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Abstract

Background: Mild cognitive impairment (MCI) is a syndrome that disrupts an individual's cognitive function but
preserves activities of daily living. MCl is thought to be a prodromal stage of dementia, which disrupts patients’

daily lives and causes severe cognitive dysfunction. Although extensive clinical trials have attempted to slow or

stop the MCI to dementia conversion, the results have been largely unsuccessful. The purpose of this study was
to determine whether noninvasive electrical stimulation of MCI changes glucose metabolism.

Methods: Sixteen MCI patients participated in this study. We used transcranial direct current stimulation (tDCS)
(2 mA/day, three times per week for 3 weeks) and assessed positron emission tomography (18 F-FDG) before and

after 3 weeks of stimulation.

Results: We showed that regular and relatively long-term use of tDCS significantly increased regional cerebral
metabolism in MCl patients. Furthermore, subjective memory satisfaction and improvement of the memory
strategies of participants were observed only in the real tDCS group after 3 weeks of stimulation.

Conclusion: Our findings suggest that neurophysiological intervention of MCl could improve glucose metabolism

and transient memory function in MCl patients.
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Background

Mild cognitive impairment (MCI) is a syndrome that im-
pairs an individual’s everyday cognitive function more
than expected for their age and education level but does
not affect the activities of daily life. Although MCI is
distinct from dementia, which disrupts patients’ daily
functions and produces more severe cognitive deficits,
MCI patients with memory impairment have been shown
to have a high risk of progression to dementia [1]. It is
estimated that 3—-19 % of the general population of indi-
viduals older than 65 years exhibit MCI, and 11-33 % of
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these individuals have a risk of progressing to dementia
within 2 years [2]. More than half of MCI patients with
both vascular disease and cognitive impairment progress
to dementia within 5 years [3]. Thus, MCI can be thought
of as a prodromal phase of dementia, and early diagnosis
and intervention have great potential to prevent cognitive
decline that is severe enough to interfere with patients’
daily lives.

Many clinical attempts have been made to prevent the
progression of MCI to dementia, but the results have
largely been unsuccessful [4]. Numerous major clinical
trials have used acetylcholinesterase inhibitors (AChEIs)
for MCI treatment [5] because MCI patients are thought
to have a central cholinergic deficit and loss of nucleus
basalis neurons [6]. Galantamine, an AChEI, has been
tested for the treatment of MCI, but there was no sig-
nificant difference in the progression rate to dementia
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between the galantamine and the placebo groups [7, 8].
There was also no significant difference in the progres-
sion rate from amnestic MCI to dementia in patients
treated with vitamin E or donepezil [9]. Amnestic MCI
patients treated for 24 weeks with donepezil showed no
improvement in the performance of a delayed recall
memory test [10]. Based on these clinical results, a
Cochrane review concluded that no evidence exists to
indicate that donepezil is beneficial for MCI patients
[11]. Although several trials are underway to determine
whether antioxidants or cognitive stimulants might
slow the MCI to dementia conversion [9], the results so
far have been disappointing; only one randomized trial
of a small group treated with a dopamine agonist
showed a significant improvement in the Mini-Mental
State Examination score (MMSE) [12].

These clinical outcomes failed to provide proof that
drugs used for treating MCI can precisely target the
neurophysiological objectives. Recently, transcranial direct
current stimulation (tDCS), a method used to noninva-
sively stimulate specific cortical regions of the brain with a
mild (<2 mA) and persistent current [13—15], has shown a
clinically significant effect on various neuropsychiatric
diseases [16]. In patients with depression, 1-2 weeks of
treatment with tDCS improved both the symptoms and
psychological scale of patients on the Montgomery-
Asberg Depression Scale (MADRS) [17, 18] even more
than conventional psychiatric drugs that selectively
block the serotonin transporter [19].

