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Abstract

Background: A growing body of evidence suggests that microRNAs (miRNAs) are involved in Alzheimer’s disease
(AD) and that some disease-associated genetic variants are located within miRNA binding sites. In the present
study, we sought to characterize functional polymorphisms in miRNA target sites within the loci defined in earlier
genome-wide association studies (GWAS). The main objectives of this study were to (1) facilitate the identification
of the gene or genes responsible for the GWAS signal within a locus of interest and (2) determine how functional
polymorphisms might be involved in the AD process (e.g., by affecting miRNA-mediated variations in gene expression).

Methods: Stringent in silico analyses were developed to select potential polymorphisms susceptible to impairment of
miRNA-mediated repression, and subsequent functional assays were performed in HeLa and HEK293 cells.

Results: Two polymorphisms were identified and further analyzed in vitro. The AD-associated rs7143400-T allele
(located in 3′ untranslated region [3′-UTR] of FERMT2) cotransfected with miR-4504 resulted in lower protein levels
relative to the rs7143400-G allele cotransfected with the same miRNA. The AD-associated rs9909-C allele in the 3′-UTR
of NUP160 abolished the miR-1185-1-3p-regulated expression observed for the rs9909-G allele.

Conclusions: When considered in conjunction with the findings of previous association studies, our results suggest
that decreased expression of FERMT2 might be a risk factor in the etiopathology of AD, whereas increased expression
of NUP160 might protect against the disease. Our data therefore provide new insights into AD by highlighting two
new proteins putatively involved in the disease process.
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Background
Alzheimer’s disease (AD) is the most common form of
dementia worldwide. Despite extensive efforts, know-
ledge of AD pathophysiology is still incomplete. Under-
standing the genetics of AD might be one of the best
ways of improving knowledge of its underlying patho-
physiological processes. Indeed, the estimated heritability

for the common late-onset forms of AD is between 60 %
and 80 % [1], suggesting that most of the pathophysio-
logical pathways in AD are driven by (or at least
influenced by) genetic determinants. Moreover, the
emergence of genomic approaches (such as genome-
wide association studies [GWASs]) has enabled the
characterization of many different genetic loci associated
with AD risk and have given support to the genetic
hypothesis in AD [2–8]. However, a locus of interest
may encompass dozens of genes; in many cases, the
most functionally relevant gene (i.e., the one responsible
for the GWAS signal) has not yet been identified.
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Indeed, functional variants have rarely been character-
ized (despite specific efforts in this respect), and poten-
tial functional variants have been characterized in only
six GWAS-defined genes so far: SORL1, BIN1, CR1,
CLU, ABCA7, and CD33 [9]. It is noteworthy that none
of the potential variants within these genes have yet been
linked to modulations in microRNA (miRNA or miR)
binding. However, there is a growing body of evidence to
suggest that miRNAs are involved in AD and that
disease-associated genetic variants may be located within
miRNA binding sites. This has already been observed in
several types of disease, including hypertension [10];
nephropathy [11]; cancer [12, 13]; and neurological
diseases such as Tourette syndrome [14], schizophrenia
[15], cerebral amyloid angiopathy, and AD [16–18]. We
therefore decided to characterize functional polymor-
phisms in miRNA target sites (PolymiRTSs) located
within the GWAS-defined loci and associated with the
AD risk. Our particular objectives were to (1) facilitate
the identification of the gene or genes responsible for the
GWAS signal within a locus of interest and (2) determine
how these polymorphisms are involved in the AD process
(e.g., by affecting miRNA-mediated variations in gene
expression).
miRNAs are small (approximately 21 nucleotides)

RNAs that interact with the 3′ untranslated region
(UTR) of their target mRNA transcripts by partial se-
quence complementarity (resulting in destabilization of
the mRNA and/or inhibition of translation) [19]. Inter-
fering with this function (either by altering existing
miRNA binding sites or by creating new, illegitimate
miRNA binding sites) may thus result in significant
downstream effects on protein expression and disease
phenotypes [20]. The function of miRNAs depends pri-
marily on the miRNA seed region (nucleotides 2–8 of
the mature sequence), which is the smallest region
required for binding to the target mRNA [21, 22].
Although the seed region is the critical component in
target recognition, other parameters (such as 3′ comple-
mentarity, Adenosine -Uracile density around the target
site, and the location within the 3′-UTR sequence) influ-
ence the binding affinity [23, 24]. Various algorithms for
miRNA target prediction have been developed (each
with its own set of rules). In the present study, we used
the TargetScan [24], miRANDA [25], and TargetSpy [26]
algorithms to identify PolymiRTSs in the AD-associated
loci identified in our previous GWAS [8].

