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Abstract

Introduction: The definition of “objective cognitive impairment” in current criteria for mild cognitive impairment
(MCI) varies considerably between research groups and clinics. This study aims to compare different methods of
defining memory impairment to improve prediction models for the development of Alzheimer’s disease (AD) from
baseline to 24 months.

Methods: The sensitivity and specificity of six methods of defining episodic memory impairment (< −1, −1.5 or −2
standard deviations [SD] on one or two memory tests) were compared in 494 non-demented seniors from the
Alzheimer’s Disease Neuroimaging Initiative using the area under the curve (AUC) for receiver operating characteristic
analysis. The added value of non-memory measures (language and executive function) and biomarkers (hippocampal
and white-matter hyperintensity volume, brain parenchymal fraction [BPF], and APOEε4 status) was investigated using
logistic regression.

Results: Baseline scores < −1 SD on two memory tests predicted AD with 75.91 % accuracy (AUC = 0.80). Only APOE ε4
status further improved prediction (B = 1.10, SE = 0.45, p = .016). A < −1.5 SD cut-off on one test had 66.60 % accuracy
(AUC = 0.77). Prediction was further improved using Trails B/A ratio (B = 0.27, SE = 0.13, p = .033), BPF (B = −15.97,
SE = 7.58, p = .035), and APOEε4 status (B = 1.08, SE = 0.45, p = .017). A cut-off of < −2 SD on one memory test
(AUC = 0.77, SE = 0.03, 95 % CI 0.72-0.82) had 76.52 % accuracy in predicting AD. Trails B/A ratio (B = 0.31, SE = 0.13,
p = .017) and APOE ε4 status (B = 1.07, SE = 0.46, p = .019) improved predictive accuracy.

Conclusions: Episodic memory impairment in MCI should be defined as scores < −1 SD below normative references
on at least two measures. Clinicians or researchers who administer a single test should opt for a more stringent
cut-off and collect and analyze whole-brain volume. When feasible, ascertaining APOE ε4 status can further
improve prediction.

Introduction
Patients with mild cognitive impairment due to
Alzheimer’s disease (MCI) [1] - also known as mild
neurocognitive disorder [2] - are considered to be at
an early stage of dementia. There are now multiple
published criteria sets for identifying these individuals

at high risk of progression [1–3], all of which include
at least: 1) subjective concern; 2) an objective cogni-
tive impairment on formal neuropsychological testing
in one or more cognitive domains, typically including
memory; 3) preservation of functional independence;
and 4) no dementia.
Although these criteria have been a major step forward

in the conceptualization of MCI, they leave room for
considerable ambiguity, particularly regarding the oper-
ational definition of objective cognitive impairment. A
number of cognitive tests have been proposed that may
be useful for identifying objective episodic memory
impairment in MCI, specifically measures that assess
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both immediate and delayed recall, such as word-list
learning or paragraph recall [1, 4]. These suggestions are
very useful in providing common ground for clinicians
and researchers working with MCI cohorts. However,
three critical issues remain.
First, it is unclear which cutoff scores should be used

to define impairment. Studies examining MCI patients
typically report test performance in the range of one to
two standard deviations (SD) below age-adjusted and/or
education-adjusted norms. However, using a −1 SD cut-
off may be overly inclusive, as cognitive performance in
healthy older adults often falls below this limit [5] for a
variety of non-pathological reasons (e.g., fatigue, anx-
iety). Conversely, using a −2 SD cutoff may underesti-
mate the number of individuals who are in the earliest
phases of the disease process.
Second, it is unclear how many measures should be

used in assessing cognition. In memory clinics, diag-
nosis is typically based on results of a battery of
neuropsychological tests including more than one test
probing the same cognitive domain. Longitudinal evi-
dence confirms that using at least two tests to estab-
lish impairment greatly increases diagnostic accuracy
[6]. In research settings, however, MCI diagnosis is
often based on a single test. This is potentially prob-
lematic, as research has shown that more than one
quarter of healthy elderly adults who are tested using
a single memory measure obtain scores in impaired
ranges (< −1.5 SD), while this number is reduced to
14.1 % when a second test is added [5]. As men-
tioned above, impaired performance on a single test
in otherwise healthy normal adults may be explained
by numerous factors such as anxiety, depression, fa-
tigue, or inattention. Thus, this single-test procedure
may not be adequate for identifying individuals who
are at highest risk of dementia.
Third, it is unclear which cognitive domain(s) should

