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Abstract

Background: Alzheimer's disease (AD) is a complex neurodegenerative disease, and genetic differences may
mediate neuronal degeneration. In humans, a single-nucleotide polymorphism in the B-cell chronic lymphocytic
leukemia/lymphoma-2 (Bcl-2) gene, rs956572, has been found to significantly modulate Bcl-2 protein expression in
the brain. The Bcl-2 AA genotype has been associated with reduced Bcl-2 levels and lower gray matter volume in
healthy populations. We hypothesized that different Bcl-2 genotype groups may modulate large-scale brain
networks that determine neurobehavioral test scores.

Methods: Gray matter structural covariance networks (SCNs) were constructed in 104 patients with AD using
T1-weighted magnetic resonance imaging with seed-based correlation analysis. The patients were stratified into
two genotype groups on the basis of Bcl-2 expression (G carriers, n = 76; A homozygotes, n = 28). Four SCNs
characteristic of AD were constructed from seeds in the default mode network, salience network, and executive
control network, and cognitive test scores served as the major outcome factor.

Results: For the G carriers, influences of the SCNs were observed mostly in the default mode network, of which the
peak clusters anchored by the posterior cingulate cortex seed determined the cognitive test scores. In contrast,
genetic influences in the A homozygotes were found mainly in the executive control network, and both the
dorsolateral prefrontal cortex seed and the interconnected peak clusters were correlated with the clinical scores.
Despite a small number of cases, the A homozygotes showed greater covariance strength than the G carriers
among all four SCNs.

Conclusions: Our results suggest that the Bcl-2 rs956572 polymorphism is associated with different strengths of
structural covariance in AD that determine clinical outcomes. The greater covariance strength in the four SCNs
shown in the A homozygotes suggests that different Bcl-2 polymorphisms play different modulatory roles.
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Background

In Alzheimer’s disease (AD), the self-aggregation of amyl-
oid fibrils and accumulation of amyloid plaques represent
an important early pathological finding. Whereas the pres-
ence of amyloid may trigger downstream network degen-
eration, the presence of the antiapoptotic protein, B-cell
chronic lymphocytic leukemia/lymphoma-2 (Bcl-2), may
offer protection by regulating cellular resilience and apop-
tosis pathways [1]. In the mammalian central nervous sys-
tem, increased expression of Bcl-2 protein has been
shown to promote axon regeneration [2]. In patients with
AD, the overexpression of Bcl-2 protein in surviving glia
surrounding amyloid plaques suggests its role against
neuroinflammation [3]. In addition, nicergoline, a drug
that upregulates Bcl-2 protein expression and acts against
[B-amyloid cascades, has been used clinically to treat age-
dependent cognitive impairment [4].

In humans, a single-nucleotide polymorphism in the
Bcl-2 gene, rs956572, has been found to significantly
modulate protein and messenger RNA (mRNA) expres-
sion levels [5, 6]. The Bcl-2 AA genotype group has been
associated with reduced Bcl-2 levels [6]. In bipolar disor-
ders, lower Bcl-2 protein and mRNA levels have been
reported in the frontal cortex [7]. Subsequent reports in
healthy elderly subjects have suggested that genetic vari-
ations in Bcl-2 modulate intracerebral structures, includ-
ing the hippocampus, ventral striatum, and precuneus
[8, 9]. The AA variant has also been associated with lower
gray matter (GM) volume in healthy individuals [8]. How-
ever, the genetic associations of Bcl-2 on network influ-
ences remain to be explored in patients with AD.

Recently, resting-state or task-based functional mag-
netic resonance imaging has been used to map the
network connectivity. With subjects in a resting state
[10], spontaneously correlated low-frequency signal fluc-
tuations occurring within spatially distinct, functionally
related cortical-subcortical regions can be measured.
One functional network in a task-free state in healthy
subjects is referred to as the default mode network
(DMN), which includes the posterior cingulate cortex
(PCC), anterior medial prefrontal cortex, medial tem-
poral lobe, lateral temporal cortex, and inferior parietal
lobule. The DMN is regarded to be an early neuroimag-
ing biosignature [11], and a recent report suggested that
the DMN may be comprised of multiple spatially disso-
ciated but interactive components [12], of which two
subsystems are of particular interest. The “medial tem-
poral lobe subsystem,” anchored by the entorhinal cortex
and the hippocampus, includes the ventral medial pre-
frontal cortex, posterior inferior parietal lobule, retrosple-
nial cortex, parahippocampal cortex, and hippocampal
formation. This subsystem is involved in mental scene
construction and decision making based on retrieval of
memory. The “dorsal medial prefrontal cortex subsystem”
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(or the midline core subsystem) plays a role in self-relevant
and affective decision making. It includes the core of the
PCC and anterior medial prefrontal cortex, and the cortical
hubs of the temporoparietal junction and the lateral tem-
poral and temporal poles.