Methods
This study is based on the publicly available International
Genomics of Alzheimer’s Project (IGAP) database and did
not need specific ethical approval. All the necessary con-
sents were independently obtained by each consortium in
the IGAP database as specified elsewhere [8].

Identification of miRNA target sites in AD-associated
genes and data mining
When considering the 220 genes in 29 AD-associated
loci, we downloaded the reference 3′-UTR sequences
from the UCSC Table Browser (using the human assem-
bly GRCh37/Hg19) and loaded them into the miRANDA
(version 3.3a), TargetScan (version 6.2), and TargetSpy
(version 1) software [26–29]. TargetScan allows filtering
based on cross-species target site conservation to focus
on biologically relevant sites. However, given that AD is
a pathology that manifests itself only in humans, we also
chose to include less conserved (and perhaps more
human-specific) miRNA sites [30]. To identify target
sites in the reference sequences, we initially applied the
following filters: a TargetScan context + score <0, a
miRANDA prediction score >140 (which corresponds
to a perfect seed match, with no other alignments),
TargetSpy’s sensitive setting [26], and canonical sites
only. The target sites predicted by miRANDA and
TargetScan were then filtered (“basic score filter”) by rank-
ing the scores for each algorithm independently and set-
ting a threshold at 5 % of the “best scores” (a TargetScan
context + score less than −0.318 and a miRANDA
prediction score greater than 163). This approach se-
lected the miRNA target sites with the best score and
thus increased the likelihood of predicting biologically
relevant sites. A graphic illustration of the application
of this principle to TargetScan filtering is given in
Fig. 1a. To identify target sites affected by single-
nucleotide polymorphisms (SNPs), we generated in
silico 3′-UTR sequences for each of the genes of interest,
containing only the major alleles of all SNPs described in
the 1000 Genomes database (with a frequency >1 % in the
European ancestry panel, no deletions and insertions,
1000 Genomes Phase 1 integrated release version 3 haplo-
types, 2010–11 data freeze, 14 Mar 2012 haplotypes) [31].
We then generated several 3′-UTR sequences, each
containing the minor allele of one of these SNPs and
the major alleles of all other SNPs. These sequences
were then analyzed using the algorithms and filters
described above. The corresponding sites in major or
minor allele-bearing sequences were compared. The
sites affected in their 3′ supplementary region were
filtered, and only those with the greatest effects were
retained. Therefore, we ranked these sites according
to the percentage change in score when comparing
major and minor allele sequences. We then filtered
these sites (“score difference filter”) to keep only the
top 5 % highest score differences; this corresponded
to score differences below −8.25 % or above 8.25 %.
The application of this principle to TargetScan filter-
ing is shown in Fig. 1b. After these filtering steps
(based on the predicted target sites’ scores and differ-
ences between scores), we selected sites predicted by
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at least two of three algorithms (“multiple algorithm
filter”). These selected target sites were filtered for as-
sociation between the PolymiRTS and AD (p value
threshold 5 × 10−6) [8]. Next, we compared target sites
on each allele, but without applying the basic score
filter. We then selected target sites affected by the
four SNPs identified in the first part of the analysis
(rs7143400, rs610932, rs2847655, rs9909). Again, we
selected target sites predicted by at least two algorithms.
Last, target sites were filtered for alterations (as reported
in the scientific literature) in the expression of the corre-
sponding miRNA in AD.

cDNA constructs and mutagenesis
The MS4A6A 3′-UTR was amplified from blood using
the primers listed in Additional file 1: Table S1. Muta-
genesis of the NUP160, FERMT2 (Switchgear Genomics,
Menlo Park, CA, USA), and MS4A6A 3′-UTRs was per-
formed using the primers listed in Additional file 1:
Table S1. The polymerase chain reaction products
were inserted downstream of the luciferase gene in
the psiCHECK2 vector (Promega, Madison, WI, USA).
Mutagenesis of the MS4A2 3′-UTR (Switchgear
Genomics) was performed using the QuikChange II
Site-Directed Mutagenesis Kit (Agilent Technologies,
Santa Clara, CA, USA). Both wild-type and mutated

3′-UTRs were cloned in the pLightSwitch vector
(Switchgear Genomics).

