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Abstract

Background: Accumulating evidence implicates the neuroendocrine immunomodulation (NIM) network in the
physiopathological mechanism of Alzheimer’s disease (AD). Notably, we previously revealed that the NIM network is
dysregulated in the PrP-hABPPswe/PS145? (APP/PST) transgenic mouse model of AD.

Methods: After treatment with a novel Liuwei Dihuang formula (LW-AFC), mice were cognitively evaluated in
behavioral experiments. Neuron loss, amyloid-f3 (AB) deposition, and AR level were analyzed using Nissl staining,
immunofluorescence, and an AlphalISA assay, respectively. Multiplex bead analysis, a radioimmunoassay,
immunochemiluminometry, and an enzyme-linked immunosorbent assay (ELISA) were used to measure cytokine
and hormone levels. Lymphocyte subsets were detected using flow cytometry. Data between two groups were
compared using a Student's t test. Comparison of the data from multiple groups against one group was performed
using a one-way analysis of variance (ANOVA) followed by a Dunnett’s post hoc test or a two-way repeated-measures
analysis of variance with a Tukey multiple comparisons test.

Results: L W-AFC ameliorated the cognitive impairment observed in APP/PS1 mice, including the impairment of object
recognition memory, spatial learning and memory, and active and passive avoidance. In addition, LW-AFC alleviated
the neuron loss in the hippocampus, suppressed AR deposition in the brain, and reduced the concentration of
ABq_4> in the hippocampus and plasma of APP/PST mice. LW-AFC treatment also significantly decreased the
secretion of corticotropin-releasing hormone and gonadotropin-releasing hormone in the hypothalamus, and
adrenocorticotropic hormone, luteinizing hormone, and follicle-stimulating hormone in the pituitary. Moreover,
LW-AFC increased CD8*CD28" T cells, and reduced CD4"CD25*Foxp3™ T cells in the spleen lymphocytes,
downregulated interleukin (IL)-13, IL-2, IL-6, IL-23, granulocyte-macrophage colony stimulating factor, and
tumor necrosis factor-a and -f, and upregulated IL-4 and granulocyte colony stimulating factor in the plasma
of APP/PST mice.
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Conclusions: L W-AFC ameliorated the behavioral and pathological deterioration of APP/PS1 transgenic mice
via the restoration of the NIM network to a greater extent than either memantine or donepezil, which supports

the use of LW-AFC as a potential agent for AD therapy.

Keywords: LW-AFC, Alzheimer's disease, PrP-hABPPswe/PS145 transgenic mouse, cognitive behavior, Amyloid-B,

Neuron loss, Neuroendocrine, Lymphocyte subset, Cytokine

Background

Alzheimer’s disease (AD) is characterized by a progressive
loss of episodic memory and other cognitive functions.
AD is reaching epidemic proportions, and has an enor-
mous emotional and financial burden on individuals and
society [1]. Current AD drugs target cholinergic and gluta-
matergic neurotransmission, thus ameliorating symptoms;
however, the long-term efficacy of these drugs in clinical
practice remains controversial [2—4]. Moreover, there is
still no effective intervention to prevent, halt, or reverse
AD. The dominant hypothesis for AD drug development
is the amyloid-p (AP) hypothesis, and major trials of
potential disease-modifying drugs have been based on
the modulation of AP [5-11]; however, success has
been elusive. These failures have led to debate about
the AP hypothesis in the research and development of
candidate drugs for AD [12].

The neuroendocrine immunomodulation (NIM) net-
work maintains the processes of adaptation, homeosta-
sis, and defense against hostile environmental factors
[13, 14]. Changes in the NIM network have influence on
the development of various diseases, ranging from im-
mune and infectious diseases to schizophrenia, anxiety,
depression, and AD [15]. Increasing evidence shows that
dysregulation of the NIM network contributes to the
pathogenesis of AD [16—19]. Anomalous secretions of
neurotransmitters, hormones, or cytokines in a dysregu-
lated NIM network stimulate or aggravate AP deposits
[20, 21], tau hyperphosphorylation [22, 23], neuronal cell
loss [24—26], neuroinflammation [27], and cognitive de-
terioration [9, 28] in AD animal models and patients.

Previously, we found that the NIM network is altered
and dysfunctional in a PrP-hABPPswe/PS14¥° (APP/PS1)
mouse model of familial AD and early-onset AD [29, 30].
In the present study, we examined the effects of long-term
oral administration of a novel Liuwei Dihuang formula
(LW-AFC) on cognitive impairment, A deposition, and
neuronal loss in APP/PS1 mice. Our results suggest that
LW-AFC is a potential therapeutic agent for AD.