The salience network is anchored by the frontoinsular
cortex and dorsal anterior cingulate cortex [13].
Enhanced resting-state functional connectivity of the
salience network has been reported in patients with AD
[14], and possible mechanisms have been hypothesized
to reflect a compensatory mechanism for the weakened
posterior hubs [15]. The executive control network
(ECN) represents another network that shows increased
functional connectivity in patients with AD [16, 17]. An-
chored by the dorsolateral prefrontal cortex (DLPFC),
the ECN plays a role in functions such as sustained
attention, working memory, and response selection and
suppression [13].

Recent research suggests that regions which are highly
related show covariance in morphometric characteristics,
so-called structural covariance. It has also been shown
that structural covariance patterns are associated with
structural or functional connectivity [18]. In structural
covariance pattern analysis, factors such as genetic varia-
tions and developmental, degenerative, and disease sta-
ging are important covariates of interest [18]. Structural
covariance networks (SCNs) can be used to investigate
spatial associations of Bcl-2 genotype groups in AD.

In this study, we investigated whether the SCN in AD
may represent an endophenotype of the Bcl-2 rs956572
genetic polymorphism. Spreng and Turner reported that
the Bcl-2 AA genotype may be a risk factor for neuronal
apoptosis and oxidative stress [19]. Therefore, we
stratified our patients according to the Bcl-2 rs956572
genotype as Bcl-2 G carriers (n =76) and A homozygotes
(n =28), matched for confounding factors including sex,
age, education level, apolipoprotein E4 status, duration
of disease, and Mini Mental State Examination (MMSE)
score. Because the Bcl-2 genotypes have been reported
to influence psychiatric presentation in bipolar disorders
[5, 6, 20, 21], we also included Neuropsychiatric
Inventory (NPI) scores to evaluate whether the genotype
groups affected the behavioral presentations.

Methods

This study was conducted in accordance with the
Declaration of Helsinki and was approved by the
Institutional Review Board of Chang Gung Memorial
Hospital. Both the patients and their caregivers provided
written informed consent. The study participants were
treated at the Cognition and Aging Center, Department of
General Neurology, Kaohsiung Chang Gung Memorial
Hospital (male/female ratio, 51/53). Subjects were in-
cluded on the basis of a consensus of panels composed of
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neurologists, neuropsychologists, neuroradiologists, and ex-
perts in nuclear medicine [22]. AD was diagnosed accord-
ing to the International Working Group criteria [23] for a
clinical diagnosis of typical AD. The Clinical Dementia
Rating scores were 0.5 or 1. All of the patients with AD
were under stable treatment with acetylcholinesterase
inhibitors from the time of diagnosis. The exclusion criteria
were a history of clinical stroke, a modified Hachinski
ischemic score > 4 [24] and depression.

Clinical assessment

After enrollment, demographic data and family history
were recorded, and physical and neurological examina-
tions were performed. General cognitive function was
assessed using the MMSE [25]. Verbal and nonverbal
episodic memory were assessed using a Chinese version
of the Verbal Learning Test [26] and the Rey-Osterrieth
Complex Figure Test after a 10-minute delay [27].
Language screening was performed using the 16-item
Boston Naming Test [28], a three-step comprehension
test, and a semantic verbal fluency test. Visuospatial
abilities were assessed using a modified Rey-Osterrieth
Complex Figure Test and the number-location test from
the Visual Object and Space Perception Battery [29].
Frontal lobe function was assessed using digit-forward
and backward-span, design fluency, Stroop interference,
and modified Trail Making Test B tests [30]. For the be-
havioral observations, we used the 12-item version of
the NPI [31], with scores ranging from 0 to 144.

Genotyping

Genomic DNA was extracted from blood using a com-
mercial kit (Gentra Puregene Blood Kit; Qiagen, Hilden,
Germany), followed by the genotyping procedures for
rs956572 using the PCR restriction fragment length
polymorphism method [8, 9] The ancestral allele G
yielded three bands of 298, 108, and 161 bp, whereas the
mutant allele A yielded two bands of 406 and 161 bp.
All of the participants’ scores are summarized according
to genotype group (G carriers and A homozygotes) in
Table 1.