Cell culture and transfection
Human HeLa and HEK293 cells were respectively cul-
tured in Eagle’s minimal essential medium (American
Type Culture Collection, Teddington, UK) and DMEM/
Ham’s F-12 1:1 medium (Life Technologies, Carlsbad,
CA, USA) supplemented with 10 % heat-inactivated fetal
bovine serum. One day before transfection, HeLa cells
were plated at a density of 50,000 cells/cm2 and HEK293
cells were plated at 125,000 cells/cm2. Transfection
was performed using Attractene reagent (QIAGEN,
Venlo, The Netherlands) according to the manufacturer’s
instructions.

Luciferase reporter assays
Cells were transfected with 50 nM premiRs (QIAGEN)
and 100 ng/cm2 psiCHECK2/3′-UTR (Promega) or
pLightSwitch/3′-UTR plasmids (Switchgear Genomics).
Twenty-four hours posttransfection, cells were lysed and
luciferase activity was measured using the Dual-Glo®
Luciferase Assay System (Promega) and a Wallac Victor
luminometer (Promega) according to the manufacturer’s
instructions. All experiments were performed at least
three times in triplicate, and statistical analyses using the

Fig. 1 In silico approach for assessing score thresholds for identification of microRNA (miRNA) target sites and polymorphisms in a microRNA
target site (PolymiRTSs). a A graphical representation of the “basic score filtering” in TargetScan. The “context +” scores for each miRNA
binding site are plotted on the x-axis, and the number of counts with which each score was found is plotted on the y-axis. The top 5 %
context + scores had a value below −0.318. b A graphical representation of the “score difference filter” in TargetScan. The percentage
change in the context + scores for each miRNA binding site (due to the presence of a PolymiRTS) is plotted on the x-axis, and the
number of counts with which each change in score was found is plotted on the y-axis. The top 5 % context + score changes had a
value below −8.25 % or above 8.25

Delay et al. Alzheimer's Research & Therapy  (2016) 8:20 Page 3 of 11



Mann-Whitney U test were performed with R software
(version 3.2.2; https://www.R-project.org/).

Results
In silico identification of single-nucleotide polymorphisms
with a possible functional impact on miRNA-mediated
regulation of expression
We first generated an artificial 3′-UTR sequence in
silico containing the major alleles of all known SNPs
within the 220 genes in AD-associated loci [8]. On this
basis, we generated sequences containing each of the
minor alleles in turn. This enabled us to define all the

potential miRNA binding sites within the 3′-UTR se-
quences (including those created by the presence of the
minor SNP alleles). By using three stand-alone algorithms
(TargetScan, TargetSpy, and miRANDA), we predicted
103,949 possible miRNA binding sites for the “major
allele” sequence and 105,466 for the “minor allele” se-
quences (Fig. 2). We next used a “basic score filter” (see
the Methods section) to select only high-confidence target
sites. This step isolated 22,598 “major allele” sites and
23,414 “minor allele” sites (Fig. 2) for further analysis.
We then compared the major and minor allele se-

quences to establish whether SNPs within the 3′-UTRs

Fig. 2 A graphical representation of the workflow used to identify microRNA (miRNA) target sites and polymorphisms in a microRNA target site.
The 103,949 possible “major allele” target sites and the 105,466 possible “minor allele” target sites identified by TargetScan, miRANDA, and TargetSpy
were filtered (using a “basic score filter”) to produce a list of high-confidence target sites. We then compared major and minor allele-bearing sequences
to identify target sites affected by the presence of single-nucleotide polymorphisms (SNPs). Target sites affected in the 3′ supplementary region were
subjected to the “score difference filter.” For all sites affected within the seed region and those having passed the “score difference filter,” we compared
the results produced by TargetScan, miRANDA, and TargetSpy. Only sites predicted by at least two of the algorithms (the “multiple algorithm filter”)
were selected. The selected sites were filtered on the basis of association between the SNP and Alzheimer’s disease (AD). We next assessed other
miRNA target sites possibly affected by the four identified SNPs (no basic score filtering + SNP filter). We again applied the multiple algorithm filter.
Only one of these miRNAs was also known to be deregulated in the AD brain (the “miRNA AD expression filter”)
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might affect miRNA binding. A total of 2839 binding sites
were predicted (by at least one of the three algorithms) to
be modified by the presence of SNPs. The modifications
associated with these SNPs were divided into two categor-
ies: (1) those that disrupted or created new canonical sites
(i.e., sites with perfect complementarity to the miRNA seed
sequence [n = 957]) (Fig. 2) and (2) those that affected the
binding affinity without changing the target site’s comple-
mentarity to the miRNA seed region (target site comple-
mentarity is affected in the 3′ supplementary region
[n = 1882] [24]). Although SNPs that alter canonical com-
plementarity are expected to have strong effects on miRNA
binding, the effects of SNPs that modify the prediction
score (but not the seed complementarity) are more difficult
to assess. We therefore used another strict “score difference
filter” (see the Methods section) to select SNPs with the
largest effects on miRNA binding. This reduced the num-
ber of sites affected in the 3′ supplementary region from
1882 to 107 (Fig. 2). By pooling these latter sites (n = 107)
with the disrupted and/or new canonical sites (n = 957), we
retained a total of 1064 sites of interest. Ninety-nine of
these possible PolymiRTSs were simultaneously identified
by two or more algorithms (the “multiple algorithm filter”);
of those 99 sites, 37 were created, 51 were disrupted, 10
changed their site type, and only 1 site was affected in the
3′ supplementary region upon introduction of the minor
allele (Fig. 2 and Additional file 2: Table S2).
Although all 99 miRNA binding sites might be of bio-

