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Abstract

Introduction: Electroencephalography (EEG) microstates and brain network are altered in patients with Alzheimer’s
disease (AD) and discussed as potential biomarkers for AD. Microstates correspond to defined states of brain activity,
and their connectivity patterns may change accordingly. Little is known about alteration of connectivity in
microstates, especially in patients with amnestic mild cognitive impairment with stable or improving cognition

within 30 months (@MClI).

Methods: Thirty-five outpatients with aMCl or mild dementia (mean age 77 + 7 years, 47 % male, Mini Mental State
Examination score 224) had comprehensive neuropsychological and clinical examinations. Subjects with cognitive
decline over 30 months were allocated to the AD group, subjects with stable or improving cognition to the MCl-stable
group. Results of neuropsychological testing at baseline were summarized in six domain scores. Resting state EEG was
recorded with 256 electrodes and analyzed using TAPEEG. Five microstates were defined and individual data fitted.
After phase transformation, the phase lag index (PLI) was calculated for the five microstates in every subject. Networks

were reduced to 22 nodes for statistical analysis.

Results: The domain score for verbal learning and memory and the microstate segmented PLI between the left
centro-lateral and parieto-occipital regions in the theta band at baseline differentiated significantly between the
groups. In the present sample, they separated in a logistic regression model with a 100 % positive predictive value,
60 % negative predictive value, 100 % specificity and 77 % sensitivity between AD and MCl-stable.

Conclusions: Combining neuropsychological and quantitative EEG test results allows differentiation between subjects
with aMCl remaining stable and subjects with aMCl deteriorating over 30 months.

Introduction

In the United Kingdom cognitive decline affects approxi-
mately 18 % in the elderly [1], and early classification of
the underlying pathology and prognosis is difficult. As
personalized medicine may gain importance in the fu-
ture, the distinction between patients with a prodromal
syndrome of neurodegenerative dementia and patients
with other reasons for cognitive impairment, such as as
depressive and sleep disorders or neurovascular diseases,
becomes relevant. For early identification of dementia,
the term mild cognitive impairment (MCI) was defined
as a potential prodromal syndrome without significant
impairment in activities of daily living. This term was

* Correspondence: peter.fuhr@usb.ch

'Department of Neurology, University Hospital of Basel, Petersgraben 4, 4031
Basel, Switzerland

Full list of author information is available at the end of the article

( BioMed Central

replaced with mild neurocognitive disorder in the revised
Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition, criteria [2]. The term is unspecific as the
disorder can be caused by various pathologies [3], and a
considerable number of patients with MCI remain stable
or improve over time [4]. Diagnostic criteria for MCI
due to Alzheimer’s disease were established [5, 6]. The
rate of progression to AD in patients with MCI varies,
depending on study design and definition of MCI. Max-
imally, 40 % of patients with amnestic (single or multiple
domains) mild cognitive impairment (aMCI) at baseline
progress to dementia within 2-3 years [7, 8]. However,
novel treatment strategies require initiation of treatment
at the earliest possible time [9]; therefore, the corrobor-
ation of the diagnosis and the identification of the cause
of MCI are important.

© 2015 Hatz et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13195-015-0163-9&domain=pdf
mailto:peter.fuhr@usb.ch
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Hatz et al. Alzheimer's Research & Therapy (2015) 7:78

Quantitative electroencephalography (qEEG) is in-
creasingly being used to characterize cognitive impair-
ment in different disorders [10-12]. However, it is
unknown whether qEEG reliably identifies patients at
an early stage of AD with clear progression of neuro-
psychological deficits and/or progression to dementia
within the following years.

The aim of the present study was to find reliable gEEG
biomarkers for the identification of patients with early
cognitive deficits and at high risk of considerable cogni-
tive decline and/or progression to AD dementia. The
study included frequency analysis in signal space and a
combined microstate and connectivity analysis. On the
basis of the literature, patients with MCI progressing to
AD are expected to show an increased connectivity in
the theta band while the connectivity in the alpha and
beta bands is decreased. Moreover, we hypothesize that
alteration in connectivity in microstates correlates dis-
parately with neuropsychological domain scores.