be assessed, if any, in addition to episodic memory. Ori-
ginally, Petersen’s [3] diagnostic criteria recommended
that a distinction be made between single-domain and
multiple-domain MCI, with the assumption that this
classification would be of heuristic value in determining
the probable etiology of the disorder. This recommenda-
tion is echoed in Albert and colleagues’ [1] revised
criteria as well. Indeed, some longitudinal evidence sug-
gests that these subtypes evolve differently over time [7],
suggesting distinct etiological processes. However, the
most recent DSM-5 criteria for mild neurocognitive dis-
order [2] do not discriminate between single-domain
and multiple-domain cognitive impairment. Many re-
search studies also do not make this distinction.
In addition, recent guidelines for diagnosing MCI have

emphasized the importance of using genetic and imaging
biomarkers in addition to neuropsychological testing.

The presence of one or two copies of the epsilon 4
allele (ε4) in the apolipoprotein E (APOE) gene is one
commonly accepted genetic characteristic believed to
increase the risk of development of dementia due to
Alzheimer’s disease (AD) [8]. Additionally, metrics
obtained from structural magnetic resonance imaging
(MRI) that assess neuronal injury, such as total brain
atrophy [9, 10], ventricular enlargement [11–13], hip-
pocampal (HP) volume loss [14, 15], medial temporal
lobe atrophy [16], and possibly the presence of small
vessel disease [17], may be informative predictors for
the development of AD dementia.
Using data obtained from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI), the purpose of this
study is to determine whether prediction of development
of clinical dementia among non-demented participants
is improved by: 1) using cutoff scores of −1.0, −1.5
or −2.0 SD to define cognitive impairment; 2) assessing
episodic memory using one or two tests; 3) assessing
additional non-memory domains; and 4) accounting
for commonly used neuroimaging and genetic bio-
marker data. It was hypothesized that the identifica-
tion of individuals at risk for the development of
dementia would best be predicted by defining object-
ive impairment as performance < −1 SD on two epi-
sodic memory tests. Furthermore, it was anticipated
that the ability to predict the development of AD
would be further optimized by considering perform-
ance in at least one other, non-memory domain. Fi-
nally, it was expected that the inclusion of imaging
and genetic biomarkers known to be associated with
AD would further improve prediction.

Materials and methods
Data used in the preparation of this article were ob-
tained from the ADNI database (adni.loni.usc.edu) on 3
February 2015. The ADNI was launched in 2003 as a
public–private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial MRI, positron emission tom-
ography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to
measure the progression of MCI and early AD.

Participants
Of the 819 participants enrolled in ADNI-1, those who
had neuropsychological and genetic data available at
baseline and 24-month follow up were selected for this
study (n = 630). A 24-month follow-up period was se-
lected to maximize statistical power and to ensure that
harmonized imaging outcome measures were available
for the majority of the sample. Of these 819 participants,
those with a diagnosis of probable AD at baseline
were excluded (n = 136). Individuals with a history of
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neurological or psychiatric illness or substance abuse,
or without a study partner able to corroborate reports
of functioning, were not eligible for ADNI; complete
eligibility criteria for the ADNI study as a whole are
described at http://adni.loni.usc.edu/wp-content/uploads/
2010/09/ADNI_GeneralProceduresManual.pdf. The final
sample consisted of the remaining 494 non-demented
participants. According to the assigned diagnoses in
the ADNI database, 294 of these participants were
classified as having MCI, and the remaining 200 were
classified as cognitively normal. All participants (201
women, 293 men) were 55–89 years old at baseline
(mean = 75.3 ± 6.4) and had 6–20 years of education
(mean = 15.9 ± 2.8).