Methods

Preparation of LW-AFC and HPLC analysis

LW-AFC was prepared from an Liuwei Dihuang decoc-
tion (LW), a traditional Chinese medical prescription
[31]. LW was prepared as previously described in Yang

et al. [32], Zhang et al. [33, 34], Cheng et al. [35], and
Kusters et al. [36]. LW-AFC is composed of a polysac-
charide fraction (LWB-B), a glycoside fraction (LWD-b),
and an oligosaccharide fraction (CA-30). The LW was
passed through a six-layer gauze filter, and the extracted
solution was centrifuged. The supernatant was concen-
trated and then extracted in ethanol to produce LWD.
The sediment was rinsed in deionized water and concen-
trated into a dried polysaccharide fraction (LWB-B). The
LWD ethanol elution fraction was dissolved using macro-
porous adsorptive resins to obtain the glycosides compo-
nent (LWD-b). The water elution fraction of the LWD
was dissolved using an active carbon absorption column
to obtain the oligosaccharide component (CA-30). In this
manner, the LW-AFC formula is composed of 20.3%
of the polysaccharide component (LWB-B), 15.1% of
the glycosides component (LWD-b), and 64.6% of the
oligosaccharide component (CA-30) in a dry weight
ratio. The LW-AFC components were analyzed using
high-performance liquid chromatography (HPLC). Briefly,
for the CA-30 and LWD-b mixture, chromatographic sep-
aration was obtained on a Diamond C18 column; there
were 17 chromatogram peaks in the fingerprint of the
CA-30 and LWD-b mixture. For LWB-B, the chromato-
graphic separation was obtained on a NucleosilNH, 100 A
column; five chromatogram peaks were observed, repre-
senting fructose, glucose, sucrose, mannotriose, and sta-
chyose. The retention times of these peaks were 6.260
min, 6.829 min, 8.186 min, 18.305 min, and 21.506 min,
respectively.

Experimental animals
The male APP/PS1 mice and wild-type (WT) mice were
obtained from Beijing HFK Bioscience Co. Ltd., via the
Jackson Laboratory (Bar Harbor, ME, USA). The mice
were maintained at the Beijing Institute of Pharmacology
and Toxicology under standard housing conditions, i.e.,
room temperature at 22 + 1 °C and humidity at 55 + 5%,
and a 12-h light/12-h dark cycle. The mice were separ-
ately given water and pellet food ad libitum (provided by
the Animal Center of the Academy of Military Medical
Sciences). All behavioral tests were performed between
19:00 and 6:00 (Beijing time).

Nine-month-old male APP/PS1 mice were randomly
separated into four groups. Each group contained 10-11
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mice. LW-AFC was dissolved in distilled water at 160
mg/mL, memantine (Ouhe Chemical Ltd., Beijing, China)
at 1 mg/mL, and donepezil (Ouhe Chemical Ltd.) at
0.1 mg/mL. The drug-treated mice group was given an
intragastric administration of memantine, donepezil,
or LW-AFC (0.1 mL/10 g body weight) once a day for
150 days. APP/PS1 mice as a model group and age-
matched WT mice (15 males) as a control group were
given an equal volume of deionized water. The mice
were weighed every 3 days. Drug administration and
behavioral tests were conducted according to the ex-
perimental timelines (Fig. 1). Following the behavioral
experiments, the whole brain, hippocampus, cortex,
hypothalamus, pituitary, spleens, and plasma of each
mouse were collected for immunofluorescence, Nissl
staining, soluble A[ analysis, hormone determination,
lymphocytes subsets analysis, and cytokine analysis.

Behavioral tests

Locomotor activity test

The locomotor activity test was carried out according to
Cheng et al. [37]. Motor tracking was performed using a
video-based behavior monitoring system (Jiliang Software
Technology Co. Ltd., Shanghai, China). Each mouse was
placed in an aluminum-plastic panel locomotor activity
chamber, and recorded for 20 min. The total distance
traveled for each mouse was recorded to indicate its
spontaneous motor activity.

Novel object recognition test

The object recognition test was performed as described
by Chen et al. [38] and Bevins and Besheer [39]. The
mice were familiarized with the testing environment, a
black Plexiglas apparatus (30 x 30 x 30 c¢cm), for 20 min
per day for 2 days before the object recognition test. In
the learning phase (day 3), the animal was placed in the
apparatus with two similar black square (4 x4 x4 cm)
Plexiglas objects, A and B, which were equidistant from
the sides (5 cm) of the chamber. The animals were
allowed to freely explore the chamber for 16 min. The
exploration time refers to the duration that the animal
spent exploring the object with their head orientated to-
wards the object and their nose within 1 cm of the object.
Then, the mice were returned to their home cage for 1 h,
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after which they entered a 4-min test phase, where a dif-
ferent object (C) replaced object A or B. The preferential
index was calculated to assess the object recognition
memory of mice.

Morris water maze test

The Morris water maze test was performed according to
Vorhees and Williams [40]. During the trial, curtains
with unique geometric figures were placed at all sides of
the pool to avoid visual interference. The spatial learning
phase consisted of four trials per day for 5 days, and one
additional day (day 6) for a probe trial. In the spatial
learning phase, each mouse was placed on the platform
for 60 s before the first trial, and then released into the
water to find the platform within 60 s. If the mouse
found the platform within 60 s, it was allowed to stay
there for 10 s. If not, the mouse was gently led to the
platform and allowed to remain there for 10 s, the la-
tency time being scored as 60 s. The latency time was
recorded as a measure of spatial learning. For the spatial
memory phase, the platform was removed, and the
mouse was released into the water at a novel position
and allowed to swim freely for 60 s. The dependent
measure for the spatial memory was the time in the tar-
get quadrant and the number of platform crossings.

