological disorders, to address the unmet
clinical need for early differential diagnosis and disease
monitoring, have yet to be discovered. However, not
many novel biomarkers identified in past years have
reached clinical implementation, to meet all medical
needs. Neurofilaments in the differential diagnosis of
ALS [33] or the presence of anti-aquaporin 4 antibodies
in neuromyelitis optica [34, 35] are quite sensitive and
specific, but only when applied in the correct diagnostic
context. For example, neurofilaments are non-disease-
specific biomarkers, with increases seen in Amyotrophic
Lateral Sclerosis (ALS) when compared to slowly pro-
gressive disorders [33]. Thus, the comparison or control
group defines the clinical value. Markers that are specific
for a diagnosis even outside a narrow differential diag-
nostic spectrum, like the detection of pathological prion
protein with the RT-QuIC assay [36], are still not within
reach.
We need to identify the factors that could be underlying

this development gap and we can learn from positive exam-
ples from the past. Important lessons can be learnt from the
path by which the AD biomarkers have been developed;
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discovered in the 1990s, they are now, almost 25 years later,
facing implementation in routine clinical chemistry
platforms.
As agreed in working groups during the past two de-

cades, one of the causes of the lack of novel clinically
useful biomarkers was thought to be the lack of stand-
ardisation of biobanking protocols and assay validation,
hampering sufficiently powered biomarker discovery
studies and replication of initial findings. However, these
drawbacks were addressed by for example developing
standardised protocols and enhanced knowledge of the
effects of preanalytical factors and variation in biobank-
ing protocols on body fluid biomarkers [37–39] and by
developing guidelines for assay development and valid-
ation [40]. The AD biomarker studies have determined
the importance of tube types—it is crucial to use poly-
propylene vials [41]—and that these should be filled to
enhance the volume to surface ratio [42]. Adaptation of
the collection and biobanking protocols will similarly
optimise variation in novel biomarker results. In
addition, strong international collaborative networks and
large accessible biobanks are now available within the
society [43], and in other global initiatives, to optimise
biomarker discovery studies, facilitating independent
validation.

Gaps in the current biomarker development
process
Having addressed these major problems, we gain more
insight into other shortcomings of the current biomarker
development processes [44], the “hypothesis gap”, the
“technology translation gap” and the “interaction gap”.
The hypothesis gap is the continuous problem that

the cause and initial events of the majority of neuro-
logical diseases are still not elucidated. Post-mortem
evaluation of affected tissue is a powerful tool to define
pathologies and possible molecular mechanisms, and
several hypotheses for these have been proposed. By def-
inition, however, the earliest preclinical stages cannot be
unravelled as follow-up clinical or even downstream
pathological events cannot be monitored. In vitro and
animal work and familial vs. sporadic disease studies are
necessary to strengthen the hypothesis gap. However, for
direct investigation of body fluids in the earliest stages
of neurological diseases, the biomarker field has
employed “omics” technologies. These allow unbiased
analysis of large ranges of DNA, RNA, proteins or me-
tabolites, and thus allow identification of biomarker leads
as well as novel hypotheses through multimodal pathway
analysis [45–48]. The currently most powerful proteomics
technologies are based on mass spectrometry methods.
These undergo rapid development, even though the
current shotgun proteomics approaches require a low
sample throughput, low sensitivity in CSF (detection

ranges are typically higher than nanograms per millilitre,
too low to allow detection of the current diagnostic AD
biomarkers in CSF) and relatively large within and be-
tween experimental variation. The usual practise in pro-
tein biomarker development studies is to employ
antibody-based assays for clinical validation of novel iden-
tified protein biomarkers. Immunoassays are typically
more sensitive, can easily be used for high sample
throughput and are broadly implemented in routine clin-
ical chemistry. However, specific and sensitive immunoas-
says are not available for the majority of novel biomarker
proteins, especially if they correspond to post-
translationally modified isoforms, and development of
novel assays is costly and is conceived as high risk. In con-
trast, targeted mass spectrometry assays are based on the
same technological principle, but this technology still
needs further optimisation and automation before robust
and large scale routine use is within reach. Similarly, RNA
markers are likely easier to validate from the technological
perspective, yet the methods still need optimisation for ap-
plication for CSF analysis, while large scale metabolomics
using CSF is still in its infancy [14].
This high risk leads to the second gap, the cross-