In dementia, a single use of tDCS improved recogni-
tion memory [20] and visual recognition memory [17],
and these effects were also observed after 1 month if
tDCS was applied in daily sessions for 5 days [21]. Simi-
larly, a study of MCI patients showed that tDCS applica-
tion improved recall performance, but this relationship
was not observed in the sham condition [22]. These re-
sults suggest that neurophysiological intervention in the
early stage of cognitive impairment could improve the
neuropsychological performance of MCI and dementia
patients [23]. The electrical stimulation targets the pre-
frontal cortex which governs the various cognitive func-
tions, including working memory, visual recognition,
executive attention, and general fluid intelligence [24, 25].
Therefore, we may relate the cognitive improvement to
the increase of neuronal activity of the prefrontal cortex
induced by tDCS [26, 27].

Electrical stimulation of the brain has been known to
produce brain-derived neurotrophic factor (BDNF) that
increases synaptogenesis and neurogenesis in the long
term [28-30]. Therefore, tDCS may induce synaptic
plasticity and neuronal viability [30]. We hypothesize
that these effects may benefit the treatment of MCI.

Although previous studies have attempted to measure
the behavioral outcome of MCI patients after tDCS
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treatment, it is largely unknown how cerebral function
and metabolism are altered by the use of tDCS. We
hypothesize that the cerebral glucose metabolism would
be changed after tDCS, because it has been known that
the neuronal activity induced by electrical stimulation
increases glucose metabolism [31-33]. Furthermore,
previous studies have largely depended on single or
short-term (less than 1 week) sessions to measure the
effects of tDCS on MCI and dementia. Thus, we aimed
to investigate how regular and relatively long-term
(3 weeks) treatment with tDCS might affect cerebral
metabolism and enhance the cognitive performance of
MCI patients. To measure cognitive changes, we used
the Multifactorial Memory Questionnaire (MMQ), a re-
liable and valid method of quantifying the effect of
treatment over the span of several weeks [34, 35].

Methods

Participants

Sixteen patients with MCI, aged 65—85 years, participated
in this study. They were randomly distributed between the
active and the sham groups. The diagnosis of MCI was
consistent based on the following criteria proposed by
Petersen et al. [36]: memory complaints, normal activity of
daily living, normal general cognitive function, abnormal
memory for age, and lack of dementia. All subjects were
evaluated in the dementia clinic by an experienced neur-
ologist and psychologist. The evaluation procedure con-
sisted of a detailed medical history, physical and neurologic
examinations, neuropsychological assessments, and brain
magnetic resonance imaging. Additionally, positron emis-
sion tomography using 18 F-fluoro-2-deoxyglucose (FDG-
PET) was also performed on all subjects. The patients were
selected independent of FDG-PET hypometabolism. The
patients’ past medical histories were obtained from the pa-
tients and family members or from other caregivers. The
MCI patients had never had parkinsonian symptoms or
the focal neurological signs or radiological lesions that typ-
ify cerebrovascular diseases. Additionally, MCI patients
were excluded if they had psychiatric disorders, mental re-
tardation, drug intoxication, or diabetes mellitus. All par-
ticipants provided written informed consent after receiving
a detailed explanation of the experimental procedures. The
Institutional Review Board of the Catholic University of
Korea approved all experimental procedures for this study.

Neuropsychological testing

Patients’ general cognitive state and severity of dementia
were evaluated using the MMSE [37, 38], the extended
version of the Clinical Dementia Rating (CDR) [39], and
the sum of the box score of the CDR (SOB) [40]. Several
cognitive domains were assessed by a detailed neuro-
psychological battery of tests, including an attention test
(forward digit span, backward digit span, and calculation),
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a language and related function test (Boston Naming
Test), a visuospatial function test (the Rey Complex
Figure Test (RCFT)), a verbal memory test (three-word
registration and recall, Hopkins Verbal Learning Test
(HVLT) for immediate recall, delayed recall, and recog-
nition), a nonverbal memory test (immediate recall, de-
layed recall, and recognition of a Rey complex figure), and
a frontal executive function test (controlled oral word as-
sociation test (animal, supermarket, and letter)) [41].

To assess the cognitive function and subjective mem-
ory complaints of participants, we also used the modi-
fied MMQ [42]. This questionnaire measures the self-
appraisal of memory function and consists of 57 items
classified into three subscales including MMQ-C (content-
ment with current memory function), MMQ-A (self-ap-
praisal of current memory ability in daily life), and MMQ-
S (use of everyday memory strategies and aids). Before
each experiment, participants reported their memory abil-
ity, including overall contentment or satisfaction with
their own memory ability.