Step-down test

The step-down test was carried out according to Fang et
al. [41], Lou et al. [42], and Shi et al. [43]. On the first
day, mice were allowed to acclimatize for 2 min without
the platform. During the learning trial, if the mouse
stepped down from the platform (error) with all four
paws it received an aversive foot electric shock (36 V,
AC), and the learning course was performed for 10 min.
The number of errors and the number of times that
mice did not step down were scored for a 3-min period.
For the testing trials (days 2-7), the procedure was re-
peated at the same time, and the testing time was 3 min.
The number of times that the mice did not step down
was recorded for a 3-min period.

Shuttle box test
The shuttle-box test was performed according to Cheng
et al. [44]. Working memory was evaluated using a shuttle
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box apparatus (VT 05448, Med Associates Inc., East Fair-
field, VT, USA). The training session began with 2 min of
acclimatization to the chambers followed by 30 trials, and
the inter-trial interval was 30 s. A tone (60 dB) and light
(8 W) were presented as the conditioned stimulus, for 10
s, and followed by the unconditioned stimulus, an elec-
trical foot shock (0.2 mA), for 5 s. If the mouse moved to
the opposite chamber during the presentation of the con-
ditioned stimulus, no electrical foot shock was presented
and an active avoidance response was recorded. The
shuttle-box procedure was performed for 5 consecutive
days. On day 6, all of the mice were submitted to another
session (no shock) to evaluate learning and memory, and
the number of active avoidances was recorded.

Biochemical and histochemical analyses
Immunofluorescence

Mouse brains were removed and one hemisphere was fixed
via immersion in 4% paraformaldehyde in phosphate-
buffered saline (PBS) (pH 7.4) at 4 °C overnight, and then
fixed in 10% buffered formalin, and paraffin embedded.
Serial 5-pm thick sections were prepared, deparaffi-
nized, hydrated, rinsed with PBS, and pretreated with
0.01 M citric acid for 15 min for antigen retrieval, and
then with the blocking solution (2% fetal bovine serum
in PBS) for 30 min. Subsequently, sections were incu-
bated with mouse anti-f-amyloid (clone: 6E10, 1:100;
Biolegend, San Diego, CA, USA) overnight at 4 °C. After
rinsing, the sections were incubated with goat anti-mouse
IgG HRP (1:1000; ZSGB-Bio, Beijing, China) for 2 h at
room temperature, then incubated with Opal520 working
solution (PerkinElmer, Waltham, MA, USA) for 10 min,
and mounted with DAPI-containing medium. The tissue
sections were photographed, and the images were digitized
with a fluorescence lifetime imaging microscope (Vectra
2, PerkinElmer-Caliper LS, Waltham, MA, USA). The area
of AP deposits in each slice section was quantified using
Image Pro Plus 6.0 software.

Nissl staining

The sections were stained using 0.5% cresyl violet acetate
(Beyotime, Beijing China). Stained sections were scanned
using a transmission electron microscope (H-7650, Hitachi,
Tokyo, Japan). The integrated optical density (IOD) of Nissl
bodies in the CA1 and CA3 regions was quantified using
the Image Pro Plus 6.0 software.

Soluble AB analysis

The AP AlphaLlISA assay was carried out according to
Cheng et al. [45] and Tesseur et al. [46]. The hippocampus
and cortex from one brain hemisphere of each mouse was
sequentially extracted. The extracted tissue was separately
homogenized using an ultrasonic disintegrator in 50 mmol/
L Tris-HCI, pH 8.0, and 5 mol/L guanidine hydrochloride.

Page 4 of 15

After 3 h at room temperature, the suspension was diluted
in Dulbecco’s phosphate-buffered saline (0.03% Tween-20,
5% fetal bovine serum, PBS, pH 7.4) and complete pro-
teinase inhibitor cocktail (Roche, Indianapolis, IN, USA),
centrifuged at 16,000 g for 20 min at 4 °C, and the super-
natants containing the soluble fraction were used for
measuring soluble AP. Plasma was prepared from the ob-
tained supernatant by centrifuging the blood plus 4%
EDTA-Na, at 3000 g for 15 min at 4 °C. The AB;_40 and
APi_4o content in the hippocampus, cortex and plasma
were determined using the AlphaLISA technique and the
AlphaLISA® human amyloid beta 1-40 (high specificity)
(AL275C, PerkinElmer, Waltham, MA, USA) and Alpha-
LISA® human amyloid beta 1-42 (high specificity)
(AL276C, PerkinElmer) Kits according to the manufac-
turers’ instructions.

Radioimmunoassay of hypothalamic and hypophyseal
hormones

The hypothalamuses and pituitaries were weighed and
boiled in 1 mL of saline for 5 min. Peptides were ex-
tracted by homogenizing the hypothalamuses and pituit-
aries in 0.5 mL of 1 mol/L glacial acetic acid followed by
centrifuging the mixture at 3000 rpm for 30 min. Super-
natants were stored at —20 °C. Concentrations of adre-
nocorticotropic hormone (ACTH), luteinizing hormone
(LH), follicle-stimulating hormone (FSH), corticotropin
releasing hormone (CRH), and gonadotropin-releasing
hormone (GnRH) in the supernatants were determined
with a 'I-ACTH RIA kit (North Institute of Biological
Technology, Beijing, China), a 25 1H RIA kit (North
Institute of Biological Technology), a "*’I-FSH RIA kit
(North Institute of Biological Technology), a '*’I-CRH RIA
kit (Department of Neurobiology of the Second Military
Medical University, Shanghai, China ), and a 1251 GnRH
RIA kit (Department of Neurobiology of the Second
Military Medical University), respectively.