logical interest, we further narrowed down this list by fo-
cusing on SNPs with relevance for AD risk (i.e., selected
by GWAS with a p value below 5 × 10−6) [8]. With this
approach, we identified four AD-associated SNPs in seven
miRNA target sites (miR-4504, miR-626, miR-6876-3p,
miR-6888-3p, miR-3945, miR-585-3p, miR-3976). These
potentially AD-associated PolymiRTSs were located
within the 3′-UTR of the MS4A2, MS4A6A, NUP160,
and FERMT2 genes (Table 1).

We next looked at whether these four SNPs could
affect other relevant miRNA binding sites. In fact, our
use of stringent filters to characterize the potential im-
pact of PolymiRTSs of interest may have excluded some
relevant results. We therefore determined which of the
103,949 “major allele” target sites and 105,466 “minor
allele” target sites might be altered by these 4 SNPs in
the absence of score filters. Of the initial 22,615 target
sites affected by any SNP, 120 were affected by any 1 of
the 4 AD-associated SNPs being studied. These included
drastic effects such as disruption or creation of sites as
well as all slight alterations in binding score between the
3′-UTRs and their miRNAs that might be binding to
their targets some dozen base pairs away from the SNPs
being studied. Application of the above-mentioned “mul-
tiple algorithm filter” (i.e., sites predicted by at least two
algorithms) selected 23 miRNAs, including the 7 miR-
NAs described above (Fig. 2 and Additional file 3: Table
S3). An in-depth analysis of the literature revealed that
only 5 of the 23 miRNAs had been studied previously in
the context of AD. miRNA-206, miR-1, and miR-654-5p
were found not to be deregulated in AD tissue versus
control tissue [32–35], whereas the results for miR-30a-
3p varied between studies [32, 34–37]. Importantly, re-
searchers in two independent studies had found that
levels of miR-1185-1-3p were abnormally low in the AD
brain (compared with controls) [35, 38] (Additional file
3: Table S3). Hence, only miR-1185-1-3p was added to
our initial list of seven miRNAs (Table 1).
In summary, we identified four PolymiRTSs likely to

modulate the impact of eight different miRNAs (Fig. 2).

Assessment of the biological function of the identified
miRNA target sites
We first used luciferase activity assays in two independ-
ent cell-based models (HeLa and HEK293 cell lines) to
assess the function of the eight miRNA target sites

Table 1 Alzheimer’s disease-associated polymorphisms in a microRNA target sites identified in silico, with the corresponding minor
allele frequency, odds ratio, and potential effect on microRNA binding

Gene PolymiRTS Minor allele MAF OR 95 % CI miRNA PolymiRTS consequence Anticipated effect

FERMT2 rs7143400 T 10.08 % 1.09 1.04–1.15 hsa-miR-4504 Creation perfect seed Decreased expression

MS4A2 rs2847655 C 41.09 % 0.90 0.87–0.93 hsa-miR-585-3p Disruption perfect seed Increased expression

hsa-miR-3945 Creation perfect seed Decreased expression

hsa-miR-6876-3p Disruption perfect seed Increased expression

MS4A6A rs610932 A 42.49 % 0.91 0.88–0.94 hsa-miR-626 Disruption perfect seed Increased expression

hsa-miR-6888-3p Creation perfect seed Decreased expression

NUP160 rs9909 C 33.75 % 0.93 0.90–0.96 hsa-miR-3976 Creation perfect seed Decreased expression