Measures
Cognitive measures
A neuropsychological battery was administered to all
participants upon admission to ADNI, and raw scores
were downloaded from the ADNI Neuropsychological
Battery table. Of interest in the present study are tests
that measure general cognition (Mini-mental state exam
(MMSE)), episodic memory (Logical memory story A
delayed recall (LM-II), Rey auditory verbal learning test
(AVLT)), language (Category fluency, Boston naming test
(BNT)) and executive functioning (Trails A and B). A
derived Trails B/Trails A ratio was calculated to obtain a
relatively independent measure of executive control, as
has been suggested by other authors [18]. Raw scores
were transformed to standardized scores (z scores or
scaled scores (SS)) based on published age-adjusted
norms for the AVLT [19], Category fluency [20], BNT
[21] and Trails A & B [18]. Education-adjusted z scores
for LM-II story A were obtained using a web-based cal-
culator [22] based on data from a large published report
[23]. Higher z scores or SS represent better performance,
with the exception of Trails A and B in which higher
scores represent poorer performance (i.e., longer time to
complete the test).

Outcome measure
The presence or absence of clinically probable AD was
assessed at 24 months and defined as: 1) MMSE <26;
2) Clinical Dementia Rating (CDR) ≥0.5; and 3) posi-
tive NINCDS/ADRDA criteria for probable AD [24].

Imaging and genetic biomarkers
Neuroimaging-based biomarkers were obtained from
downloaded ADNI database tables (hierarchical par-
cellation of MRI using multi-atlas labeling methods
(UPENN); white matter hyperintensity volumes (UCD)).
Whole brain atrophy was assessed using the brain paren-
chymal fraction (BPF), which was calculated as a ratio of
total parenchymal volume (gray matter (GM) and white

matter (WM)) to total cranial vault (TCV) volume as
follows:

BPF ¼ GM þ WMð Þ=TCV:

To assess medial and focal atrophy, head-size-corrected
ventricular cerebrospinal fluid (vCSF) and HP volume
were automatically segmented using previously published
and validated methods [11, 14]. Small vessel disease
burden was assessed using whole brain white matter
hyperintensity (WMH) volumes [25]. Full segmentation
methodological details can be obtained from ADNI (see
ADNI1_Methods_UCD_WMH_Volumes_Methods.pdf
and ADNI_Total_Cranial_Vault_Segmentation_Method_
20121108.pdf). In addition, the presence of one or two
copies of the APOE ε4 allele was determined for all partic-
ipants as per standard ADNI protocol.

Statistical analyses
Six binary variables were created based on scores < −1.0,
−1.5 or −2.0 SD on one (LM-II or AVLT delayed recall)
or two (LM-II and AVLT delayed recall) memory tests,
and participants were classified as above or below each
cutoff. The predictive accuracy of these six cutoffs was
tested using the area under the curve (AUC) for receiver
operating characteristic (ROC) analysis. The minimum
value for an AUC to be considered clinically significant
was >0.75 [26]. Hanley and McNeil’s [27] method was
used to test for statistical differences between AUC
values. Cutoff scores with AUC values >0.75 were then
entered into separate binary logistic regression analyses
with hierarchical designs, with probable AD at 24 months
as the binary (yes/no) dependent variable. In all models,
age, sex, education, MMSE and the selected cutoff score
were entered in a first block. A second block included
performance on non-memory cognitive measures, spe-
cifically standardized Category fluency, BNT, and Trails
B/A- derived scores. A third block assessed the potential
added predictive value of biomarkers that are known to
be associated with probable AD: BPF, vCSF volume, total
HP volume, WMH volume, and APOE ε4 status. We
verified that all variables met multicollinearity and lin-
earity assumptions.
Last, in order see whether participants whose perform-

ance fell above and below the best selected cutoff scores
were phenotypically different, multivariate analysis of co-
variance (MANCOVA) was used to compare cognitive
and neuroimaging characteristics between these two
groups, with age, sex and education entered as covari-
ates. Highly skewed variables exhibiting non-normal
distributions were log-transformed (WMH, vCSF) or
inverse-transformed (Trails B/A ratio) prior to ana-
lysis. Category fluency scores did not meet the equal
variance assumption and were therefore log-transformed.
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Dichotomous variables were compared using the chi-
square test.