Procedure

Protocol for tDCS sessions

In this randomized, double-blind study, patients received
nine active or sham tDCS sessions (three times per week
for 3 weeks). In the active tDCS condition, stimulation
was administered at 2 mA for 30 minutes, and the current
was gradually ramped up over 20 seconds. In the sham
tDCS condition, to provide participants with the same ini-
tial sensation of tDCS, the amplitude, duration, and loca-
tions of the anodal and cathodal tDCS were identical, but
the current was gradually ramped down after the first
20 seconds. We followed the stimulation protocols of the
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previous studies using tDCS [32, 33]. The randomized,
double-blind assignment was performed using a simple
random number generator from the Matlab software by a
laboratory researcher independent of the experiment. This
researcher put the randomly generated number into the
tDCS device to randomly select between the real and
sham trials. The experimenter was not informed whether
the current trial is the real or the sham condition. The
patients were stimulated with a DC stimulator developed
by Yun and colleagues [15]. The anodal electrode was
placed on the left dorsolateral prefrontal cortex (DLPFC)
(F3; 10-20 EEG system), and the cathode electrode was
placed on the right DLPFC (F4; 10-20 EEG system). The
regions were selected based on the previous tDCS studies
for cognitive improvement [43-45]. The conductive rub-
ber electrodes used for tDCS were potassium chloride-
soaked sponges (5 cm x5 cm =25 cm?). They were held
in place by a headband. The patients were asked to report
any adverse effects, including itching, tingling, headache,
burning sensation, and discomfort [46]. No patient re-
ported adverse effects.

On the first day of the experiment, the participants per-
formed a set of neuropsychological tests and they moved
to the PET room to obtain functional brain images of
glucose metabolism. Then the participants moved to the
adjacent testing room for the tDCS session. After the first
day of the experiment, the participants were asked to
schedule eight more hospital visits for the next 3 weeks
(three visits per week from Monday to Friday). From the
second to the eighth visits, the participants performed
only the tDCS sessions. On the last day of the experiment
(ninth visit), the participants performed the tDCS session,
PET scan, and cognitive testing consecutively (Fig. 1).

Active tDCS
(N=8) .
e

—

9 tDCS sessions for 3 weeks

@ Anode
@ Cathode
@ Sham

tDCS
(day 1)

transcranial direct current stimulation

Cognitive  PET scan
testing
Sham tDCS
(N=8)

Fig. 1 Experimental procedure. Participants received nine active or sham tDCS sessions (three times per week for 3 weeks). On the first day of the
experiment, the participants performed a set of cognitive tests and PET imaging. The participants then moved to the adjacent testing room for
the tDCS session. From the second to the eighth visits, the participants performed only the tDCS sessions. On the last day of the experiment
(ninth visit), the participants performed the tDCS session, PET scan, and cognitive tests consecutively. PET positron emission tomography, tDCS

PET scan Cognitive
testing
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FDG-PET and the modified MMQ [42] were used to
assess the cognitive ability of participants at baseline and
after 3 weeks of treatment. After the sessions, FDG-PET
images were acquired to measure the metabolic activity
of the participants.

PET hardware and imaging

FDG-PET brain scans were performed on the Discovery
STE PET/CT scanner (GE Healthcare, Milwaukee, WI,
USA) using standard techniques. Forty-seven horizontal
slices were acquired with 3.27 and 3.75 mm transverse
resolution and 1.95 and 0.488 mm resolution. All scans
were performed as the participants rested with their
eyes closed in a quiet, dimly lit room. The participants
were required to fast for at least 4 hours. The measures
of regional cerebral glucose metabolism were obtained
following the administration of a 185-222 MBq intra-
venous injection (2-minute period) of FDG. The emis-
sion scans were obtained after a 45-minute uptake
period. The images from 45-65 minutes post injection
were used for the analysis. The whole brain glucose me-
tabolism was obtained using standard filtering and
reconstructing techniques.