Methods
Patients
Thirty-five outpatients (Table 2) with either aMCI (n = 12)
or mild AD (Mini Mental State Examination [MMSE] [13]
score 224/30; n=23) attending the Memory Clinic,
University Center for Medicine of Aging Basel, Felix
Platter-Hospital, Basel, Switzerland, participated in the
study. aMCI was diagnosed according to the definition
of Winblad et al. [3]. Probable AD was diagnosed ac-
cording to the definition of McKhann et al. [14]. Exclu-
sion criteria consisted of MMSE score <24/30, any
significant diagnosis other than AD, and antiepileptic
or antipsychotic drug treatment influencing electroen-
cephalography (EEG) recordings. All patients taking
benzodiazepines were either excluded or had their
treatment stopped at least 48 h before EEG recording.
Twenty-one patients had a clinical follow-up examin-
ation at about 30 months (mean observation time 30.1
+ 1.9 months, range 29-31 months), along with a re-
evaluation of their diagnoses. Among the patients with
an initial diagnosis of probable AD, nine patients had a
clinical examination and eight patients a standardized
telephone visit at 30 months. For six patients, only a
follow-up visit at 15 months was available. Yet, all 23
patients showed a decline in cognition over time. All 12
patients with an initial diagnosis of aMCI had a clinical
follow-up visit at 30 months, and 9 patients had mild
cognitive impairment with stable or improving cogni-
tion within 30 months (MCI-stable). Three patients
with aMCI had deteriorated and were thus allocated for
analysis to the AD group (n = 26).

For comparison purposes, a group of 26 cognitively
healthy control (HC) subjects was frequency-matched to
the AD group according to sex, age, and education
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(Table 2). Inclusion criteria for HC subjects were a sub-
jective report of good health and neuropsychological
examination results within normal limits (i.e., z-scores
greater than or equal to —1.28). Exclusion criteria were a
past and/or current diagnosis of any major brain disorder,
alcoholism, psychiatric disorder, and general anesthesia
within the previous 3 months. The study was approved by
the local ethics committee (Ethikkomission beider Basel
reference number 260/09). Written informed consent was
obtained from all participants.

Neuropsychological assessments

Raw scores derived from a comprehensive neuropsycho-
logical assessment battery were transformed into demo-
graphically (age, sex, and education level) adjusted z-scores
[15]. Six domain scores were created according to Table 4
in the article by Beck et al. [16]. Briefly, these domains
were assessed using the following tests: (1) for verbal at-
tention, the digit span (forward and backward) from the
German version of the Wechsler Memory Scale [17]; (2)
for visual attention, the Corsi block-tapping test (forward
and backward) from the German version of the Wechsler
Memory Scale [17]; (3) for verbal learning memory, either
the Consortium to Establish a Registry for Alzheimer’s
Disease Neuropsychological Assessment Battery (CERAD-
NAB [18]; 7 = 13) or the German version of the California
Verbal Learning Test [19] (n =22); (4) for visual learning
and memory, either the CERAD-NAB figures [18] or the
Rey-Osterrieth complex figure test [20]; (5) for verbal lan-
guage production, the 15-item Boston Naming Test [18],
animal fluency [21], and phonemic fluency (s-words) [22];
and (6) for executive motor ability, the Trail Making Test
[23] and the Five-Point Test [24]. Executive visual ability
could not be evaluated, because the Stroop effect test was
not administered to the HC subjects.