Results
At 24 months post-baseline, 112 participants (22.7 %)
had received a diagnosis of AD. Sensitivity, specificity
and accuracy of the different cutoff scores are illustrated
in Fig. 1. On ROC analysis there were three cutoffs with
AUC values >0.75. A cutoff of < −1 SD on two memory
tests (AUC = 0.80, standard error (SE) = 0.02, 95 % CI
0.75, 0.84) had 75.91 % accuracy in correctly identifying
patients who would later develop probable AD (97 true
positives) and those who would not (278 true negatives).
A cutoff of < −1.5 SD on one memory test (AUC = 0.77,
SE = 0.02, 95 % CI 0.73, 0.81) had 66.60 % accuracy (108
true positives, 221 true negatives). A cutoff of < −2 SD
on one memory test (AUC = 0.77, SE = 0.03, 95 % CI
0.72, 0.82) had 76.52 % accuracy (87 true positives, 291
true negatives). The AUC values for the three cutoff
scores were not statistically different (all comparisons
p >0.05, one-tailed).
Seven participants were excluded from subsequent

analyses because they had missing data (two had
missing WMH data, two had missing Trails B data,
one had missing BNT data, and two had missing
Trails B and BNT data). First, on logistic regression
model to test the added value of non-memory mea-
sures and biomarkers, in addition to a cutoff of < −1
SD on two memory tests (B = 2.55, SE = 0.33, p <0.001),
MMSE was a significant predictor of future AD (B = −0.34,
SE = 0.08, p <0.001). Only the presence of two APOE

ε4-positive alleles (B = 1.10, SE = 0.45, p = 0.016) fur-
ther improved prediction. Altogether, this model
accounted for 83.4 % of the variance in risk of prob-
able AD (Table 1).
In the second model, in addition to a cutoff of < −1.5

SD on one memory test (B = 3.09, SE = 0.54, p <0.001),
significant predictors of probable AD were MMSE
(B = −0.32, SE = 0.07, p <0.001) and the Trails B/A
ratio in the non-memory cognitive measures block
(B = 0.27, SE = 0.13, p = 0.033). Biomarkers that sig-
nificantly improved prediction included BPF (B = −16.58,
SE = 7.64, p = 0.030) and presence of two APOE ε4-
positive alleles (B = 1.05, SE = 0.45, p = 0.021). This model
accounted for 82.3 % of the variance in risk of probable
AD (Table 2).
In the third model, in addition to a cutoff of < −2 SD

on one memory test (B = 2.04, SE = 0.28, p <0.001),
significant predictors of probable AD were MMSE
(B = −0.40, SE = 0.08, p <0.001) and the Trails B/A
ratio in the non-memory cognitive measures block
(B = 0.31, SE = 0.13, p = 0.017). Presence of two APOE ε4-
positive alleles (B = 1.07, SE = 0.46, p = 0.019) further
improved prediction. This model accounted for 81.9 % of
the variance in risk of probable AD (Table 3).
Participants who scored above (n = 291) and below

(n = 196) a cutoff score of < −1 SD on two memory
tests were compared using MANCOVA. Levene’s test
indicated that both groups had equal variances (all
variables p >0.05). As summarized in Table 4, it was
found that those with episodic memory scores below
the cutoff had poorer performance on Category fluency

Fig. 1 Sensitivity, specificity and accuracy of different cutoff scores in 494 non-demented participants at baseline. AD Alzheimer’s disease, LM-II Logical
memory story A delayed recall, AVLT Rey auditory verbal learning test
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Table 1 Variables predicting AD in addition to < −1 SD on two episodic memory tests

Block by block Final model

Predictor Nagelkerke’s R2 Odds ratio Confidence interval P Odds ratio Confidence interval P