Enzyme-linked immunosorbent assay

The corticosterone (CORT) level in the plasma of the mice
was measured using a precoated corticosterone enzyme-
linked immunosorbent assay (ELISA) kit (EC3001-1,
ASSAYPRO, Charles, MO, USA) according to the manu-
facturer’s instruction. The absorbance was measured at 450
nm with a reference wavelength of 570 nm using Enspire™
multilabel reader 2300 (Perkin Elmer, Turku, Finland).

Immunochemiluminescence assay

The level of testosterone (T) in the plasma of the mice
was measured using an Access Immunoassay System
(Beckman Coulter, Brea, CA, USA), access testosterone
(33560, Beckman Coulter), and access testosterone calibra-
tors (33565, Beckman Coulter). The entire measurement
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was automatically processed according to the scheduled
program.

Flow cytometric analysis

Mouse spleen cells were harvested and divided into three
parts. The first portion of the spleen cells was treated with
100 pL of 20 pug/mL FITC anti-mouse CD3 antibody (Bio-
Legend, San Diego, CA, USA), 100 pL of 12.5 pg/mL
PerCP anti-mouse CD4 antibody (BioLegend), 100 uL of
25 pg/mL APC anti-mouse CD25 antibody (BioLegend),
and 100 pL of 20 pug/mL PE anti-mouse Foxp3 antibody
(BioLegend) at 25 °C for 30 min, washed, and then incu-
bated with 100 pL of 10 pg/mL FITC-conjugated goat
anti-rat IgG (BioLegend) at 25 °C for 30 min in the dark.
The second portion of the spleen cells was treated with
100 pL of 20 pug/mL FITC anti-mouse CD3 antibody (Bio-
Legend), 100 pL of 12.5 pug/mL APC anti-mouse CD8
antibody (BioLegend), and 100 pL of 12.5 pg/mL PE anti-
mouse CD28 antibody (BioLegend) using the same proto-
col as above. The third portion of spleen cells was treated
with 100 pL of 20 pg/mL FITC anti-mouse CD19 antibody
(BioLegend) and 100 pL of 50 pg/mL PE anti-mouse
CD80 antibody (BioLegend) using the same protocol as
above. After incubation, the cells were washed and resus-
pended in 0.5 mL of PBS/2% paraformaldehyde, and then
quantified using flow cytometry (BD Calibur™, San Jose,
CA, USA).

Multiplex bead analysis

Plasma samples of the mice were analyzed using multi-
plex bead analysis. The manufacturer’s instructions were
followed to measure interleukin (IL)-1p, IL-2, IL-5, IL-
17, IL-6, IL-4, IL-10, granulocyte-macrophage colony
stimulating factor (GM-CSF), granulocyte colony stimu-
lating factor (G-CSEF), interferon (IFN)-y, tumor necrosis
factor (TNF)-a, monocyte chemotactic protein (MCP)-1,
regulated upon activation normal T cell expressed and
secreted factor (RANTES), eotaxin, macrophage inflam-
matory protein (MIP)-1pB, IL-23, and TNEF-B (Millipore
Corp., Billerica, MA, USA). The samples were analyzed
using Luminex 200™ (Luminex, Austin, TX, USA). The
levels of IL-1pB, IL-2, IL-5, IL-17, IL-6, IL-4, IL-10, GM-
CSF, G-CSF, IFN-y, TNF-a, MCP-1, RANTES, eotaxin,
and MIP-1p were detected using a multiplex map kit
(MCYTOMAG-70 K, Millipore). IL-23 and TNEF-§ were
detected using another multiplex map kit (MGAM-
MAG-300 K, Millipore).

Statistical analysis

All data are expressed as the mean + SEM. GraphPad
Prism 6.0 (GraphPad Software, Inc., La Jolla, CA, USA)
was used to plot and analyze the data. Data between two
groups were compared using a Student’s ¢ test. Compari-
son of the data from multiple groups against one group
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was performed using a one-way analysis of variance
(ANOVA) followed by a Dunnett’s post hoc test or a
two-way repeated-measures analysis of variance with a
Tukey multiple comparisons test. P < 0.05 was considered
statistically significant.

Results

LW-AFC improves the cognitive impairment of APP/PS1 mice
The locomotor activity test evaluated the spontaneous
motor activity of APP/PS1 mice; no significant difference
was observed between the treatment groups (Fig. 2a).
This result indicates that the spontaneous locomotor ac-
tivity of mice did not influence the results of the other
behavioral experiments.

The novel object recognition test evaluated the object
recognition memory of mice. LW-AFC treatment in
APP/PS1 mice significantly decreased the preferential
index (Fig. 2b), indicating that the object recognition
memory deficit of APP/PS1 mice was ameliorated after
LW-AFC treatment; this effect was superior to that of
memantine or donepezil.