Data analysis

Behavioral data analysis

Independent t tests were performed to confirm that
there were no differences in age, education, MMSE,
CDR, and HVLT scores between the active tDCS and
the sham groups. Nonparametric chi-square test was
performed to confirm that the gender distribution be-
tween the two groups was not significantly different.
MMQ scales before and after the tDCS treatments were
compared using paired ¢ test. The significance level was
set at p < 0.05.

PET imaging analysis

The PET scans were interpolated into 47 slices, cor-
rected for slice acquisition time within each volume, mo-
tion corrected with realignment to the first volume,
registered, transformed into the coordinates of the MNI
standard space (Montreal Neurological Institute, McGill
University, Montreal, Canada), and smoothed to 8 mm

Table 1 Clinical characteristics during the baseline assessment
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in the x, y, and z planes using statistical parametric map-
ping (SPM 8; Wellcome Department of Imaging Neuro-
science, Institute of Neurology, London, UK).

Two comparisons were performed between baseline
and follow-up active groups and between active and
sham groups after 3-week tDCS treatment. Covariates
were not considered in this analysis because of the small
sample size. We computed the post-hoc analyses for the
regional PET values using p < 0.05, corrected by a false
discovery rate (FDR) for multiple tests for baseline and
after treatment comparisons of the active group and for
active and sham comparisons after 3-week treatment.
The interaction between time (pre and post stimulation)
and groups (real and sham) was also calculated.

Results

In this study, 16 patients with MCI received active or
sham tDCS sessions over 3 weeks. The clinical charac-
teristics of all participants are summarized in Table 1.
Between the two groups, there were no significant differ-
ences in age (statistical values, #(14)=0.534; p =0.602),
MMSE scores (statistical values, £(14) = 1.450; p = 0.169),
delayed recall with the HVLT (statistical values, #(14) =
0.752; p =0.465), RCFT scores (statistical values, #(14) =
0.883; p=0.392), or S-IDAL scores (statistical values,
£(14) = —-0.395; p = 0.699).

Behavioral results

Participants’ memory complaints were measured using
the MMQ scale and are presented in Fig. 2. MMQ
scores consist of MMQ-A (ability), MMQ-C (content-
ment), and MMQ-S (strategy). The interaction between
the test scores (score differences between post and pre
stimulation) and the group (real and sham) showed that
the real and the sham tDCS effects in the test scores
were significant (F(2) =4.13; p =0.05). In the real tDCS
stimulation group, the MMQ-C score was significantly in-
creased after 3 weeks of tDCS stimulation (#(15) = 2.15;
p =0.048, two-tailed), but there was no significant dif-
ference in the sham condition group (£(15) = 1.91; p = 0.09,
two-tailed). Similar results were observed for the MMQ-A
scale, with a significant improvement in the tDCS stimu-
lation group after 3 weeks of stimulation (£(15) = 3.65;

Real tDCS group, mean (SD) Sham tDCS group, mean (SD) p value Mann-Whitney U test
Age (years) 7475 (747) 73.12 (4.25) 0.60 U=3050, p=0387
Education (years) 8.06 (4.93) 5.56 (2.41) 0.22 U=19.50, p=0.19
Mini-Mental State Examination 26.75 (1.58) 2512 (2.74) 0.16 U=1850,p=0.16
Clinical Dementia Scale 0.25 (0.26) 0.50 (0.26) 0.08 U=1800, p=0.16
Gender (male/female) 3/5 2/6 X>=225p=013 x> =225 p=013
Hopkins Verbal Learning Test 437 (342) 3.12 (3.22) 0.46 U=25.00, p=050

tDCS transcranial direct current stimulation
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Fig. 2 Participants’ memory complaints measured by the MMQ scale. The MMQ-A subscale assesses memory lapses in everyday activities such as
names of people and locations of items. MMQ-A was improved significantly after 3-week tDCS application only in the real tDCS group (paired t
test, *p < 0.05). The MMQ-C subscale measures the subjective satisfaction of patients' memory abilities and determines whether subjects experience
anxiety regarding their memory problems. MMQ-C was also significantly improved after 3-week tDCS application only in the real tDCS group (paired
t test, *p < 0.05). There was no significant difference between real and sham groups in the MMQ-S subscale, which measures the subject’s
memory strategies for compensation. Error bar denotes standard deviation. MMQ Multifactorial Memory Questionnaire