Image acquisition

Magnetic resonance images were acquired using a 3.0-T
magnetic resonance imaging (MRI) scanner (Excite; GE
Medical Systems, Milwaukee, WI, USA). Structural im-
ages were acquired for structural covariance analysis
using the following protocols: a T1-weighted, inversion
recovery-prepared, three-dimensional, gradient-recalled
acquisition in a steady-state sequence with repetition
time/echo time/inversion time of 8600 milliseconds/
minimal/450 milliseconds, a 256 x 256-mm field of view,
and a 1-mm slice sagittal thickness with a resolution of
0.5x0.5x1 mm?,
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Table 1 Demographic characteristics and neuropsychiatric
tests between the Bcl-2 A homozygotes and G carriers in
Alzheimer’s disease

Group G carriers (n=76)  AA (n=28) p Value
Age, years 734 (7.6) 718 (74) 032
Education, years 57 (54) 54 (5.1) 04
Sex, male/female 42/34 1/17 0.186
ApoE €4 allele-positive 29 (38.5%) 13 (4642%) 0.503
cases, n (%)
Use of rivastigmine/ 37/39 17/1 0377
donepezil
Mini Mental State 216 (5.7) 206 (5.1) 0.286
Examination score
CWLT verbal memory (9)
Trials 1-4 total 19.6 (7.08) 18.0 (6.9) 0.173
30-second free recall 478 (2.6) 418 (2.73) 0.265
10-minute free recall 3.52 (3.3) 321(2.8) 0.935
Visual memory
Modified Rey-Osterrieth 47 (5.2) 404 (4.16) 067
recall (17)
Visuospatial function
Modified Rey-Osterrieth 14.3 (5.0) 149 (4.6) 0.896
copy (17)
Visual Object and Space 6.4 (3.16) 5.8 (345) 0.446
Perception Battery (10)
Speech and language ability
Semantic fluency: animal ~ 11.2 (4.63) 1033 (5.74) 0387
(1 minute)
Boston Naming Test (15)  12.8 (3.0) 11.6 (2.8) 0.04%
Comprehension (4) 2.8 (0.9 23(1.2) 0.053
Executive function
Digit backward 32(1.3) 32 (1.1 0.758
Stroop interference 259 (13.1) 216 (15.7) 0.178
correct (1 minute)
Design fluency 431 (2.8) 45 (3.8) 0612
Trail Making Test 99.2 (323) 93.0 (37.9) 0446
time (<120 seconds)
Correct line in Trail 7.1 (5.4) 76 (5.6) 0.742

Making Test (14)

CWVLT Chinese Version Verbal Learning Test

Data are presented as mean (SD); numbers in parentheses following task
name are maximal scores

%p < 0.05, Mann-Whitney U test

Data analysis

Image preprocessing and statistical analysis were per-
formed using SPMI12 statistical parametric mapping
(http://www.filion.ucl.ac.uk/spm/; Wellcome Trust Centre
of Cognitive Neurology, University College London,
London, UK). The T1-weighted images were reoriented,
realigned, and normalized with the standard Montreal
Neurological Institute space. The images were then seg-
mented into GM and white matter. Affine-registered
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tissue segments were used to create a custom template
using diffeomorphic anatomical registration using the expo-
nentiated lie algebra approach. This approach represents
one of the highest-ranking registration methods in patients
with AD [32]. The modulated and warped images were
then smoothed with a Gaussian kernel of 8 mm FWHM.

SCN analysis

To investigate the SCNs, regional GM volumes of 4 re-
gions of interest (ROIs) were extracted from the 104
preprocessed images. The seed ROI included the right
entorhinal cortex (coordinates 25, -9, -28), left PCC
(coordinates -2, -36, 35), right frontoinsular cortex
(coordinates 38, 26, —10), and right DLPFC (coordinates
44, 36, 20). The main purpose of this study was to delin-
eate the topography of SCN in terms of Bcl-2 functional
polymorphism rather than to report the SCN differences
constructed from the right or left seed. Because pathology
or functional connectivity in typical AD is also distributed
symmetrically, we did not perform a contralateral seed
analysis in this study. According to the literature, these
seed regions anchor the DMN medial temporal subsystem
(right entorhinal cortex) [33], DMN midline core subsys-
tem (left PCC) [19, 34], salience network (right frontoin-
sular cortex), and ECN (right DLPFC) [13].

From the modified GM images, the GM volumes of a
4-mm radius sphere around the seed ROI coordinates
were calculated, followed by four separate correlation
analyses using the extracted GM volumes as the covari-
ates of interest. The patients with AD, G carriers, and A
homozygotes were modeled separately. During the con-
struction of the SCNs, the seed volumes were entered as
independent variables, and age, MMSE scores, and total
intracranial volumes were entered as covariates to con-
trol for confounding from the aging process and disease
severity. For each group, specific contrasts were set to
identify, for each seed ROI, voxels that showed positive
correlations within each group (AA and G carriers). The
results reflected the SCNs of each group and were thre-
sholded at p <0.05, corrected for a false discovery rate
(FDR). Considering the physiological meanings of the
SCN clusters and the disproportionate number of cases
in two genotype groups, we reported only the significant
clusters showing a cluster size > 100 voxels (337.5 mm?>).
Because the experiment was exploratory, the threshold
cutoff was set to avoid reporting clusters showing a spatial
extent smaller than the predefined size. Meanwhile, to
understand whether the distributions of SCN were driven
by the number of cases, we also performed SCN in three
genotype groups for qualitative comparisons.