The Morris water maze test evaluated the spatial
learning and memory of APP/PS1 mice. For the learning
task, APP/PS1 mice had longer escape latencies than WT
mice on the final test day, and the latencies of the
LW-AFC- or memantine-treated APP/PS1 mice were
significantly longer than those of the mice in the non-
treated group (Fig. 2cl). These results indicate that
both LW-AFC and memantine ameliorated the spatial
learning impairment of APP/PS1 mice. For the probe
trial, the escape latency was longer (Fig. 2¢c2), the number
of plate crossings decreased (Fig. 2c3), and the time in the
target quadrant was shorter (Fig. 2c4), but swimming
speed was not significantly different (data not shown) in
APP/PS1 mice compared with WT mice. The escape la-
tencies decreased and the number of plate crossings in-
creased in LW-AFC- or memantine-treated mice, while
the time in the target quadrant was elevated only in
mice treated with LW-AFC. These results indicate that
LW-AFC and memantine administration significantly
improved the spatial learning and memory deficits of
APP/PS1 mice.

The step-down test evaluated passive avoidance in
APP/PS1 mice. Compared with the WT mice, the number
of errors and training time in APP/PS1 mice significantly
increased (Fig. 2d1 and d2), and the memory retention of
APP/PS1 mice tended to decrease (Fig. 2d3). LW-AFC ad-
ministration significantly decreased the number of errors
and training time. These results indicate that LW-AFC
improved the passive avoidance impairment of APP/PS1
mice; this effect was greater than that observed for either
memantine or donepezil.

The shuttle-box test evaluated active avoidance in
APP/PS1 mice. Significantly fewer successful avoidance
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times were observed for APP/PS1 mice than for WT
mice after the third day of the training phase, but signifi-
cantly increased after treatment with either LW-AFC,
memantine, or donepezil after the third day (Fig. 2el).
Significantly shorter successful avoidance times were ob-
served for APP/PS1 mice than for WT mice in the test-
ing phase, but increased after LW-AFC, memantine, or
donepezil administration (Fig. 2e2). These results indi-
cate that the deteriorated active avoidance response of
APP/PS1 mice was ameliorated after LW-AFC, meman-
tine, or donepezil administration.

LW-AFC treatment decreases neuronal loss in the
hippocampus of APP/PS1 mice

Nissl staining revealed typical neuropathological changes
in the CA1 and CA3 region of the hippocampus in APP/
PS1 mice compared to WT mice, including neuron loss
and nucleus shrinkage or disappearance (Fig. 3a). Fur-
thermore, significantly lower Nissl body numbers were
observed in the whole brain, hippocampus, and CA1 and
CA3 regions of APP/PS1 mice than in those regions in
WT mice (Fig. 3b—e). LW-AFC and memantine treatment

significantly decreased these neuropathological changes
and increased the density of healthy neurons in the hippo-
campus and CA3 region of APP/PS1 mice (Fig. 3c and e).
These findings indicate that LW-AFC and memantine
protected against neuronal loss in the hippocampus of
APP/PS1 mice.

LW-AFC treatment alleviates AB deposition in the brain of
APP/PS1 mice

AP deposition in the brain is a typical pathological sign
of AD in patients and animal models. Our results show
that APP/PS1 mice developed a significant number of
AP plaques in the brain at 14 months, while Ap plaques
were not observed in the WT mice (Fig. 4a). LW-AFC-
or memantine-treated mice had a significantly smaller
area of AP deposits in the whole brain and hippocam-
pus, while donepezil had a less prominent influence on
AP plaque formation in APP/PS1 mice (Fig. 4b and c).
These results indicate that the AP deposition in the
brain of APP/PS1 mice was alleviated after LW-AFC or
memantine administration.
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bodies in the CAT and CA3 regions of the hippocampus in wild-type (WT) and APP/PS1 (Tgs) mice. Quantification of Nissl bodies in the brain (b),
hippocampus (c), CA1 (d), and CA3 (e) regions of hippocampus in WT and Tgs mice by Image Pro Plus 6.0 software. The values are mean + SEM;
n=11-15.*P <005, **P < 0.001, versus the WT mouse group by unpaired Student's t test; *P < 0.05, *P < 0.01, versus the Tgs mouse group by

one-way ANOVA analysis followed by Dunnett's post hoc test. IOD integrated optical density

LW-AFC treatment decreases AB,_s0 and AB,_4, levels in
the brain and blood of APP/PS1 mice

The results of the AlphaLISA assay showed that the con-
centrations of AP; 4 and AP;_4 in the hippocampus
and plasma of APP/PS1 mice were significantly higher
than that of WT mice (Fig. 5). LW-AFC or memantine
treatment led to significantly lower AP;_4, levels in the
hippocampus of APP/PS1 mice than in those of WT
mice, and AP;_4 levels in the plasma were decreased
only after LW-AFC administration. These findings indi-
cate that LW-AFC downregulates AP;_4, levels in the
brain and blood of APP/PS1 mice, while similar effects
for memantine were observed only in the brain.