hsa-miR-1185-1-3p Disruption perfect seed Increased expression

MAF minor allele frequency, PolymiRTS polymorphism in a microRNA target site, miR and miRNA microRNA
A summary of the genes, single-nucleotide polymorphisms, minor allele identity relative to 3′ untranslated region strand, MAF, and OR [95 % CI] (in the International
Genomics of Alzheimer’s Project database discovery or meta-analysis study when available [8]), affected miRNAs, the effects of the Alzheimer’s disease-associated
PolymiRTSs identified in this study, and the predicted consequences
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found within the respective 3′-UTRs of the FERMT2,
MS4A6A, MS4A2, and NUP160 genes. We observed that
six of the eight putative target sequences were associated
with downregulation of the luciferase activity in HEK293
cells when cotransfected with their targeting miRNAs
(relative to control miRNAs), whereas three were associ-
ated with downregulation in HeLa cells (Fig. 3a).
The luciferase activities of HEK293 and HeLa cells

transfected with a FERMT2:rs7143400-T 3′-UTR lu-
ciferase construct were, respectively, 22.3 ± 5.8 % and
28.7 ± 3.3 % lower in the presence of miRNA-4504
(relative to a scrambled [SCR] control miRNA). The
luciferase activities of the MS4A6A:rs610932-C 3′-UTR
reporter constructs were, respectively, 11.4 ± 1.3 %
and 16.2 ± 5.5 % lower than SCR controls when
cotransfected with miR-626 or miR-6876-3p in HEK293
cells. This was not observed in HeLa cells. When the
MS4A6A:rs610932-A luciferase constructs were cotrans-
fected with miR-6888-3p, no significant differences in lu-
ciferase activity were observed in either cell line.
Compared with SCR control miRNAs, we observed

downregulation by, respectively, 38.4 ± 6.7 % and
59.1 ± 8.6 % when miR-3945 or miR-585-3p was
cotransfected with MS4A2 3′-UTR luciferase con-
structs in HEK293 cells. The downregulation ob-
served with miR-3945 was also observed in HeLa cells
(by 28.4 ± 9.3 %), whereas cotransfection with miR-585-
3p did not significantly alter luciferase activity in this
cell line.
Cotransfection of NUP160:rs9909-C 3′-UTR luciferase

constructs with miR-3976 did not modify the luciferase
activity in HeLa cells but increased it in HEK293 cells
(29.3 ± 5.9 %). Last, when miR-1185-1-3p was cotrans-
fected with NUP160:rs9909-G 3′-UTR luciferase con-
structs, decreases of 52.8 ± 4.1 % and 45.0 ± 8 % in
luciferase activity were observed in HEK293 and HeLa
cells, respectively (compared with SCR control miRNAs).
In summary, FERMT2:rs71433400-T, MS4A2:rs2847655-

T, and NUP160:rs9909-G transcript alleles were downregu-
lated in both HEK293 and HeLa cells by miR-4504, miR-
3945, and miR1185-1-3-p, respectively. MS4A6A:rs610932-
C and MS4A2:rs2847655-C were respectively targeted by
miR-626/miR-6876-3p and miR-585-3p, but this occurred
in a cell-dependent manner. Although the latter miRNAs
may be of some interest, we chose to focus on miRNAs
with marked effects in both cell lines.

Biological validation of the PolymiRTSs identified in silico
We next looked at whether allelic variations in miRNA
binding sequences might affect the impact of the
miRNAs being studied on target regulation. As seen
from the sequence alignment of FERMT2 3′-UTR and
miR-4504, the minor rs7143400-T allele creates an il-
legitimate canonical binding site compared with the

major rs7143400-G allele (Fig. 3b). The presence of
rs7143400-G is thus expected to decrease miR-4504’s
downregulating effect on the FERMT2 3′-UTR reporter
levels (Fig. 3a). However, the differences in luciferase ac-
tivity for HEK293 cells cotransfected with miR-4504
(relative to SCR control miRNA) were similar for
rs7143400-T- and rs7143400-G-bearing constructs (i.e.,
decreases of 22.6 ± 7.1 % and 22.3 ± 5.8 %, respectively)
(Fig. 3c). Nevertheless, we observed decreases in lucifer-
ase activity of 23.6 ± 6.6 % and 24.4 ± 7.5 % between
rs7143400-G and rs7143400-T when coexpressed with
either SCR control miRNA or miR-4504, indicating an
allelic effect independent of miRNA expression. In HeLa
cells, this allelic difference was not found. However,
miR-4504 decreased the expression of the reporter gene
carrying the rs7143400-T allele (by 28.7 ± 3.3 %) but not
that carrying the rs7143400-G allele (as expected on the
basis of our in silico analysis) (Fig. 3d). In summary, and
although the observations in HeLa and HEK293 cells
were not identical, our data suggest that the rs7143400-
T (minor) allele triggers FERMT2 downregulation
(compared with the rs7143400-G [major] allele) and that
this downregulation might partially be linked to the
presence of miR-4504.
As shown in Fig. 3b, the canonical binding site for