Furthermore, to understand how genetic variance may
interfere with the structural covariance patterns, voxels
showing significant differences in the regression slopes
in each ROI were compared, pointing to possible
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interactions between AA < G carriers or AA > G carriers.
The threshold for the resulting statistical parametric
maps was thresholded at p < 0.05 (FDR-corrected) with a
cluster size > 100 voxels.

For the clusters showing significant between-group in-
teractions, a 4-mm radius sphere was placed on the peak
voxel, and the GM densities were extracted for regres-
sion analysis. To explore the clinical significance of the
seed volume and the identified peak voxel volume, we
used linear regression analysis to test the relationships
with the neurobehavioral scores. The cognitive test
scores served as the dependent variable. The threshold
was set at p < 0.05 with multiple corrections.

Statistical analysis

Clinical and laboratory data were expressed as mean + SD.
The Mann-Whitney U test was used to compare levels of
continuous variables of the G carriers and A homozygotes.
Spearman’s correlation analysis adjusted for possible con-
founders was performed to assess associations between
continuous variables. The interactions between two geno-
type groups in covariance strength and their 95% Cls were
explored. All statistical analyses were conducted using
IBM SPSS Statistics version 20 for Windows® software
(IBM, Armonk, NY, USA). Statistical significance was set
at p <0.05.

Results

Demographic data, cognitive data, and NPI

The demographic and neurobehavioral characteristics of
the Bcl-2 A homozygotes and G carriers are shown in
Table 1. The genotype distribution did not violate the
Hardy-Weinberg principle (chi-square value =1.65;
p=0.19). The G carriers had significantly higher scores
in the Boston Naming Test, but the effects were not re-
lated to the categories of acetylcholinesterase inhibitors.
The total NPI score in the A homozygotes (3.4 + 5.1) was
significantly lower than that in the G carriers (7.5 + 9.4;
p =0.006). The significance was related to the subdo-
mains of aggression (A homozygotes 0.04 + 0.19; G carriers
0.5+2.1; p=0.04) and sleep (A homozygotes 0.8 +2.6; G
carriers 2.7 + 4.6; p = 0.009).

SCN patterns in the two genetic variants

In all of the included patients, regions showing struc-
tural associations with the seed regions of each SCN
were generally consistent with those reported in the litera-
ture [12, 13, 35] (Fig. 1a, Additional file 1: Tables S1-S4).
A direct comparison using voxel-based morphometry [36]
between the G carriers and A homozygotes showed
no significant difference in GM volume with the
threshold set at p <0.05, corrected for an FDR with a
cluster size > 100 voxels.
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a All Patients

Default mode
[right
entorrhinal seed]

Default mode
[Left PCC seed]

Salience Network
[Right FI seed]

Executive Network
[R dorsolateral
prefrontal seed]

Fig. 1 Statistical maps depict brain areas in which the gray matter intensity covaried with four target seeds for separate networks in (a) all
patients with Alzheimer's disease (n =104), (b) G carriers (n = 76), and (c) A homozygotes (n = 28). Z-statistic maps (p < 0.05, corrected with false
discovery rate with extended cluster voxels > 100). The images are displayed on a standard brain render. R Right; PCC Posterior cingulate cortex;
FI Frontoinsular; Bcl-2 B-cell chronic lymphocytic leukemia/lymphoma-2 gene (rs956572)

J

The SCN patterns in the G carriers and A homozy-
gotes are presented in Fig. 1b and ¢ and Additional file 1:
Table S5-S12. Interestingly, in the ECN, the A homozy-
gotes had a considerably greater extent of structural co-
variance (number of voxels = 80,476) than the G carriers
(number of voxels =5673), although there were fewer
cases in the A homozygote group. The SCNs of the GG,
GA, and AA genotype groups are shown in Additional
file 2: Figure S1.

Correlation analysis between seed volume and
neurobehavioral scores in the two genotype groups
Although the seed volumes were not significantly differ-
ent between the G carriers and A homozygotes, correl-
ation analysis suggested that the seed volumes played
different roles in the two groups (Table 2). For the G
carriers, more cognitive domains showed significant cor-
relations with the test scores in the entorhinal and fron-
toinsular seeds, whereas most of the cognitive tests were
related to the volume of the DLPFC seed in the A ho-
mozygotes. For NPI scores, the clinical correlations with
the seed volumes did not reach statistical significance.