Block 1: main predictors 0.422

Age 1.031 1.0, 1.1 0.146 1.006 1.0, 1.1 0.812

Education 0.987 0.9, 1.1 0.780 0.989 0.9, 1.1 0.830

Sex 1.131 0.7, 2.0 0.662 1.163 0.6, 2.1 0.626

Mini-mental state exam 0.712 0.6, 0.8 <0.001 0.763 0.6, 0.9 0.001

< −1 SD on two tests 12.845 6.7, 24.6 <0.001 8.082 3.9, 16.8 <0.001

Block 2: non-memory tests 0.439

Category fluency 0.853 0.7, 1.1 0.227 0.869 0.7, 1.1 0.314

Boston naming test 0.944 0.9, 1.0 0.167 0.948 0.9, 1.0 0.227

Trails B/A ratio 1.215 0.9, 1.6 0.130 1.142 0.9, 1.5 0.342

Block 3: biomarkers 0.490

Apolipoprotein E ε4 0.031

Apolipoprotein E ε4 (1 allele) 1.797 1.0, 3.3 0.055

Apolipoprotein E ε4 (2 alleles) 2.992 1.2, 7.3 0.016

Total hippocampal volume 0.081 0.0, 12.3 0.326

Brain parenchymal fraction 0.000 0.0, 27.9 0.123

White matter hyperintensity 1.085 1.0, 1.2 0.121

Ventricular cerebrospinal fluid 1.135 0.9, 1.4 0.240

Table 2 Variables predicting AD in addition to < −1.5 SD on one episodic memory test

Block by block Final model

Predictor Nagelkerke’s R2 Odds ratio Confidence interval P Odds ratio Confidence interval P

Block 1: main predictors .396

Age 1.000 1.0, 1.0 0.997 0.982 0.9, 1.0 0.454

Education 0.993 0.9, 1.1 0.870 0.994 0.9, 1.1 0.893

Sex 1.028 0.6, 1.7 0.917 1.025 0.6, 1.8 0.935

Mini-mental state exam 0.729 0.6, 0.8 <0.001 0.811 0.7, 1.0 0.010

< −1.5 SD on one test 22.061 7.7, 63.0 <0.001 12.390 4.2, 36.8 <0.001

Block 2: non-memory tests .425

Category fluency 0.834 0.6, 1.1 0.163 0.854 0.7, 1.1 0.252

Boston naming test 0.937 0.9, 1.0 0.109 0.937 0.9, 1.0 0.127

Trails B/A ratio 1.314 1.0, 1.7 0.033 1.216 0.9, 1.6 0.164

Block 3: biomarkers .482

Apolipoprotein E ε4 0.036

Apolipoprotein E ε4 (1 allele) 1.767 1.0, 3.2 0.055

Apolipoprotein E ε4 (2 alleles) 2.853 1.2, 7.0 0.021

Total hippocampal volume 0.015 0.0, 1.7 0.081

Brain parenchymal fraction 0.000 0.0, 0.2 0.030

White matter hyperintensity 1.025 0.9, 1.1 0.654

Ventricular cerebrospinal fluid 1.043 0.9, 1.3 0.687
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(F (4,482) = 14.23, p <0.001), BNT (F (4,482) = 25.60,
p <0.001), and Trails B/A ratio (F (4,482) = 7.18, p <0.001).
For brain morphology, patients below the cutoff had
smaller BPF (F (4,482) = 49.02, p <0.001), smaller left
(F (4,482) = 44.83, p <0.001) and right HP volumes
(F (4,482) = 41.03, p <0.001), more vCSF (F (4,482) =
28.99, p <0.001) and smaller WMH volume (F (4,482) =
8.69, p <0.001).
Participants who scored above (n = 223) and below

(n = 264) a cutoff score of < −1.5 SD on one memory
test were compared in a second MANCOVA. Two
variables violated Levene’s test (Trails B/A ratio and
left HP volume), likely due to the large sample sizes.
Inspection of the data showed that the variance be-
tween both groups was highly similar (in the above-
cutoff and below-cutoff groups, the respective vari-
ances were 0.010 and 0.016 for Trails B/A ratio, and
0.001 and 0.001 for left HP volume), and therefore
parametric analyses were retained. Results revealed
that individuals with episodic memory scores below
the cutoff had poorer performance on Category fluency
(F (4,482) = 14.24, p <0.001), BNT (F (4,482) = 24.00,
p <0.001), and Trails B/A ratio (F (4,482) = 3.81, p = 0.005).
They also had smaller BPF (F (4,482) = 45.00, p <0.001),
smaller left (F (4,482) = 27.38, p <0.001) and right HP vol-
ume (F (4,482) = 33.42, p <0.001), more vCSF (F (4,482) =
28.94, p <0.001) and larger WMH volume (F (4,482) = 8.90,
p <0.001).