EEG recording

EEG was recorded with a 256-channel EEG system
(Geodesic EEG System 300, DC-amplifier, sampling rate
1000 Hz, high-pass filter 0.01 Hz, vertex reference, imped-
ance <40 kQ; Electrical Geodesics Inc. [EGI], Eugene, OR
USA). Subjects were instructed to relax but to stay awake
and to minimize eye and body movements. A continuous
EEG with the subject’s eyes closed was recorded for
12 minutes. During data acquisition, a technician moni-
tored a subset of electrodes online to check for vigi-
lance and artifacts.

EEG preprocessing

A fully automated preprocessing procedure was carried
out using Toolbox for Automated Processing of EEG
(TAPEEG) v2.5 software (https://sites.google.com/site/
tapeeg/) [25]. Briefly, segments of 25-200 seconds con-
taining the least amount of artifacts and sleepiness were
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automatically selected. Data of 214 electrodes (excluding
cheek and neck electrodes) were filtered (0.5-70 Hz,
high-order least-squares filter), and bad channels were
automatically detected by FASTER and FieldTrip algo-
rithms [26, 27]. Using independent component analysis
(EEGLAB [28]), components loading the electrocardio-
gram, line noise in single electrodes or single gross arti-
facts were excluded (at maximum 5 % of components).
For epoch selection, the EEG was re-referenced to aver-
age reference, bad channels were interpolated using
spherical splines [29], and a combined segment at least
180 seconds in length was created.

Spectral EEG analysis

Spectral analysis has been described elsewhere [30]. Twelve
epochs of 4 seconds were automatically selected. Power
spectra were calculated at each electrode (Thomson multi-
taper method), and at every electrode the median spectrum
of the 12 epochs was determined. Spectral analysis was
done on a regional level of spatial resolution based on 22
anatomically defined regions comprising 7 or 8 electrodes
(n=170, excluding electrodes in the midline and at the
outer border) (see Additional file 1: Figure S1). From the
median spectrum of each brain region, relative band
power was calculated in five frequency bands (delta 1-
4 Hz, theta 4-8 Hz, alphal 8-10 Hz, alpha2 10-13 Hz,
beta 13-30 Hz). Relative band power was defined as the
absolute band power in a single frequency band divided
by the band power 1-30 Hz. For statistical analysis, re-
gional power was logit-transformed [31]. Peak and median
frequency were determined at all parieto-occipital elec-
trodes, and the median of the peak and median frequency
were used for further analysis.

Microstate segmentation
The global field power (GFP) was calculated as the stand-
ard deviation of the data at each time point [32, 33]:

n
PR

=1 (n = number of channels,
n u = amplitude in uV at time point t)

GFPt:

Only time points of local maxima of GFP were se-
lected, and a k-means clustering with squared correl-
ation as distance measure was used to obtain the most
representative topographies. k-Means clustering was cal-
culated for results with 2-20 clusters, and the optimal
number of clusters was defined based on the
Krzanowski-Lai criterion using an L-curve via an adap-
tive pruning algorithm [34], resulting in five different
microstates as optimum. By fitting the individual data to
the five template microstates using a temporal smooth-
ing with a window size of 12 milliseconds [35], a vector
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was created for every subject, competitively labeling
every time point to one of the five microstate classes.

Functional connectivity

Phase lag index (PLI) measures were first calculated
using a standard approach. Data were filtered using a
Butterworth filter to four predefined frequency bands
(theta 4-8 Hz, alphal 8-10 Hz, alpha2 10-13 Hz, beta
13-30 Hz). Phase estimation was archived using a Hil-
bert transformation. The phase difference distribution
was obtained from a time series (¢, ..., fi) of phase dif-
ferences (A®) between two signals, and the asymmetry
of the phase difference distribution was calculated as de-
scribed by Stam et al. [36]:

(k = number of time points,
A¢ = phase differences
between two channels)

pLr= 1
ok

k
Zsign[sin(Aq’)(i))]