miR-3945 on MS4A2 corresponds to the major
rs2847655-T allele, whereas the minor rs2847655-C al-
lele disrupts perfect complementarity. As expected,
cotransfection of HEK293 and HeLa cells with the
MS4A2:rs2847655-T 3′-UTR luciferase constructs and
miR-3945 resulted in a decrease in luciferase activity (by
38.4 ± 6.7 % and 28.4 ± 9.3 %, respectively, compared
with SCR control miRNAs) (Fig. 3e, f ). However, when
miR-3945 was coexpressed with MS4A2:rs2847655-C 3′-
UTR luciferase constructs, similar decreases in luciferase
activity in MS4A2:rs2847655-T-expressing cells were ob-
served in HEK293 and HeLa cells (39.4 ± 23.5 % and
18.8 ± 8.9 %, respectively) (Fig. 3e, f ). Hence, miR-3945
appears to regulate MS4A2 expression, but its function
is probably not affected by rs2847655.
For NUP160:miR-1185-1-3p, the canonical binding site

corresponds to the major rs9909-G allele, whereas the
minor rs9909-C allele disrupts perfect complementarily.
Accordingly, we expected that the minor allele would
limit or abolish the effects of miR-1185-3p on the ex-
pression of NUP160 3′-UTR luciferase constructs. This
prediction was confirmed in both cell lines. In fact, the
rs9909-G allele was associated with significant decreases
in luciferase activity in HEK293 and HeLa cells
cotransfected with miR-1185-3p (by 52.8 ± 4.1 % and
52.6 ± 2.8 %, respectively, compared with SCR control
miRNAs). In contrast, the rs9909-C allele completely
disrupted this regulation in HEK293 and HeLa cells
cotransfected with miR-1185-3p compared with SCR
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Fig. 3 (See legend on next page.)
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control miRNAs (Fig. 3g, h). It is noteworthy that the
luciferase activity was significantly greater in HEK293
cells (by 91.9 ± 13.0 %) and HeLa cells (by 205 ± 31.1 %)
cotransfected with the rs9909-C luciferase constructs and
SCR control miRNAs compared with the rs9909-G allele
cotransfected with the same miRNAs.
In summary, our data indicate that (1) compared with

the rs9909-G allele, the rs9909-C allele may increase
NUP160 expression; and (2) at least part of this increase
may be due to the disruption of a miR-1185-3p binding site.

Discussion
The present study was focused on identifying functional
SNPs located within AD-linked loci [8] that are likely to
modulate miRNA binding. To predict the putative ef-
fects of AD-associated SNPs, we used the following
criteria to select miRNA target site identification algo-
rithms: (1) availability as a stand-alone program, (2) abil-
ity to query the latest version of the miRBase database,
and (3) ability to handle an independent set of 3′-UTR
sequences. The “gold standard” TargetScan, the less
stringent miRANDA, and the machine learning algo-
rithm TargetSpy met these criteria [21, 26, 27]. We
could also have used algorithms (such as miRTarBase
and miRecords) that take account of the miRNAs’ re-
ported functionality by consulting collections of miRNA
target data from both low- and high-throughput experi-
ments [39, 40]. Although this approach would have
increased the likelihood of finding legitimate sites, it
would also have ruled out associations that have yet to
be discovered. We therefore decided not to include these
algorithms in our analysis.
We next defined a stringent approach for identifying

miRNAs and PolymiRTSs with TargetScan, miRANDA,
and TargetSpy, based on the alignment scores for
miRNAs and their targets. In line with the thresholds
used in other studies, we filtered our results with a
TargetScan “context +” score of −0.318 [40–42]. In con-
trast, the miRANDA alignment scores used in the