Participants who scored above (n = 313) and below
(n = 174) a cutoff score of <2 SD on one memory test
were compared in a third MANCOVA. Trails B/A ra-
tio violated Levene’s test of equality of error vari-
ances, but again inspection of the data showed highly
similar variances between the above-cutoff (0.010) and
below-cutoff (0.016) groups. Parametric analyses were
thus retained. Individuals with episodic memory scores
below the cutoff had poorer performance on Category
fluency (F (4,482) = 11.61, p <0.001), BNT (F (4,482) =
19.23, p <0.001), and Trails B/A ratio (F (4,482) = 3.40,
p = 0.009). They also had smaller BPF (F (4,482) =
45.07, p <0.001), smaller left (F (4,482) = 31.79, p <0.001)
and right HP volume (F (4,482) = 35.16, p <0.001), more
vCSF (F (4,482) = 28.72, p <0.001) and larger WMH vol-
ume (F (4,482) = 9.33, p <0.001).

Discussion
This study aimed to assess how various cognitive,
neuroimaging and genetic measures collected at base-
line can be used to predict the development of prob-
able AD dementia at 24 months in a sample of
elderly participants obtained from ADNI. By assessing
a series of normative cutoff scores from cognitive test
results, the number of episodic memory and non-
memory tests used to assess cognitive performance,
and other commonly used neuroimaging and genetic
biomarkers, a set of recommended criteria was established

Table 3 Variables predicting AD in addition to < −2 SD on one episodic memory test

Block by block Final model

Predictor Nagelkerke’s R2 Odds ratio Confidence interval p Odds ratio Confidence interval p

Block 1: main predictors .380

Age 1.017 1.0, 1.1 0.403 0.992 0.9, 1.0 0.735

Education 0.981 0.9, 1.1 0.668 0.992 0.9, 1.1 0.877

Sex 0.843 0.5, 1.4 0.528 0.868 0.5, 1.6 0.639

Mini-mental state exam 0.672 0.6, 0.8 <0.001 0.756 0.6, 0.9 0.001

< −2 SD on one test 7.652 4.4, 13.3 <0.001 4.722 2.6, 8.7 <0.001

Block 2: non-memory tests .416

Category fluency 0.850 0.7, 1.1 0.211 0.859 0.7, 1.1 0.268

Boston naming test 0.923 0.9, 1.0 0.052 0.925 0.9, 1.0 0.071

Trails B/A ratio 1.367 1.1, 1.8 0.017 1.275 1.0, 1.7 0.089

Block 3: biomarkers .469

Apolipoprotein E ε4 0.035

Apolipoprotein E ε4 (1 allele) 1.748 1.0, 3.1 0.060

Apolipoprotein E ε4 (2 alleles) 2.910 1.2, 7.1 0.019

Total hippocampal volume 0.018 0.0, 2.7 0.115

Brain parenchymal fraction 0.000 0.0, 4.7 0.078

White matter hyperintensity 1.029 0.9, 1.1 0.609

Ventricular cerebrospinal fluid 1.098 0.9, 1.4 0.382
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which may be used in future investigations to improve
prediction for the development of probable AD in the
elderly.
Consistent with our initial hypotheses, performance

< −1 SD on two memory tests (LM-II and AVLT
delay) had the best trade-off between sensitivity and
specificity for predicting probable AD, followed by
performance < −1.5 SD and < −2 SD on one memory
test (LM-II). These results suggest that to maximize
diagnostic certainty, a minimum of two measures
should ideally be used to assess episodic memory per-
formance and impairment should be defined as scores
at least 1 SD below appropriate normative references

on both measures. Jak and colleagues [28] were among
the first to recommended establishing impairment on at
least two measures within a cognitive domain as the best
way to increase sensitivity while maintaining reliability,
and other authors have since corroborated the value of
this approach [6, 29–31]. Our results further indicate that
clinicians or researchers with limited resources who
administer only a single memory test should opt for a
much more stringent cutoff (i.e., −2 SD below norma-
tive reference data) to determine episodic memory
impairment with comparable accuracy to two mea-
sures. Applying a −1.5 SD cutoff to a single test
should be avoided when possible, as it remains highly

Table 4 Characteristics (mean (SD)) of participants above and below selected cutoffs

< −1.0 SD on two memory tests Below cutoff Above cutoff F P

(n = 196) (n = 291)