PLI was calculated using 12 epochs of 4 seconds and
averaging the resulting matrix into 1 matrix per subject
and frequency band. In the second approach, the micro-
state segmented phase lag index (msPLI) was calculated.
For the calculation of msPLI, the Hilbert transformation
was applied to the full-length EEG using a sliding win-
dow of 4 seconds with a 50 % Hanning window. For
every microstate class, 4 stitched periods each of 4000
phase differences (4 seconds) were then extracted using
the time frames indicated by the microstate label vector.
The number of four epochs per microstate, subject, and
frequency band was selected, as this minimal amount of
epochs per microstate was available in almost all EEGs,
given the recording time of EEG data. Like in the standard
approach, the 20 resulting matrices (4 epochs x 5 micro-
states) were averaged per subject. For statistical analysis,
electrodes were grouped into 22 regions of interest [25],
comprising 11 regions per hemisphere, excluding elec-
trodes in the midline, neck, and face.

Graph measures

Graph measures were calculated based on the full aver-
age msPLI weight matrix per subject in each frequency
band (n =214 nodes). To avoid arbitrary thresholds and
unconnected nodes, weighted network analysis was
employed in which each link was equivalent to the mea-
sured PLI of two interconnected nodes. Graph analysis
results were calculated according to Table 1. The re-
spective formulas were implemented in TAPEEG.

The weighted clustering coefficient C quantifies the in-
tensities of the subgraphs of a node and is equivalent to
the unweighted clustering coefficient normalized by the
average intensities of triangles at the node if the weight
matrix is symmetric and weights range between 0 and 1
[37]. The average overall C is the mean clustering
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Table 1 Graph measures as calculated for each subject
Name Formula Reference
degree = mean(W) (all links of a single node)
Average clustering coefficient Cw Cw =mean(C) [38]
o ZZW W, W
Zk#/ 1#i Wi,
i#k
Normalized clustering coefficient Gamma Cw/Cr [49]
(Cr = average of 50 randomized input matrices)
Average path length Lw L="/w [38]
L=oo (if W=0)
_ 1
o T Z/N:WZ/A;(VL”)
Normalized average path length Lambda Lw / Lr [49]
(Lr = average of 50 randomized matrices)
Degree correlation Rw Rw = Pearson correlation of degrees of pairs of neighbors [50]
Degree diversity Kw Kw = %Z’f::)) [44]
Radius Radius Ec = maximal shortest path of single node [51]
Radius = = min (Ec)
Diameter Diameter = max(Ec)

coefficient (Cw), a global measure of functional segrega-
tion of the network [38, 39]. The weighted shortest path
length L gives the average of the shortest distances of
one node to each other node in the network, where
shortest distance in the weighted case is defined as the
smallest inverse of the sum of PLI values of connecting
edges. The average overall L is the weighted average path
length (Lw), a global measure of functional integration
of the network [39, 40]. To make graph measures inde-
pendent of network size and achieve better comparabil-
ity between subjects, the measures were normalized [37].
Edge weights of an original network were randomly
reshuffled, preserving network size but destroying net-
work structure, and Cw and Lw were calculated for this
random network. Using the average Cw and Lw of 50
surrogate random networks iterated five times in the de-
nominator and Cw and Lw in the nominator, the nor-
malized Cw or gamma and the normalized Lw or
lambda were calculated. The degree diversity (Kw) rep-
resents the distribution of degrees in a network. The de-
gree is the mean connectivity of a single node to all
other nodes. A higher Kw stands for a network with only
a few highly connected nodes, also called hubs [41]. The
degree correlation expresses the amount of interconnec-
tion between nodes with similar degrees. This measure
is related to the concept of a “rich club” [42], whereas
nodes with higher degrees are preferentially intercon-
nected. The distance matrix of a graph comprises all

pairwise distances. Its maximum corresponds to the
graph diameter, its minimum to the graph radius [41].