present study were far stricter than those reported in the
literature [25, 27, 43]. We confirmed that three of the
eight selected miRNA sites had a functional impact in
two unrelated cell lines. Although we are aware that our
approach may have excluded potentially interesting
miRNAs and PolymiRTSs, we chose to focus on gen-
omic sites and miRNAs that had functional importance
in both cell lines [44]: the miRNAs miR-4504, miR-3945,
and miR-1185-3p and the corresponding sites in the 3′-
UTRs of the FERMT2, MS4A2, and NUP160 genes. Our
data showed that rs2847655 did not affect the decrease
in luciferase activity observed when MS4A2 3′-UTR
reporter constructs were coexpressed with miR-3945
(relative to coexpression with SCR control miRNAs).
Furthermore, the AD-associated rs7043400-T allele was
associated with lower FERMT2 3′-UTR luciferase re-
porter levels in HeLa cells in response to miR-4504
(compared with SCR control miRNAs). In HEK293
cells, the rs7043400-T allele was similarly associated
with miR-4504-mediated repression, even though the
rs7043400-G allele was also found to be regulated by
miR-4504. Although the results in the two cell lines
differed slightly, the presence of the rs7043400-T allele
was always associated with decreased expression of the
FERMT2 3′-UTR-dependent luciferase activity following
miR-4504 overexpression. Since the rs7143400-T allele is
associated with an increase in AD risk (OR 1.09, 95 % CI
1.04–1.15), our data suggest that low FERMT2 expression
might contribute to the development of AD. This hypoth-
esis is in line with the results of recent screening experi-
ments in Drosophila, where the authors identified the
FERMT2 orthologs Fit1 and Fit2 as regulators of Tau tox-
icity; low expression of Fit1 or Fit2 exacerbated Tau tox-
icity in the Drosophila eye, whereas elevated expression
resulted in the opposite phenotype [45]. Following an
extensive analysis of the literature, we noted that many
miRNAs predicted to target the FERMT2 mRNA are re-
portedly downregulated in AD (Table 2). Although the
spatiotemporal expression pattern of FERMT2 in the

(See figure on previous page.)
Fig. 3 Identification of functional microRNA (miRNA, miR) target sites and polymorphisms in a microRNA target site (PolymiRTSs) in HEK293 and
HeLa cells. a Assessment of the relative effect of miRNAs on their predicted targets using luciferase reporter assays in HEK293 and HeLa cells.
Luciferase constructs bearing the 3′ untranslated region (3′-UTR) of FERMT2, MS4A2, MS4A6A, and NUP160 were cotransfected with miR-4504,
miR-585-3p, miR-3945, miR-626, miR-6867-3p, miR-6888-3p, miR-3976, miR-1185-1-3p, or scrambled (SCR) control miRNA. Each miRNA was
cotransfected with the best predicted target allele, as indicated. Changes in lysate luciferase activity of the miRNA-transfected cells (relative to
SCR control miRNA transfected cells) are shown. Negative and positive values indicate decreased and increased expression, respectively,
compared with an SCR control miRNA. b Alignment between miR-4504, miR-3945, and miR1185-1-3p and 3′-UTRs of FERMT2, MS4A2, and
NUP160. The physical consequences (creation and/or disruption of perfect seed matches) of minor allele PolymiRTS are indicated. (c and d) Luciferase
assays showing the effect of rs7143400-G/T on the repressor activity of miR-4504 with regard to the 3′-UTR of FERMT2 in (c) HEK293 cells and (d) HeLa
cells. (e and f) Luciferase assays showing the effect of rs2847655-T/C on the repressor activity of miR-3945 with regard to MS4A2 in (e) HEK293 cells
and (f) HeLa cells. (g) and (h) Luciferase assays showing the effect of rs9909G/C on the repressor activity of miR1185-1-3p with regard to NUP160 in (g)
HEK293 cells and (h) HeLa cells. *p < 0.05 by Mann-Whitney U test; ***p < 0.001 by Mann-Whitney U test; ns not significant by Mann-Whitney U test.
The quoted data correspond to the average of the mean of at least three independent experiments performed in triplicate. The standard error of the
mean is indicated on the graphs
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brain and its regulating miRNAs have not yet been deter-
mined, this observation supports a hypothesis whereby
dysregulation of miRNA expression and/or binding (due
to polymorphisms such as rs7043400) may favor FERMT2
underexpression and thus Tau pathology.
Last, we identified rs9909-C. This allele (1) is known

to reduce AD risk (OR 0.93, 95 % CI 0.90–0.96) and
(2) affected miR-1185-3p downregulation of the
NUP160 3′-UTR luciferase construct. Our data indi-
cate that increased NUP160 levels might be protective
against the development of AD. The NUP160 gene is
located within the CELF1 locus, and NUP160 is part
of a protein family involved in nuclear transport.
Interestingly, alterations in nuclear transport have
been described as a possible mechanism in the patho-
genesis of neurodegenerative diseases [46, 47]. Through
extensive analysis of the literature, we noted that many
miRNAs targeting the NUP160 mRNA (including miR-
1185-3p) are reportedly downregulated in AD (Table 2)
[35, 38], which might reflect an attempt of neurons to re-
store normal nuclear transport. Accordingly, it will be im-
portant to determine whether the NUP160 gene accounts
for the GWAS signal observed in the CELF1 locus.