technology translation gap. Mass spectrometry has
been the method of choice for unbiased analysis of large
numbers of proteins in usually small numbers of pa-
tients, but for large scale validation of a handful of pro-
teins in large numbers of patients and clinical
implementation, immunoassays are the method of
choice. This requires a cross-platform translation, which
is an important hurdle. Mass spectrometry identifies
peptides from experimentally fragmented proteins while
immunobased assays detect natively folded proteins and
protein isoforms. Thus, validation of proteins identified
by one technology by a completely different technology
means, by definition, that a large gap needs to be
bridged. This is even more relevant for pathological con-
ditions, where proteins can have lost their original con-
figuration (e.g. during aggregation) and be proteolytically
spliced [49]. One solution to overcome this technology
translation gap is to start discovery by immunobased
methods, e.g. immunobased mass spectrometry [50], or
applying immunobased arrays for protein biomarker dis-
covery, such as antibody-based arrays (e.g. Luminex,
proximity ligation assays [51, 52]). This will be a less un-
biased approach, yet is usually more sensitive, and allows
replication of original findings in smaller panels of se-
lected differentially regulated proteins. Other solutions
to bridge both the hypothesis gap and the cross-
technology translation gap is more extensive verifica-
tion of potential novel identified biomarkers by
merging of omics datasets obtained by different centres,
different technologies and different matrices (CSF-tissue-
blood). Alternatively, the analytical conditions applied
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during analysis in one technology (for example mass-
spectrometry or antibody development) may differ from
those in the sandwich development, and more insight at
every step of this process, as well as epitope exposure in
native proteins, will help to bridge the cross-technology
validation of novel biomarker leads.
The third identified gap, the interaction gap, is de-

fined as the need to constantly discuss and adjust the
study design throughout the lengthy and multidisciplin-
ary process of the biomarker development process. We
define five essential steps during this development
process, involving different disciplines that each speak
their own language (Fig. 1). The first step is discovery,
with the mentioned omics technology tools or based on
a priori hypotheses (the candidate biomarker approach
based on pathology and/or previously reported candidate
biomarkers). The second step is analytical validation by
alternative biomarker assays, which needs to bridge the
technology translation gap. When this gap is bridged,
which is a high risk undertaking, extensive analytical val-
idation [40] along with proof of concept of clinical use
in small cohorts is needed to verify the omics findings.
The third step is clinical validation, which typically in-
cludes validation in independent cohorts, independent
centres and various clinical groups that are relevant for
differential diagnosis. The fourth step is clinical imple-
mentation, which involves development of in vitro
diagnostic tests, establishment of reference material,
reference methods and quality control programs, incorp-
oration in clinical guidelines and education of physicians
and laboratory practise. Other aspects involved in imple-
mentation include evaluation of the role of the bio-
marker in the diagnostic process, the method of cut-off
calculation and communication of the results. The last
step includes obtaining regulatory approval and reim-
bursement by insurance companies.
In all phases, defining the needs of the next steps of the

lengthy development process is of extreme relevance. For
example, assay performance parameters will change (i.e. be-
come more stringent) during the different developmental
stages. In addition, the medical needs at the start of the
process could have changed by the time of clinical valid-
ation, due to the emergence of alternative diagnostic tools.
Public or patient perceptions of the method to collect the
fluid can change, very relevant for CSF, which was some-
times perceived as invasive and associated with a high risk
of severe complications. Nowadays, it can be well addressed
by improving the procedure, avoiding risk factors and

providing better information [53]. Other influences leading
to a change in the need of biomarkers are breakthroughs in
drug development, which can e.g. require more specific or
more sensitive biomarkers or require novel targets. In clin-
ical implementation, other aspects of biomarker analysis be-
come relevant, such as the cost of the analysis, turnaround
time, readiness of the field to modify clinical guidelines and
clinical practice.

Benefits of filling the gaps
Since the optimal performance of all five steps of the
development process are essential and can define its
success, it is of utmost importance that the process is
approached in its entirety, like a coherent pipeline.
Therefore, intensive interaction between all parties
involved is required. This is currently not the case, as
there is no platform where all the players naturally con-
vene or collaborate. For example, discovery is tradition-
ally the realm of academia and biochemists, as academia
has access to cohorts and is in the position to take the
high risk involved. Initial assay development for novel
biomarkers usually occurs in academia, again due to the
high risk. The next step in development, i.e. increasing
production and compliance with high quality standards
for clinical validation and implementation is the realm of
diagnostic companies. Yet, for this validation collaboration
with the academic partners is still needed for access to rele-
vant cohorts stored in clinical biobanks. Lastly, implemen-
tation in guidelines needs the advocacy of lead physicians,
but also requires the involvement of communication spe-
cialists. Thus, it is our conviction that biomarker develop-
ment can be accelerated by continuous and open
interaction, to define and adjust the optimal study designs
and technical requirements of the biomarkers.
The lack of cross-talk and limited awareness of the es-

sential steps in biomarker development leads to situa-
tions where -omics findings can be introduced in the
highest impact journals, claiming routine implementa-
tion. In fact, the selection of the patient groups, lack of
clinical validation and use of low throughput processing
technologies warrants greater caution before making
such far-fetched claims.