Statistics

Demographic characteristics were compared between
groups using nonparametric tests. gEEG variables, includ-
ing regional connectivities and results of neuropsycho-
logical tests, were compared between the three groups
using analysis of variance (ANOVA). Subsequently, post
hoc t tests between subgroups were applied. In case of
regional EEG power analysis, permutation tests (ANOVA/
¢ test with 10,000 permutations) were used [43]. A logistic
regression analysis with backward elimination to classify
groups was performed using the significant EEG measures
from permutation tests and the neuropsychological test
results at baseline as independent variables. Subsequently
a receiver operating characteristic (ROC) analysis was per-
formed. Results with p values <0.05 were considered
significant. Analyses were done using TAPEEG [25] and
IBM SPSS° software (IBM, Armonk, NY, USA).

Results

Demographics

No significant differences between the three patient
groups regarding age, education, or sex were found
(Kruskal-Wallis test) (see Table 2). MMSE scores of pa-
tients with AD were significantly lower than those in the
HC group (p < 0.01).
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Table 2 Demographic characteristics (median, lower and upper quartiles)

AD (n=26) MCl-stable (n=9) HC (n=26)

Age, yr 785 (73-83) 73 (71-75) 77 (70-81)

Education, yr 13 (11-17) 15 (12-18) 12 (11-15)

Female sex, % 42 % 44 % 46 %

MMS score* 27 (25-28) 29 (28-30) 29 (29-30)

Domain scores [20]
Verbal Attention —0.26 (-0.89 to 0.36) -0.58 (=1.2t0 0.57) 0.06 (—0.56 to 0.99)
Attention —092 (-1.32 to 0.34) —0.5 (-1.28 to 0.09) —0.04 (-0.9 to 0.34)
Verbal Learning Memory* —2.59 (=298 to 1.73) —1.71 (=218 to 1.08) —0.01 (-0.48 to 0.57)
Visual Learning Memory* —1.18 (=2.01 to 0.61) —0.31 (=152 to 047) 0.07 (042 to 0.71)
Verbal Language Production* -068 (-1.2t0 0.11) -0.19 (=0.7 to 0.1) 038 (0.1 to 1.02)
Executive Motor Ability* —1.19 (=267 t0 0.32) 0.55 (-0.65 to 0.72) 097 (0.13 to 1.92)

AD Alzheimer’s disease, MClstable patients with stable or improving cognition over 30 months, HC healthy controls, MMSE Mini Mental State Examination

*p < 0.05 by Kruskal-Wallis test

Neuropsychological assessments

A comparison of the cognitive dimensions scores is
shown in Fig. 1. As expected, at baseline, patients with
AD performed worse than HC subjects and the group of
MClIstable individuals was in between.

Quantitative EEG

Frequency analysis

HC subjects and MClI-stable patients had significantly
lower theta power and higher median frequency than
patients with AD and tended to have higher alpha2
power. The results of regional analysis are shown in
Fig. 2. Theta power differentiated most significantly be-
tween AD and MClI-stable (Table 3), classified with a

sensitivity of 67 %, specificity of 85 %, positive predictive
value of 88 %, and negative predictive value of 60 %. A
higher relative theta power correlated with lower z-
score for verbal learning and memory, visual learning
and memory, executive motor ability, and verbal lan-
guage production (Fig. 3).

Connectivity analysis

After correction for multiple comparisons, no significant
differences were found in connectivity calculated without
splitting by microstates. Using connectivities from micro-
states, significant differences in theta-band connectivity
were detected (Fig. 4). The theta-band link between the left
centrolateral and parieto-occipital regions differentiated
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Fig. 1 Box plots of domain scores for patients with Alzheimer's disease (AD), patients with stable or improving cognition within 30 months (MClstable),
and healthy control (HC) subjects. Axes indicate the results of domain z-scores. p Values shown are the results of analysis of variance and t tests
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AD / MClstable / NC