Conclusions
We sought to identify functionally relevant genes in AD-
associated loci by assessing the effect of AD-associated

SNPs on the repressor activity of miRNAs. We identified
rs7143400-T as being associated with low expression of
the FERMT2 reporter (partially through regulation of
miR-4504). We also validated the PolymiRTS rs9909-C
in the 3′-UTR of NUP160, which was associated with
elevated expression of the reporter as a result of
miR1185-3p dysregulation. Last, our results suggest
that (1) low expression of FERMT2 might be an AD
risk factor and (2) elevated expression of NUP160
might protect against AD.

Additional files

Additional file 1: Table S1. Primers used for cloning and mutagenesis
of the 3′-UTRs of FERMT2, MS4A2, MS4A6A and NUP160. A summary of the
base composition of the primers used for cloning and mutagenesis of
the indicated gene 3′-UTRs. The mutated sites are the underlined bases.
The purpose and direction of each primer are given. (XLS 21 kb)

Additional file 2: Table S2. PolymiRTSs and the corresponding target
genes and miRNAs identified in silico. A summary of the genes,
PolymiRTSs, SNP major and minor alleles relative to 3′-UTR strand and
their MAF (reported in the EUR panel of the 1000 Genomes database),
the targeting miRNAs, and the predicted consequences. (XLS 33 kb)

Additional file 3: Table S3. Other miRNA targeting sites identified by
less stringent analysis near rs7143400-C/G, rs2847655-T/C, rs610923-C/A
and rs9909-G/C. A summary of the genes, PolymiRTSs, effects of minor
alleles, targeting miRNAs and miRNA expression alterations observed in
AD (when available; refer to the cited references). The grayed miRNAs
were also found in the stringent screening described in Fig. 2a in the
main text. (XLS 23 kb)

Table 2 Alzheimer’s disease-associated deregulation of microRNAs targeting FERMT2 and NUP160

Gene miRNA AD References

FERMT2 hsa-miR-29b-3p Downregulated Cogswell et al. [32], Hebert et al. [33], Nunez-Iglesias et al. [48], Geekiyanage et al. [49],
Hebert et al. [35], Kiko et al. [50], Leidinger et al. [37], Tan et al. [51], Villa et al. [52],
Denk et al. [34]

hsa-miR-107 Downregulated Hebert et al. [33], Wang et al. [53], Leidinger et al. [37], Muller et al. [54]

hsa-miR-15a-5p Downregulated Cogswell et al. [32], Hebert et al. [33], Nunez-Iglesias et al. [46], Leidinger et al. [37],
Denk et al. [34]

hsa-miR-144-5p Downregulated Leidinger et al. [37], Denk et al. [34]

hsa-miR-103a-3p Downregulated Cogswell et al. [32], Hebert et al. [33], Hebert et al. [35], Leidinger et al. [37],
Denk et al. [34]

hsa-miR-582-3p Downregulated Hebert et al. [35]

hsa-miR-498 Not Altered Hebert et al. [33]

hsa-miR-29a-5p Not Altered Hebert et al. [35], Denk et al. [34]

hsa-miR-222-3p Not Altered Hebert et al. [33], Lau et al. [38], Denk et al. [34]

hsa-miR-424-5p Upregulated Cogswell et al. [32], Hebert et al. [33], Lau et al. [38], Denk et al. [34]

hsa-miR-3163 Upregulated Denk et al. [34]

NUP160 hsa-miR-1185-1-3p Downregulated Lau et al. [38]

hsa-miR-126-5p Downregulated Cogswell et al. [32], Hebert et al. [35], Leidinger et al. [37], Denk et al. [34]

hsa-miR-133b Downregulated Cogswell et al. [32], Hebert et al. [33], Denk et al. [34]

hsa-miR-323b-3p Upregulated Leidinger et al. [37]

A summary of the miRNAs predicted to target FERMT2 and NUP160, for which alterations in expression have been reported in Alzheimer’s disease (AD; mainly
downregulated, upregulated, or not altered; refer to the quoted references). MicroRNAs (miRNA, miR) for which the literature results are ambiguous are not
mentioned in the table
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