LW-AFC restores the NIM network in APP/PS1 mice

To further investigate whether LW-AFC affected the
hypothalamic—pituitary—adrenal (HPA) axis and the
hypothalamic—pituitary—gonadal (HPG) axis in APP/PS1
mice, the concentration of GnRH and CRH in the hypo-
thalamus, and ACTH, FSH, and LH in the pituitary, were
measured using a radioimmunoassay. The concentration
of T and CORT in the plasma was measured using a
chemiluminescence assay and ELISA, respectively. The re-
sults show that, within the HPA axis, the concentration of
CRH, ACTH, and CORT were significantly higher in
APP/PS1 mice than in WT mice (Fig. 6a—c). LW-AFC
significantly decreased the CRH level (Fig. 6a), while
both LW-AFC and memantine reduced ACTH (Fig. 6b).
Within the HPG axis, the concentration of GnRH, FSH,
and LH increased in APP/PS1 mice (Fig. 6d—f), but T
(data not shown) was not significantly different between

the APP/PS1 and WT mice. LW-AFC significantly de-
creased the concentration of GnRH (Fig. 6d), while both
LW-AFC and memantine reduced FSH and LH levels
(Fig. 6e and f) in APP/PS1 mice. These data indicate that
both LW-AFC and memantine had an ameliorative effect
on the endocrine system in APP/PS1 mice, especially the
HPA and HPG axes.

A Pearson correlation analysis was performed to identify
altered endocrine hormone expression after LW-AFC
treatment that was associated with cognitive impairment,
neuron loss, and AP deposition in APP/PS1 mice. The re-
sults show that among the endocrine hormones with al-
tered expression after LW-AFC treatment, CRH levels
were correlated with neuron loss and AP deposits in APP/
PS1 mice. ACTH levels were correlated with object recog-
nition memory, spatial memory, and an active avoidance
response. GnRH levels were correlated with object recog-
nition memory, an active avoidance response, and neuron
loss. LH levels were correlated with an active avoidance
response and neuron loss. FSH levels were correlated with
object recognition memory, a passive avoidance response,
an active avoidance response, and neuron loss in APP/PS1
mice (see Additional file 1: Table S1).

LW-AFC modulates the impairment of lymphocyte
subsets in APP/PS1 mice

To investigate the effect of LW-AFC on the expression
of lymphocyte subsets in APP/PS1 mice, the expression
of CD3"CD4" T cells, CD3"CD8" T cells, CD8"CD28"
T cells, CD3"CD25 Foxp3* T cells, CD19" B cells, and
CD197CD80" B cells were detected using flow cytometry.
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Fig. 4 Suppressive effects of LW-AFC on AR deposits in the hippocampus of APP/PST mice. a Representative immunofluorescence staining
images showing amyloid-f (AB) deposits (green and indicated by white arrows) in the hippocampus and brain of wild-type (WT) and APP/PS1
(Tgs) mice. Quantification of AR deposits in the brain (b) and hippocampus (c) of WT and Tgs mice by Image Pro Plus 6.0 software. Red arrows
indicate false positive result of AR deposits. The values are mean + SEM; n=11-15. **P < 001, **P < 0.001, versus the WT mice by unpaired
Student's t test; "P < 0,05, P < 0.01, versus the Tgs mice by one-way ANOVA analysis followed by Dunnett's post hoc test

Significantly fewer CD8"'CD28" T cells (Fig. 7a) and signifi-
cantly more CD3"CD25"Foxp3™ T cells (Fig. 7b) were ob-
served in APP/PS1 mice than in WT mice. Expression of
the other lymphocyte subsets in APP/PS1 mice (data not
shown) was not significantly different. In APP/PS1 mice,
the expression of CD8"CD28" T cells increased after mem-
antine, donepezil, or LW-AFC treatment (Fig. 7a), while the
expression of CD4"CD25"Foxp3™ T cells decreased after
memantine or LW-AFC treatment (Fig. 7b). These results
indicate that memantine or LW-AFC treatment partially re-
stored normal lymphocyte expression in APP/PS1 mice.

LW-AFC modulates abnormal cytokine production in
APP/PS1 mice

Multiplex bead analysis was used to detect the concen-
tration of pro-inflammatory cytokines (IL-1pB, IL-2, IL-6,
IL-23, IL-17, GM-CSF, IFN-y, TNF-«, TNF-f, RANTES,
eotaxin, MCP-1, and MIP-1p) and anti-inflammatory cy-
tokines (IL-4, IL-5, IL-10, and G-CSF) in the blood

plasma of APP/PS1 mice. Increases in the levels of IL-
1B, IL-2, IL-6, IL-23, GM-CSF, TNF-«a, TNF-B, and the
chemotactic factor eotaxin, and decreases in the levels of
IL-4 and G-CSF in the blood plasma were observed in
APP/PS1 mice compared to WT mice (Fig. 8). The secre-
tion of other cytokines in APP/PS1 mice (data not shown)
was not significantly different. Memantine treatment sig-
nificantly decreased the production of IL-1f, IL-6, IL-23,
GM-CSE, and TNEF-p, while treatment with only donepezil
decreased IL-1p production in the blood plasma of APP/
PS1 mice. The levels of IL-1f, IL-2, IL-6, IL-23, GM-CSE,
TNE-a, TNF-B, and eotaxin were decreased; IL-4 and G-
CSF were elevated after LW-AFC administration (Fig. 8).
These results indicate that cytokine secretion in APP/PS1
mice was abnormal and that administration of LW-AFC
and memantine restored this aberrant immune function in
APP/PS1 mice.