Category fluency, z score −0.40 (1.11) 0.38 (1.28) 14.23 <0.001

BNT, scaled score 10.09 (3.62) 12.55 (3.56) 25.60 <0.001

Trails B/A ratio, z score 0.01 (1.14) −0.45 (0.82) 7.18 <0.001

BPF 0.81 (0.03) 0.82 (0.03) 49.02 <0.001

Left HP volume, cm3 0.23 (0.03) 0.27 (0.03) 44.83 <0.001

Right HP volume, cm3 0.25 (0.03) 0.28 (0.03) 41.03 <0.001

v CSF, cm3 3.52 (1.59) 3.19 (1.49) 28.99 <0.001

WMH, cm3 0.63 (1.34) 0.87 (2.70) 8.69 <0.0001

< −1.5 SD on one memory test Below cutoff Above cutoff F P

(n = 264) (n = 223)

Category fluency, z score −0.31 (1.11) 0.51 (1.31) 14.23 <0.001

BNT, scaled score 10.47 (3.71) 12.85 (3.45) 24.00 <0.001

Trails B/A ratio, z score −0.11 (1.08) −0.45 (0.83) 3.81 0.005

BPF 0.81 (0.03) 0.82 (0.02) 44.99 <0.001

Left HPV, cm3 0.24 (0.03) 0.27 (0.03) 27.38 <0.001

Right HPV (cm3) 0.25 (0.03) 0.29 (0.03) 33.42 <0.001

v CSF, cm3 3.53 (1.63) 3.07 (1.40) 28.94 <0.001

WMH, cm3 0.82 (2.31) 0.72 (2.19) 8.89 <0.001

< −2.0 SD on one memory test Below cutoff Above cutoff F P

(n = 174) (n = 313)

Category fluency, z score −0.42 (1.05) 0.33 (1.31) 11.61 <0.001

BNT, scaled score 10.19 (3.71) 12.32 (3.60) 19.22 <0.001

Trails B/A ratio, z score −0.08 (1.12) −0.37 (0.89) 3.40 0.009

BPF 0.81 (0.03) 0.82 (0.03) 45.07 <0.001

Left HPV, cm3 0.23 (0.03) 0.26 (0.03) 31.79 <0.001

Right HPV, cm3 0.25 (0.03) 0.28 (0.03) 35.16 <0.001

v CSF, cm3 3.52 (1.59) 3.22 (1.50) 28.72 <0.001

WMH, cm3 0.85 (2.64) 0.73 (2.01) 9.33 <0.001

For z scores, the mean is 0 and the standard deviation is 1. For scaled scores, the mean is 10 and the standard deviation is 3. Data are missing for seven participants.
BNT Boston naming test, BPF brain parenchymal fraction, HP hippocampal volume, vCSF ventricular cerebrospinal fluid,WMH white matter hyperintensities
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prone to false positive diagnostic errors (c.f. [30, 31])
which reached nearly one-third of the sample (32.6 %) in
the present study.
The only variable that improved prediction above and

beyond episodic memory testing using two measures
was APOE status, consistent with previous research rec-
ognizing APOE ε4-positive status as a major risk factor
for subsequent AD (see [32] for a review). When only
one test was used to assess episodic memory, prediction
of dementia was improved using a non-memory test,
specifically the ratio of Trails B/A, considered to be a
measure of executive control [18]. Predictive accuracy
was further increased using APOE ε4 status and whole-
brain atrophy (as indexed by brain parenchymal
fraction). These interesting results suggest that thorough
episodic memory testing using several measures is suc-
cessful in predicting subsequent dementia with at least
as much accuracy as using one memory test plus add-
itional memory tests and biomarkers. It has previously
been reported that the use of sensitive neuropsycho-
logical instruments are at least as effective in predicting
AD as imaging biomarkers [33–36]. Other authors have
also reported that the use of a single memory test is not
optimal in predicting AD, and that adding information
on brain atrophy and/or cerebrospinal fluid biomarkers
is necessary to improve predictive accuracy in regression
models [35, 37, 38]. We corroborate these findings, and
extend them to specify that “impairment” should be de-
fined as performance more than 1 SD below normative
data.
Certain limitations must be considered in interpreting