p =0.002, two-tailed). However, the subjective scale of
the MMQ-A was not significantly different in the sham
tDCS group (#(15)=0.23; p=0.82, two-tailed). The
MMQ-S subscale, which measures patients’ everyday
memory strategies and aids, was not significantly differ-
ent in both the real tDCS and sham stimulation groups
(real tDCS group: £(15) = 1.39; p =0.21 and sham tDCS
group: £(15) = 0.58; p = 0.57, both two-tailed).

Changes in metabolic rates

After 3 weeks of active tDCS treatment, increased metab-
olism was observed in the dorsolateral, ventrolateral, and
medial prefrontal cortices, the dorsal anterior cingulate,
the anterior and posterior insular regions, and the hippo-
campal and parahippocampal regions (Fig. 3a; p <0.05,
FDR corrected) (Table 2). This result suggests that mul-
tiple tDCS treatments significantly increase individual
brain metabolic activity during resting conditions.

To assess whether these increased activities after
tDCS treatment were derived from a placebo effect, we
compared the active tDCS treatment group with the
sham control group. After treatment, the active group
demonstrated significantly higher metabolic activity in
the medial prefrontal cortex, the precuneus, the midtem-
poral regions, and the anterior cingulate cortices than the
sham group (Fig. 3b; p <0.05, FDR corrected) (Table 3).
This result suggests that increased brain metabolism after

tDCS treatment might be related to the direct current
stimulation rather than the placebo effect. We did not find
any significant regions in the interaction analysis between
time (pre and post stimulation) and groups (real and
sham). This result may be due to the small sample size.

Discussion
In this study we observed the longitudinal effects of
tDCS in MCI patients and measured metabolic activity
in pre-treatment and post-treatment conditions. In the
active tDCS group, brain metabolism was significantly
increased after 3 weeks (total nine sessions) of tDCS
treatment, and the post-treatment brain metabolism was
significantly higher in the active tDCS group than in the
sham group. Previous studies have shown that even a
single session could enhance the cognitive performance
in dementia patients [16, 17, 20]. Our findings suggest
that regular and frequent administration of tDCS in MCI
patients can modulate the metabolism of certain brain re-
gions as well as enhance neuropsychological performance.
Improvement of cognitive function after tDCS might not
be a transient effect, because regular stimulation (i.e., daily
sessions for 5 days) improved visual recognition memory
for 4 weeks after stimulation [21].

We found that the cerebral metabolic activity of MCI
patients significantly increased after tDCS administra-
tion, especially in the active treatment group compared
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Fig. 3 PET results after 3 weeks tDCS > baseline and tDCS > sham. a Brain regions showing increased glucose metabolism after 3-week tDCS treatment
versus baseline condition. b Brain regions showing significantly increased glucose metabolism in the real tDCS stimulation group versus the sham

b Real - Sham post tDCS

with the sham control group. A previous study showed
that MCI and dementia patients have higher 2-(1-(6-
((2-fluoroethyl) (methyl) amino)-2-naphthyl)ethylidene)
alononitrile (FDDNP) binding and lower 2-deoxy-2-[F-
18]fluoro-D-glucose (FDG) uptake in the temporal, par-
ietal, posterior cingulate, and frontal regions [47]. Two
proteins, beta-amyloid and tau, are abnormally accumu-
lated in these regions in dementia patients [48], and
neurofibrillary tangles have also been detected in the med-
ial temporal and hippocampal regions in MCI patients
[49]. This neuropathological finding might correlate with
metabolic activity of the brain, because the patients with
dementia showed significantly lower glucose metabolism
in similar regions, such as the parietal, temporal, frontal,
and posterior cingulate cortices [50]. In this study, we
found increased FDG uptake in multiple brain regions,