Analysis of interactions in covariance strength

We further explored interactions of the Bcl-2 genotypes
with regard to differences in covariance strength. The re-
lationships are shown in Fig. 2 and Table 3. Within the
SCNs anchored to the right entorhinal seed, significant
and increased structural covariance was observed in the

A homozygotes compared with the G carriers (Table 3,
Fig. 2a). The peak clusters showing interactions included
the midoccipital and midfrontal regions as well as super-
ior frontal clusters.

Within the SCNs anchored to the left PCC, increased
structural associations in the G carriers included the
cerebellum and middle temporal clusters (Table 3;
Fig. 2b, blue lines). Within the SCNs anchored to the left
PCC seed, increased structural association in the A ho-
mozygotes was noted in the sublobar GM (Table 3;
Fig. 2¢, green lines).

For the right frontoinsular seed, an increased and sig-
nificant correlation in the A homozygotes was found only
in the superior frontal region (Table 3). For the ECN, in-
creased correlations in the A homozygotes were found in
the superior frontal and temporal pole (Table 3; Fig. 2d,
green lines). For the aforementioned clusters, we found no
dose-dependent effects in covariance strength when we
compared the GG, GA, and AA genotype groups.

Correlations of peak cluster volumes with
neurobehavioral test scores

We then analyzed differences in the peak cluster vol-
umes showing between-group interactions, of which the
entorhinal seed anchored midfrontal peak clusters, fron-
toinsular seed-anchored superior-frontal peak cluster,
and DLPFC-anchored superior-frontal peak cluster
showed significantly greater volumes in the G carriers
(Additional file 1: Table S13). For peak cluster volumes



Chang et al. Alzheimer's Research & Therapy (2018) 10:17

Page 6 of 12

Table 2 Correlation coefficients between seed volume and cognitive test scores

Seed region R Entorhinal L Posterior Cingulate R Frontoinsular R Dorsolateral prefrontal
MNI Coordinates (25,-9,-28) (-2,-36, 35) (38, 26,-10) (44, 36, 20)

Bcl-2 Genotypes G-carriers AA G-carriers AA G-carriers AA G-carriers AA
Seed Volume 0.782 0.786 0.642 0671 0647 0.645 0474 0447
MMSE 0.220 0458 ° 0273° 0.191 0.135 0.123 -0.056 0571°
T1 to T4 trial scores 0216 0.298 0.211 0.123 0.133 0.248 0.124 0.559°
30 second recalls 0.323° 0.204 0204 0.278 0.180 0.296 0.073 0689 °
10 minute recalls 0313° 0213 0.193 0.100 0.087 0.123 -0.038 0.484°
Modified Rey-Osterrieth Recall 0.179 0415° 0.188 0.120 0.168 0.243 -0.034 0478 °
Modified Rey-Osterrieth Copy -0.006 0.192 0.136 0.081 -0.009 0.271 -0.123 0.505 °
Visual object and Space Perception -0.037 -0.006 0.058 -0.087 0.096 -0.204 -0.093 0.144
Semantic fluency: Animal 0.298° -0.002 0.101 0.141 0.167 0.041 0.068 0527°
Boston Naming Test 0.114 0.016 0.149 0.209 0.060 0.170 0.106 0459 °
Comprehension 0.079 -0.106 0.253 0.179 0.126 0.106 0.234 0.342
Digit backward -0.013 -0.018 0.139 0.164 -0.048 0.171 -0.090 0.227
Stroop Interference Correct 0381° 0259 0209 0363 0398 ° -0.009 0.298 ° 0600 °
Design fluency 0.265 ° 0.201 0.025 0.007 0.117 0495 ° -0.079 0618°
Trail making test time -0.162 -0.289 -0.168 -0.169 -0.048 -0.116 0.025 -0.516°
Correct line in Trail making 0.192 0.062 0.227 -0.023 0261° 0.160 -0.047 0497 °
Neuropsychiatric Inventory -0.023 -0.037 -0.103 -0.253 0.008 -0.117 -0.047 0.063

Numbers indicate Spearman correlation coefficients, 2p < 0.05; ® p <0.01

MMSE Mini-Mental State Examination, MNI Montreal Neurological Institute, R right, L Left

and neurobehavioral tests, we analyzed the clinical rela-
tionships of the G carriers (Table 4) and A homozygotes
(Table 5) separately. In the G carriers, the significant
peak clusters that correlated with the behavioral scores
were mainly the PCC-anchored peak clusters. For the A
homozygotes, significance was found in the DLPFC-
anchored seed.

Discussion

In this study, we analyzed differences between two Bcl-2
genotypes showing functional polymorphisms. The
topography of the SCNs and clinical correlations also
validated the different influences of the Bcl-2 genotype
groups with regard to structural degeneration, which
targeted the DMN midline subsystem in the G
carriers and the ECN in the A homozygotes. The re-
sults support the hypothesis that network changes
represent an endophenotype of the Bcl-2 polymorph-
ism. In addition, the greater covariance strength of
the AA genotype in all four networks suggests that
covariance strength may serve as a putative biomarker for
structural connectivity.