The results of a Pearson correlation analysis showed
that among the cytokines with altered expression after
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LW-AFC administration, the levels of IL-1B, GM-CSF,
TNEF-a, TNFE-B, and eotaxin were correlated with object
recognition memory, spatial learning and memory, passive
avoidance response, active avoidance response, neuron
loss, and AP deposits in APP/PS1 mice. IL-2 levels were
correlated with object recognition memory, spatial learn-
ing and memory, an active avoidance response, and
neuron loss. IL-6 and G-CSF levels were correlated with
object recognition memory, spatial memory, a passive
avoidance response, an active avoidance response, neuron
loss, and AP deposits. IL-23 levels were correlated with
object recognition memory, spatial memory, a passive
avoidance response, and an active avoidance response. IL-
4 levels were correlated with object recognition memory,
spatial memory, a passive avoidance response, an active
avoidance response, and AP deposits (see Additional file 1:
Table S1 and Additional file 2: Figure S1).

Discussion

In AD patients, cognitive impairments and psychological
symptoms are associated with an early dysfunction of
the HPA [47] and HPG axes [48-51]. However, few
studies have investigated neuroendocrine function in
APP/PS1 mice or analogous models, although one study
reported that plasma CORT levels were increased in 8-
month-old male APP/PS1 mice [52]. In addition, the

neuroendocrine system is disturbed in AP knockin- or
injection-induced mouse models [23, 53-56]. Several
lines of evidence also indicate that hormones in the neu-
roendocrine system regulate pathogenic Af accumula-
tion in AD animal models and patients [20, 22, 57—60].
In the present study, the HPA and HPG axes were sig-
nificantly disturbed in APP/PS1 mice as compared with
those of age-matched WT mice. These disturbances might
contribute to the acceleration of AP pathogenesis, neuron
loss, and cognitive impairment. Our results show that
long-term treatment with LW-AFC restored the neuroen-
docrine system of APP/PS1 mice, while memantine had
little impact on the function of the HPA and HPG axes.
The immune system has a fundamental role in the devel-
opment and progression of AD. AD patients show altered
lymphocyte expression that includes CD4" and CD8" T
cells [61-66], CD8"CD28" T cells [65], CD4"CD25"Foxp3*
T cells [67], and B cells [66, 68, 69]. AD patients have in-
creased levels of CD8"CD28" T cells and reduced levels of
cytotoxic CD28™ cells, which leads to T helper cell unre-
sponsiveness [65]. Nevertheless, we found lower levels of
CD8'CD28" T cells in APP/PS1 mice than in WT mice.
This discrepancy might be due to the overexpression of a
Swedish variant of the gene encoding hAPP along with the
overexpression of a mutant PS1 gene in APP/PS1 mice
[70], but not a multifactorial inducer in AD patients.
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CD4"CD25'Foxp3™ T cells were also elevated in AD
patients [64, 65, 71], which may be related to AD pro-
gression, as patients with a mild cognitive impairment
(MCI) show lower CD4"CD25'Foxp3™ T-cell activity
than AD patients [67]. Our results show that LW-AFC

or memantine administration ameliorated this change
in CD4"CD25"Foxp3™ T cells in APP/PS1 mice.
Cytokines play a critical role in brain inflammation in
AD, and are involved in complex cognitive processes
[72]. An aberrant cytokine concentration is found in AD

A

257

% CD8*CD28"cell
in the spleen

Dunnett's post hoc test

% CD4*CD25*Foxp3*cell
in the spleen

Fig. 7 The effect of LW-AFC on the subsets of spleen lymphocytes in APP/PST mice. Flow cytometric analysis of CD87CD28" T cells (a) and
CD4"CD25"Foxp3™ T cells (b) in the spleen supernatant of mice. The values are mean + SEM; n = 3. **P < 0.01, ***P < 0,001, versus the wild-type (W)
mouse group by unpaired Student's t test; P < 0,01, P < 0001, versus the APP/PS1 (Tgs) mouse group by one-way ANOVA analysis followed by




Wang et al. Alzheimer's Research & Therapy (2016) 8:57

Page 11 of 15

04

ANOVA analysis followed by Dunnett’s post hoc test

B
100 60 150 * ok x
u“—
OA * ok ok ## ‘.6 = ‘.6 *
S_EI 80 ## Cj gj
== SE = £ o
© O 60 - = T =
S0 < B S5
== = = O
c = Qo C ~
O 2 40 c - o ©
o 801 20 oS 50
c 1 e |
O = 2 o - o~
0 0 o
D E F
150 50 100
— Y *
° - °4 40 i 55 80
c . . c £ " c =
O £ 100 o5 9§
£ F8 @ 59 ©
= £ = 5=
5 So 2 €S o 4
QR g 26 [T
o g, O
g=' o= 1 EE 20
(3] (SR o
0 0 o
G H |
200 600 50
S~ =) 5, .
c = s # c £ c T
o £ 0= .0 O E
=35 =0 s E o5
c g © o < 5
S 100 A = f
- = - 0
Sm. 5'5 5" 20
oL S % S5
cZ 50 C = :=I 10
O o © o
o ou o
0 0 0
J
100
u“— WT
O —~
!:_I 80
§E B Tos
'-gm 60 :
=e Tgs+M emantine
<I!ZI)I.I. 40
e 4 Tgs+Donepezil
Sd) 20 .
(&) = Tgs+LW-AFC