Table 2 Contrast between post-treatment and pre-treatment
conditions in the active transcranial direct current stimulation

group

Region X y z t value
Dorsolateral prefrontal 40 34 29 440
Ventrolateral prefrontal -54 24 3 350
Medial prefrontal -9 39 -6 341
Dorsal anterior cingulate 10 6 46 2.36
Anterior insula 37 20 0 336
Posterior insula -39 1 9 249
Hippocampal -29 -16 =21 3.67
Parahippocampal 18 -17 -16 382

including the anterior and posterior insular, hippocampal,
and parahippocampal regions, especially in the active
tDCS administration group. Previous studies showed that
tDCS increased the brain metabolism as compared with
sham stimulation [51, 52]. Therefore, we speculate that in-
creased brain metabolism and cognitive improvements in
MCI patients were due to a noninvasive neuromodulatory
effect rather than a placebo effect.

Furthermore, we found that participants’ reports of their
memory ability, which was measured by the MMQ-A and
MMQ-C subscales, were significantly improved only in
the real tDCS group. The MMQ-A subscale consisted of
20 items and assessed memory lapses in everyday activities
such as names of people and locations of items [53]. A
higher score on the MMQ-A subscale indicates individ-
uals who are less likely to experience memory problems in
their daily life and are satisfied with their own memory
function. The MMQ-C subscale also measures the sub-
jective satisfaction of patients’ memory abilities and deter-
mines whether subjects experience anxiety regarding their
memory problems. Although participants in our study did
not know whether they were assigned to the real or sham

Table 3 Contrast between the active and the sham tDCS groups
post treatment

Region X y z t value
Medial prefrontal 12 64 5 3.55
Precuneus -10 -52 68 238
Midtemporal -50 -40 -2 240
Anterior cingulate 0 33 6 333




Yun et al. Alzheimer's Research & Therapy (2016) 8:49

tDCS group, both the MMQ-A and MMQ-C scores were
significantly higher only in the real tDCS group after
3 weeks of stimulation. This result suggests that regular
use of tDCS might improve the overall contentment or
satisfaction of patients with their memory ability as well as
enhance their metabolic activity.

Previous studies have noted that MCI patients have a
risk of progression to dementia, and the baseline mem-
ory performance significantly predicted the conversion
to dementia [1]. Although various clinical interventions
have examined symptomatic drug treatment for MCI pa-
tients, there is no significant evidence that anti-dementia
drugs lower the progression rate from MCI to dementia
during 1-3 years of treatment [4]. Regarding the thera-
peutic effect of tDCS on various neuropsychiatric dis-
eases, such as depression, schizophrenia, and dementia
[16], our findings suggest that regular and relatively
long-term administration of tDCS might enhance cogni-
tive performance in MCI patients.

One limitation of our study is the short observation
period compared with conventional pharmacological
interventions, which have a 6-month to 3-year treat-
ment period [4]. Although the effect of tDCS is known
to last for weeks after administration [21], a longer ob-
servation period might be needed to confirm whether
the use of tDCS slows or stops the conversion of MCI
to dementia. Furthermore, a recent study used more
frequent tDCS administration consisting of daily ses-
sions for 5 days during 1 week [21]. Although most
studies have used a single session per subject [17, 20],
the current tDCS protocol for MCI and dementia has
not been optimized. Other studies have shown im-
provement in memory function of dementia patients
after tDCS treatment [16], and the standardization of
the duration, electrode size, and current strength of
tDCS administration on MCI and dementia patients is
needed. It should also be mentioned that the PET im-
ages and the test scores were the results of the com-
bined effect of the long-term (3 weeks) and the short-
term tDCS treatments because the last PET imaging
and the neuropsychological testing were performed
right after the last tDCS treatment. The experimental
design was not optimal to exclude the acute effect of
stimulation but we believe that the acute effect was still
part of the long-term effect. Further long-term and
large-scale research is warranted to confirm the effect
of tDCS on MCIL.

Conclusion

We cautiously suggest through this study that neuro-
physiological intervention of MCI could improve transient
memory function in MCI patients, although the study
covers a short time period and involves a small number of
subjects. Therefore, we believe that larger prospective
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studies investigating the clinical efficacy of neurophysio-
logical intervention of MCI with a long-term follow-up
period should be performed in the future to clarify
whether neurophysiological intervention plays an import-
ant role in the improvement of memory function in MCL
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