AD / MClstable

B p<005
==

p<0.01

months, HC = healthy control subjects

Fig. 2 Results of regional power analysis. FP frontal parieto-occipital left, FM frontal midline, FL frontal lateral, CM central midline, CL central lateral,
TA temporal anterior, TP temporal posterior, PL parietal lateral, PM parietal midline, PO parieto-occipital, O occipital, L left, R right. Violet: p < 0.05;
red: p < 0.01 (corrected for multiple comparisons), AD = Alzheimer's disease, MClstable = patients with stable or improving cognition over 30

oL  OR

most significantly between all three groups and between
AD and MCI-stable with a sensitivity of 77 % and a specifi-
city of 78 %. Connectivities were higher in the AD group
than in the MClI-stable and HC groups. No significant
differences were found for the connectivities in the
alphal, alpha2, and beta bands. Only a few links in the
theta band correlated significantly with one of the six

domain scores after correction for multiple compari-
sons. For results, see Fig. 5.

Graph analysis

Among the results of the graph analysis, only radius of
theta connectomes differentiated the three groups. The ra-
dius was smaller in the AD group than in the MClI-stable
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Table 3 Global relative power and median frequency

AD MCl-stable HC p value
Delta (1-4 Hz) 0.27 (0.17-0.34) 0.28 (0.23-0.29) 027 (0.19-0.32) ns.
Theta (4-8 Hz) 0.24 (0.18-0.29) 0.18 (0.14-0.21) 0.15 (0.13-0.21) <0.01*
Alphat (8-10 Hz) 8(0.11-0.32) 0.17 (0.16-0.29) 021 (0.12-0.31) ns.
Alpha2 (10-13 Hz) 0.09 (0.07-0.13) 0.14 (0.12-0.15) 0.12 (0.09-0.15) n.s.
Beta (13-30 Hz) 6 (0.13-0.22) 0.2 (0.18-0.23) 0.21 (0.17-0.26) 0.03
Median frequency 835 (8.17-8.92) 8.99 (8.88-9.26) 8.96 (8.54-9.29) <0.01*

AD patients with Alzheimer’s disease, MCl-stable patients with stable or improving cognition over 30 months, HC healthy controls, n.s. not significant
Data presented are median (interquartile range)
*p < 0.05 by t test for AD vs. MCl-stable, representing statistically significant result

and HC groups. Kw showed a trend toward higher values
in the AD group than in the MClI-stable and HC groups
(Fig. 6).

Logistic regression model

A binary logistic regression with the most significant re-
sults of the six domain scores at baseline and the fre-
quency and connectivity analysis as well as with AD vs.
HC as outcomes was calculated. After stepwise backward
elimination, only the connectivity between left centrolateral
and parieto-occipital regions (theta band) and verbal learn-
ing and memory remained in the model and were used for
calculating a score. This score was used in a second logistic
regression model in which we compared AD with MCI-

stable. The ROC curve showed an area under the curve
(AUC) of 0.90 (maximal Youden index sensitivity 77 %,
specificity 100 %, positive predictive value 100 %, negative
predictive value 60 %) (Fig. 7). Relative theta power was
not part of the final model. Adding relative theta power as
a third variable increased the AUC only minutely.

Discussion

A combination of qEEG with neuropsychological mea-
sures allows differentiation of patients with early AD from
patients with aMCI who remain stable for 30 months with
high sensitivity, specificity, and positive predictive value.
For differentiation between beginning AD and other
patients with MCI, the msPLI seemed to be superior to