Fig. 8 The effect of LW-AFC on the cytokines in the plasma of APP/PS1 mice. Concentrations (pg/mL) of a interleukin-13 (IL-16), b interleukin-2
(IL-2), ¢ interleukin-6 (IL-6), d interleukin-23 (/L-23), e granulocyte-macrophage colony stimulating factor (GM-CSF), f tumor necrosis factor a (TNF-a),
g tumor necrosis factor B (TNF-B), h eotaxin, i interleukin-4 (/l-4), and j granulocyte colony stimulating factor (G-CSF) in the blood plasma of
wild-type (WT) and APP/PS1 (Tgs) mice were detected using Luminex® X-MAP® technology. The values are mean + SEM; n = 9-15. **P < 0.01,
®%p <0001, versus WT mouse group by unpaired Student's t test; “P < 0.05, P < 0.01, *¥P < 0.001, versus Tgs mouse group by one-way

patients [73], and contributes to the impairment of
learning and memory [72]. IL-1p, IL-2, and IL-6 modu-
late synaptic transmission and plasticity in the hippo-
campus [72], inhibit long-term potentiation [74, 75],
affect various forms of hippocampal-dependent memory
[76], and impair planning [77]. The upregulation of IL-
23 contributes to age-associated brain dysfunction, the
modulation of AP, and neuronal loss [24, 78]. High
levels of GM-CSF in the plasma of AD transgenic mice
correlate with the expansion of regulatory T cells that
suppress the effector T-cell response to AP;_4» [79].
Moreover, increasing the peripheral eotaxin concentration

in young mice inhibited adult neurogenesis and learning
and memory [80]. AD model mice treated with G-CSF
show a significant reversal of cognitive deficits, and de-
creased AP deposition and soluble A levels in the periph-
ery and hippocampus [21]. The contribution of IL-23 to
AD pathogenesis is not fully understood [81]. Previous
studies demonstrated that the cytokine network in APP/
PS1 mice is indiscriminate as compared to that in WT
mice [82-86]. In the present study, we measured 17 cyto-
kines in the plasma of APP/PS1 mice and found that long-
term administration of LW-AFC ameliorated the secretion
of 10 of these cytokines. The association of many of these
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cytokines (including eotaxin, G-CSF, IL-2, IL-23, and
TNE-B) with AD-like learning and memory deficits in
APP/PS1 mice is a novel observation.

Our study shows that, in APP/PS1 mice, the concen-
trations of TNF-B and IL-1p in the blood are correlated
with object recognition memory, spatial learning and
memory, a passive or active avoidance response, neuron
loss, and A deposits, and could be regulated by LW-AFC
treatment. Under normal immunological conditions, TNF
is essential for learning and memory [87]. The cognitive
dysfunction induced in mice after overexpression of TNF
might be due to decreased nerve growth factor (NGF)
levels [88] and/or the modulation of synaptic plasticity
[89-91], impaired long-term potentiation (LTP), and
neurodegeneration [92]. The TNF receptor is crucial
for AB-mediated cell death [93, 94]. Elevated cerebrospinal
fluid (CSF) levels of soluble TNF receptors is observed in
patients with MCI and in AD patients [95], and chronic
administration of thalidomide, a well-known TNF-a in-
hibitor, reduced AP load, plaque formation, and BACE1
levels and activity in APP23 transgenic mice [96]. Our
results show that chronic administration of LW-AFC
decreased the elevated levels of TNF-a and TNF-f in
the blood of APP/PS1 mice. Some studies report that
overexpressing IL-1f3 leads to an increase in the microglia
and astrocytes surrounding AB plaques in AD patients
and animal models [97, 98]. Moreover, patients with MCI
and AD exhibited a significant increase in peripheral IL-
1P levels compared to controls [99]. Sustained hippocam-
pal IL-1p overexpression exacerbated tau phosphorylation
and tangle formation via aberrant activation of p38
mitogen-activated protein kinase and glycogen synthase
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kinase 3 [100, 101], and impaired long-term contextual
and spatial memory [102]. Some agents can alleviate AD
symptoms via inhibiting IL-1p release, such as nimodipine
[103], Gossypium herbaceam L. extracts [104], linalool
[105], melatonin [106], and anti-IL-1R blocking antibody
[100]. The present study shows that LW-AFC treatment
reverses the decrease in IL-1p levels in the blood of APP/
PS1 mice.

Conclusions

Taken together, the results of the present investigation
show that LW-AFC improves cognitive impairment, and
reduces AP deposits and neuron loss in APP/PS1 mice
via modulation of the neuroendocrine immune system
(Fig. 9). These findings support the use of LW-AFC as a
potential therapeutic agent for AD.

Additional files

Additional file 1: Table S1. Correlation between endocrine hormone/
cytokines and cognitive performance/pathology index of APP/PS1 mice.
(PDF 495 kb)

Additional file 2: Figure S1. Correlation between endocrine hormones
/cytokines and cognitive performance/pathology index of APP/PS1 mice.
(PDF 420 kb)
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