Bcl-2 genotypes targeted different SCNs and modulated
covariance strength

Current neuroscience research supports the hypothesis
that brain networks in AD can be influenced by

environmental and biological interactions not limited to
amyloid toxicity [37] or network degenerative theory
[38]. Accordingly, cognitive functions are highly reflect-
ive of neuronal network changes. A number of studies
have highlighted how genetic variations may affect brain
organization and connectivity patterns [39-42]. Our re-
sults provide insight into the Bcl-2 genetic variants and
their possible interference with structural covariance.
Our SCN data suggest that genetic influences, in terms
of network topography, were modulated differently by
the two Bcl-2 genotypes. Spatial distributions revealed
that the G carriers had more extended voxels in the
DMN, whereas the A homozygotes had a larger struc-
tural association in the ECN. From a methodological
perspective, the wider spatial extent in the G carriers
may be partially driven by the larger number of cases.
However, the correlation with clinical scores may valid-
ate the roles of DMN seed- or PCC-anchored peak clus-
ters. The spatial extent of the SCN directly comparing
the GG and GA genotype groups suggested that the
SCN was not merely reflective of the number of cases. A
further study with a larger sample size and an equal
number of cases may help to elucidate our observations.
We previously reported that stronger covariance
strength between seed and peak clusters indicates more
intranetwork connections [43]. In a given genotype
group, greater covariance strength may have indicated
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Fig. 2 Peak clusters showing significant interactions of B-cell chronic lymphocytic leukemia/lymphoma-2 (Bcl-2) AA and G carriers from the (@) default
mode network anchored by entorhinal cortex (AA > G carriers); midline core subsystems with interactions of (b) AA < G carriers or (c) AA > G carriers;
(d) executive control network by the dorsolateral prefrontal cortex (AA > G carriers). (x, y, z) = Montreal Neurological Institute coordinates. G carriers:
blue; AA genotype: green. The colored lines represent the covariance strengths between seed and peak cluster with 95% Cls as boundaries. GM Gray
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stronger associations between two interconnected
clusters. In a degenerative model of AD, the patho-
logical processes often lead to GM atrophy. Further
longitudinal studies are needed to elucidate whether
more intranetwork connections indicates faster de-
generative processes.

For the subsystems of the DMN, our results suggest
that the genetic weighting may be higher in the PCC-
anchored midline DMN system in the G carriers, be-
cause it was the only SCN showing G — AA genotypes
in covariance strength. Previous studies have indicated
that the AA genotype may be a risk factor for a smaller
intracranial volume or worse clinical phenotype [9, 21].
We also found that covariance strength was higher in

the AA genotype group and that the functional associa-
tions may have been more localized in the ECN. Several
peak cluster volumes were also significantly smaller in
the AA genotype group (Additional file 1: Table S13)
than in the G carriers.

The peak cluster represents regions that not only are
anchored to the predefined seed but also show genotype
group interactions in covariance strength. From a clin-
ical point of view, the peak cluster may represent
anatomical areas where genotype modulation occurs.
Correlation analysis between the peak cluster volumes
and clinical parameters was performed to establish the
clinical significance; however, not all peak clusters were
related to the clinical outcomes, and the peak clusters
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Table 3 Interactions of Bcl-2 genotypes with pre-defined seed
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Seed Peak regions Stereotaxic coordinates Extent Max T P-value
Side X y z
Right entorhinal seed (Medial Temporal Subsystem of DMN)
G- carriers < AA Mid-occipital R 39 -66 24 288 4.34 <0.0001
Mid-Frontal R 29 29 34 869 3.98 <0.0001
Superior Frontal R 12 14 57 255 397 <0.0001
Left posterior cingulate seed (Medline Subsystem of DMN)
G-carriers > AA Cerebellum areab L -33 -57 -21 928 441 <0.0001
Cerebellum area6 L -23 -55 -20 1137 432 <0.0001
G-carriers < AA Sub-lobar L -23 8 13 59 4.77 <0.0001
Right frontoinsular seed (Salience Network)
G-carriers < AA Superior Frontal R 18 54 22 191 385 <0.0001
Right dorsolateral prefrontal seed (Executive control network)
G-carriers < AA Superior Frontal R 14 41 39 930 4.69 <0.0001
Superior Frontal R 17 44 27 S.C. 4.64 <0.0001
Superior Temporal pole R 36 12 -21 747 432 <0.0001
Superior Temporal pole R 38 12 21 280 391 <0.0001

SCN structural covariance network, DMN default mode network, s.c. same cluster

showing significant correlations were also different
in each genotype group (Table 4 for G carriers;
Table 5 for the AA genotype). With regard to the
clinical implications, the peak cluster analysis sug-
gested that the G carriers were more related to the
SCN in the posterior brain regions, whereas the A
homozygotes were more related to the anterior brain
regions.