Novel solutions: the Society for CSF Analysis and
Clinical Neurochemistry
These issues are high on the agenda of the novel so-
ciety for CSF Analysis and Clinical Neurochemistry
(“CSF society”). This society originated from two

Fig. 1 Steps in the biomarker development process
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large EU-funded projects: a) the joint program of
neurodegenerative diseases (http://www.neurodegen-
erationresearch.eu/) project BIOMARKAPD (http://
www.neurodegenerationresearch.eu/initiatives/annual-calls-
for-proposals/closed-calls/biomarkers-transnational-call/re-
sults-of-biomarker-call/biomarkapd/), aimed at optimising
all aspects of biomarker analysis of biomarkers for
Alzheimer’s disease and Parkinson’s disease, and b)
the SOPHIA project http://www.neurodegenerationre-
search.eu/?s=sophia), with almost similar goals but
with a focus on motor neuron diseases. The partici-
pants of these projects saw an immediate need for
further development of the medical disciplines of CSF
biomarker development and clinical neurochemistry
beyond a specific call. In addition, the Biomarkers in
MS network, which has existed since 2008, joined the
initiative.
The main aims of the CSF society are therefore to ex-

change high level international scientific experience, to
facilitate the incorporation of CSF diagnostics into clin-
ical practice and to give advice on inclusion of CSF ana-
lysis into clinical guidelines.
The society interacts intensively with stakeholders,

such as related industries (e.g. biomarker discovery
technology providers, (diagnostic) assay industry),
with the perspective that the availability and continu-
ous improvement of high quality technologies and as-
says is an important need for biomarker development
and clinical implementation. Moreover, it stimulates
interaction with regulatory bodies, such as IFCC or
EMA, and patient organisations, such as ISTAART or
Alzheimer Europe, to be able to address patient perspec-
tives relevant during biomarker development (which med-
ical need to address?) and implementation (what
information do patients wish to have before undergoing a
lumbar puncture?). Stakeholders are invited to participate
in the symposia and teaching programs (e.g. giving lec-
tures, discussion panels).
The disease scope of the society is broad, address-

ing body fluid biomarker research in, for example,
dementias, ALS, Parkinson’s disease, neuroinfectious
diseases, neoplastic and paraneoplastic diseases,
stroke, Creutzfeldt-Jakob’s disease, and autoimmune
diseases such as multiple sclerosis, illustrated by the
program of its first symposium in 2016. This broad
scope is natural in view of the completely identical
technical aspects of the biomarker process and its
current inherent problems, and many shared bio-
markers, for example neurofilaments and inflamma-
tory markers.
As may be clear from the above, the society is a net-

work organisation with a broad disease scope and a spe-
cific subject (body fluid biomarkers), which differentiates
it from research or cohort consortia with a single-

disease scope (e.g. ADNI) or funding organisations (e.g.
MJ Fox Foundation, ISTAART).
The current primary matrix of interest of the CSF

society is CSF, due to its close contact to the brain
tissue and because it has been shown to be inform-
ative and useful for specific diagnosis of neurological
diseases. The secondary matrix of interest is blood,
which is the matrix of choice for monitoring disease
severity and progression and treatment efficacy. How-
ever, other matrices also are also of interest to the
society.

Strategies of the CSF society
The society employs several strategies to create a new
generation of scientists, namely scientists who are able
to cross disciplinary borders and take novel avenues and
unconventional approaches, to highlight and apply the
necessary improvements to optimise and accelerate bio-
marker development.
The primary activities of the upcoming 5 years are to

establish a high quality educational program, including
teaching courses, and an educational program for a per-
son to become a certified CSF expert. Another immedi-
ate main 5-year target is to organise series of symposia
bringing together experts covering the variety of neuro-
logical diseases, which functions as a forum for discus-
sion and guideline development for biomarker-related
issues (such as guidelines for pre-analytical processing of
CSF). Another goal is to develop roadmaps for bio-
marker development, in which all stakeholders closely
interact, to accelerate the biomarker development
process and make effective use of available resources in
terms of patient biosamples within the society, reagents,
expertise and funding. In this way, the society aims to
bring in expertise covering the whole development chain
outlined in Fig. 1, as it is our vision that this is essential
to bridge the current and future identified gaps and to
optimise biomarker development.
The educational program of the society contains intro-

ductory courses on basic CSF analysis, the state of the
art of biomarkers in different diseases, but also hands-
on courses to practise interpretation of pathological cells
in CSF or to practise novel state of the art ultrasensitive
immunoassays.
The advanced courses are supervised by dedicated

mentors and include internships and exchange programs
for diagnostic analysis and interpretation with the aim to
build up scientific and clinical portfolios for the current
and next generations of experts on fluid biomarkers for
neurologic diseases.
The society is funded by membership contributions.

The symposia are supported by sponsorship from indus-
trial stakeholders.
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Conclusions
The goal of the CSF society is to optimise biomarker
development by bringing together the necessary ex-
pertise and finding the best possible strategy to accel-
erate biomarker development. We expect to be able
to bypass the “valley of death” in which initial prom-
ising findings often end, enabling them to bridge the
identified hypothesis gap, technology translation gap
and interaction gap. We hope that we will thus gen-
erate body fluid biomarkers in the next decade for
every unmet clinical need, to increase our insight into
the biology of neurological diseases and deliver clinic-
ally useful tools.
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