Visual Learning & Memory

Verbal Learning & Memory . p<005

- 00l

Verbal Language Production

Executive Motor Ability

Fig. 3 Significant correlations of regional relative theta power and domain scores. FP frontal parieto-occipital left, FM frontal midline, FL frontal
lateral, CM central midline, CL central lateral, TA temporal anterior, TP temporal posterior, PL parietal lateral, PM parietal midline, PO parieto-occipital,
O occipital, L left, R right. Violet. p < 0.05; red: p < 0.01 (corrected for multiple comparisons, all subjects included)
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Fig. 4 Links (microstate segmented phase lag index [msPLI]) in theta band with significant differences between groups. Plot: p < 0.05 (violet);
p <0.01 (red) (corrected for multiple comparisons). Box plot: axes indicate raw msPLI values. FP frontal parieto-occipital left, FM frontal midline,
FL frontal lateral, CM central midline, CL central lateral, TA temporal anterior, TP temporal posterior, PL parietal lateral, PM parietal midline, PO
parieto-occipital, O occipital, L left, R right, CLL_POL link centrolateral to parieto-occipital left, CLL-OL link centrolateral to occipital left, PLL-POL
link parietolateral to parieto-occipital left, AD Alzheimer’s disease, MCistable patients with stable or improving cognition within 30 months, HC
healthy control subjects

the PLI. This advantage is most probably explained by an
increased signal-to-noise ratio. Microstates are believed to
represent activity of different subnetworks of a global
network [44, 45]. Using microstate segmentation, EEG pe-
riods reflecting the most active subnetworks were select-
ively included in the analysis, resulting in a more precise
estimation of the averaged global network.

Increased msPLI connectivity between the left centro-
lateral and parieto-occipital regions in the theta band
separated AD from MCI-stable with over 90 % positive
predictive value and 54 % negative predictive value.
Graph analysis in the theta band showed reduced radius
and higher Kw in the AD group compared with the
MCI-stable group and even more so compared with the
HC group. The combined results of connectivity and
graph analysis indicated a shift toward a more hierarch-
ical network with a concentration in a few highly con-
nected nodes, so-called hubs. Hubs are believed to
decline disproportionately with disease progression in
later stages of AD [46]. In contrast, the present study

shows a relative increase of the degree of hubs in very
early AD, possibly pointing toward compensatory func-
tional overload leading to faster degradation later. A
similar concept was also discussed in a recent article by
Morabito et al. [47].

When theta connectivity and verbal learning and
memory are combined in a model for predicting the
cognitive deterioration of patients with aMCI or early
AD, a clear separation between AD and MClI-stable is
possible very early after the beginning of cognitive de-
cline. It is not surprising that the domain score for ver-
bal learning and memory remained in the model, as this
cognitive domain is most affected in patients with AD
[16]; however, the results of relative power analysis, well
known to differentiate between groups [12, 30, 48], did
not remain in the final model after stepwise backward
elimination, as their contribution to the prediction of
outcome was included mainly in the two other variables.
In contrast, the result for theta connectivity seems to
add independent information regarding the 30-month

4-8Hz
Executive Visual Ability

4-8Hz
Verbal Language & Production
Fig. 5 Significant correlations of single links and domain scores. Violet: p < 0.05; red: p < 0.01 (corrected for multiple comparisons). FP frontal
parieto-occipital left, FM frontal midline, FL frontal lateral, CM central midline, CL central lateral, TA temporal anterior, TP temporal posterior, PL
parietal lateral, PM parietal midline, PO parieto-occipital, O occipital, L left, R right

W <005
[— R

4-8Hz
Visual Attention
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prognosis. The localization of the most affected connec-
tions in the parieto-occipital region may be explained by
the localization of hubs in the parietal regions, which are
known to be particularly affected in AD [46].

Limitations of the study include the small sample size
and the low number of patients with mildly reduced yet
stable cognition.

Conclusions

Integration of connectivity results and verbal learning
and memory tests in a statistical model may allow for
definition of cohorts of patients with MCI with an en-
hanced risk for AD, a stage at which clinical trials are
most promising. The high positive predictive value of
this model allows the definition of a patient cohort at
great risk of fast cognitive deterioration at a time when
they are only mildly affected.

Additional file

Additional file 1: Figure S1. Mapping of the 22 regions: 170 of 257
electrodes (HydroCel GSN; Electrical Geodesic Inc. [EGI]) were used to
define the 22 regions. (TIF 2594 kb)
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