Clinical significance of executive control network in Bcl-2
A homozygotes

In this study, seed regions, covariance strength, and peak
clusters all supported the unique genetic effect of A ho-
mozygotes in the ECN. The ECN in our qualitative data
consisted of the classic DLPFC and the parietal cortex
[13], and the increased A > G interactions in the cortical
hubs with associated clinical correlations supported its
functional role. The Bcl-2 AA genotype has been associ-
ated with a reduced level of Bcl-2 [6], whereas lower
Bcl-2 protein and mRNA levels have been reported in
the frontal cortex in bipolar disorders [7]. Our observa-
tions may echo these findings [21] and support the gen-
etic associations of the AA genotype via its modulation
of GM in the ECN in patients with AD. In this study, we
also tested whether the A allele may have a dose-
dependent effect on the covariance strength. Although
the results were not significant, this insignificance may
not fully reject the possible functional effect of the A
allele, because only a small number of cases were in-
cluded in this study, even though they fulfilled the
Hardy-Weinberg principle.

Increased covariance strength in the DMN midtemporal
subsystem in A homozygotes

Although the medial frontal cortex has been shown to play
a role in learning associations and the DLPFC has been
shown to play a role in executive function, the coactivation
of these prefrontal neural resources in AD has also been
shown to compensate for posterior degenerative processes
[44]. Functional disconnection between the entorhinal seed
and midfrontal regions, however, has been observed in AD
[45]. Although strong connections between the pre-
frontal cortex and the hippocampus may reinforce the
learning and memory consolidation process, the inte-
grated activity between these two regions tends to break
down early in AD. If entorhinal-prefrontal connections
represent compensatory mechanisms in the early stage of
AD, the differences in covariance strength between two
Bcl-2 genotype groups may have resulted in different brain
reserves.

Bcl-2 G carriers and the relationships with the two DMN
subsystems

The genetic influence in the G carriers may have re-
sulted in different genetic associations in the two DMN
subsystems. The G genotype may have modulated the
midline DMN subsystem because the PCC-anchored
peak cluster volumes were related to more cognitive test
domains showing statistical significance. The PCC-
anchored DMN was also the only network to show
greater covariance strength in the G carriers. Taken
together, these findings suggest the unique role of the
Bcl-2 G genotype group in the PCC-anchored DMN.
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Table 4 Significant Relationships between peak cluster volumes and clinical parameters (Bcl-2 G-carriers)

Page 9 of 12

Seed region EC PCC PCC PCC dLPFC
Peak cluster Superior frontal cerebellum cerebellum Sub-lobar Superior frontal
Covariance strength relationship G<AA G>AA G>AA G<AA G<AA
MNI coordinate (12,14,57) (-33,-57,-21) (-23,-55,-20) (-23,8,14) (14,41,39)
Mini-mental state examination 0017 0340 0261 ° -0.171 -0227°
T1 to T4 trial scores -0.108 0.374° 0.291° -0.159 -0.112
30 second recalls -0.049 0362 ° 0.193 -0.104 -0.112

10 minute recalls -0.037 0259° 0.197 -0.087 -0.192
Modified Rey-Osterrieth Recall -0.040 0273 ° 0.177 -0.056 -0.118
Modified Rey-Osterrieth Copy -0.115 0270° 0.181 -0.020 -0.090
Visual object and Space Perception -0.009 0.178 -0.007 -0.059 -0.084
Semantic fluency: Animal -0.119 0256 ° 0.161 -0.083 -0.206
Boston Naming Test 0.093 0.374° 0214 -0.073 -0.144
Comprehension -0.045 0317° 0321° 0420 ° -0.148
Digit backward 0.006 0.268 0.198 -0.240 ° -0.112
Stroop Interference Correct -0.255° 0.234 0.152 -0.085 -0.118
Design fluency 0.058 0.228 0.049 -0.015 -0.113
Trail making test time 0.066 -0230° -0.076 0.201 0.194
Correct line in Trail making -0.139 0.286° 0.181 -0.163 -0.074
Neuropsychiatric Inventory -0.068 -0.050 -0.064 -0.042 0.197

Numbers indicate Spearman correlation coefficient; p < 0.05; ® p <0.01; EC entorinal cortex, PCC posterior cingulate cortex, dLPFC dorsolateral prefrontal cortex

Table 5 Significant Relationships between peak cluster volumes and clinical parameters (Bcl-2 AA)

Seed region frontoinsular dLPFC dLPFC dLPFC
Peak cluster Superior frontal Superior frontal Superior temporal pole temporal pole
Covariance strength relationshipt G<AA G<AA G<AA G<AA
MNI coordinate (18,54,22) (14,41,39) (36,12,-21) (38,12,-21)
Mini-mental state examination 0.295 0.273 0.270 0417°

T1 to T4 trial scores 0447° 0.103 0.189 0.291

30 second recalls 0328 0335 0378 0432°

10 minute recalls 0.342 0.259 0.147 0.207
Modified Rey-Osterrieth Recall 0.454° 0.245 0.205 0.364
Modified Rey-Osterrieth Copy 0.441° 0.176 0.184 0.169
Visual object and Space Perception 0.045 0.068 -0.113 0.121
Semantic fluency: Animal 0328 0.144 0.098 -0.005
Boston Naming Test 0.120 0.152 0.159 0.146
Comprehension 0.261 0.098 -0.022 -0.029
Digit backward 0.202 0.175 0373 0.061
Stroop Interference Correct 0.399 0537° 0.253 0.324
Design fluency 0.363 -0.045 0.219 0403
Trail making test time -0.186 -0.299 -0.324 -0520°
Correct line in Trail making 0.330 0.074 0.188 0.293
Neuropsychiatric Inventory 0.190 -0.131 -0.190 -0.038

Numbers indicate Spearman’s correlation coefficient; MNI Montreal Neurological Institute 2p < 0.05; ® p <0.01; dLPFC dorsolateral prefrontal cortex
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In AD, the salient cognitive dysfunction is episodic
memory impairment, which has been reported to be
strongly associated with the hippocampal/entorhinal vol-
ume and the midtemporal DMN subsystem [46, 47].
The significant correlations of the entorhinal seed
volumes and the clinical scores highlight the primary
role of the entorhinal seed in the G carriers (Table 2). In
contrast, the entorhinal-anchored peak clusters were not
predictive of cognitive scores.

Salience network and Bcl-2 G carriers

In bipolar disorder [21], a link between the anterior
cingulate cortex, one of the key hubs in the salience
network, and the salience network and Bcl-2 protein
expression may exist. The role of the salience network
has been suggested to support the processing of diverse
homeostatically relevant internal and external stimuli
[48]. For the salience network analysis in this study, the
seed frontoinsular region predicted scores on the Stroop
test and the Trail Making Test, which were predomin-
antly classified as external stimuli. Although the salience
network was originally discovered to be related to in-
ternal emotional states [13], our study did not establish
a clinical role of the salience network in mediating NPI
scores in either the G carriers or A homozygotes.

Study limitations

Direct comparisons between the G carriers and A homo-
zygotes showed between-group differences in NPI total
scores, aggression, and sleep subscores. However, our net-
work analysis did not find any relationships linking the
SCNs to any of the significant clinical results. Because our
study design used a seed-based approach, it is possible
that the changes were mediated by different functional
networks. The use of independent component analysis
[49] may help to overcome this limitation. Another im-
portant limitation of this study is that we did not include a
control group, and the inclusion of a control group may
have helped to elucidate whether the Bcl-2 functional
polymorphisms exerted similar GM modulation patterns
in healthy elderly subjects. However, associations between
rs956572 functional polymorphisms and regional GM vol-
ume and functional states in healthy subjects have been
reported [8, 9, 21, 50]. Given the differences in methods,
sample sizes, and populations analyzed, it is difficult to
compare our results directly with these reports. However,
we found regional similarities in this study. Another po-
tential limitation is that our seed-based analysis empha-
sized the SCNs that showed positive correlations with the
seeds. Because the aim of this study was to test the hy-
pothesis of the risk of different genotype groups, anticor-
relation patterns suggestive of a compensatory process in
each genotype group were not explored. Because clinical
significance was established in restricted nodes showing
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covariance interactions, whether the seed or peak clusters
imparted an equal amount of information within the
whole network remains an important issue that needs to
be investigated in future studies. Last, structural covari-
ance data cannot be directly referred to as a connectivity
or degenerative biomarker, although the patterns of SCN
have been shown to mirror those of intrinsic connectivity
patterns in healthy control subjects [51]. Further studies
with longitudinal cohorts are needed to validate the inter-
pretation regarding greater covariance strength in the AA
genotype and faster degeneration. In addition, to elucidate
the functional effect of the A allele observed in this study,
a larger sample cohort is required in future studies so that
direct comparisons of the AA and GG genotypes with
equal and adequate case numbers are possible.

Conclusions

In summary, the SCN analysis and covariance strength
interactions support the genetic influences of the Bcl-2
rs956572 functional polymorphism on the SCN in the
early stage of AD. We show a greater genetic influence
in the A homozygotes on the ECN, whereas the genetic
modulation in the G carriers was seen in the PCC-
anchored midline DMN subsystem. We will investigate
the biological meaning of covariance strength in future
studies with longitudinal follow-up.
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