these data. First, the ADNI study specifically set out to
recruit patients who represented relatively pure cases of
MCI and dementia of the Alzheimer’s type, who are ap-
propriate for clinical trials; this is evident in patients’
relatively low burden of WMH [39] (thought to reflect
underlying vascular disease [40]). As such, the sample
primarily includes individuals whose suspected etiology
is AD, and whose primary (and often only) cognitive def-
icit involves memory. While ADNI provides a large and
rich database to study individuals who are at high risk of
developing AD, findings generated from these data have
limited generalizability to real-world patient populations
[39]. Other, more inclusive cohorts of individuals with
MCI are needed. In addition, the standardized scores used
in this study were derived from published age-adjusted
norms for each test. It is possible that the use of local
norms may produce different results (e.g., see [41]).
We have shown that diagnostic accuracy can be im-

proved by approximately 10 % by administering an extra
memory test to evaluate memory capacities in persons
suspected of MCI. This improved accuracy is mostly the
result of reducing false positive results, which other
authors have shown are inflated when using a single

test [31]. Although adding a test to the diagnostic
battery resulted in some patients being missed at
baseline, who went on to develop AD at 24 months,
our findings suggest that this trade-off is altogether
fair. An incorrect diagnosis of AD has serious impli-
cations for research and clinical practice. First, studies
that employ only LM-II to test for memory impair-
ment in participants are effectively pooling true MCI
cases with those who are likely cognitively normal, thus
potentially weakening the robustness of the research find-
ings and limiting their generalizability. Clinically, the
consequences of an incorrect diagnosis include needless
testing, pharmacotherapy, and anxiety incurred by the
patient and family. Also, inaccurate diagnosis implies that
alternative (potentially reversible) causes of cognitive
changes are not being investigated.
In closing, we must acknowledge that expanding cog-

nitive batteries to include an extra memory test has
some disadvantages. Namely, more clinician time and
additional test materials are required, and research pro-
tocols will be slightly lengthened. However, we believe
that these caveats are greatly outweighed by the benefit
of improved accuracy, and that an additional memory
measure should be added to clinical and research cogni-
tive batteries to the extent that it is feasible.

Conclusions
The findings of our study in the ADNI cohort suggest
that neuropsychological testing can predict decline with
high accuracy regardless of biomarkers, when memory is
assessed using delayed recall of a short story and a word
list, using a cutoff of < −1 SD below normative references.
This criterion provides the optimal trade-off between spe-
cificity and sensitivity for predicting conversion to AD at
two years. The increased accuracy that this criterion pro-
vides decreases the probability of misdiagnosing a patient
and avoids needless testing, pharmacotherapy and anxiety,
and provides a high-accuracy, low-cost strategy for identi-
fying individuals at highest risk of dementia. In situations
where it is only feasible to administer a single memory
test, collecting information on non-memory performance
and imaging or genetic biomarkers is necessary to
optimize diagnostic accuracy.

Abbreviations
AD: Alzheimer’s disease; ADNI: Alzheimer’s Disease Neuroimaging Initiative;
APOE: apolipoprotein E; AUC: area under the curve; AVLT: Rey auditory verbal
learning test; BNT: Boston naming test; BPF: brain parenchymal fraction;
CDR: Clinical Dementia Rating; FDA: Food and Drug Administration;
GM: gray matter; HP: hippocampal; LM-II: logical memory story a delayed
recall; MANCOVA: multivariate analysis of covariance; MCI: mild cognitive
impairment due to Alzheimer’s disease; MMSE: Mini-mental state exam;
MRI: magnetic resonance imaging; NIA: National Institute on Aging;
NIBIB: National Institute of Biomedical Imaging and Bioengineering; NINCDS/
ADRDA: National Institute of Neurological and Communicative Disorders and
Stroke and the Alzheimer's Disease and Related Disorders Association;
PET: positron emission tomography; ROC: receiver operating characteristic;

Callahan et al. Alzheimer's Research & Therapy  (2015) 7:68 Page 8 of 10



SD: standard deviation; SS: scaled scores; TCV: total cranial vault;
vCSF: ventricular cerebrospinal fluid; WM: white matter; WMH: white
matter hyperintensity.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
BLC: study conception and design, analysis and interpretation of data,
manuscript drafting, and approval for publication; JR: contribution to conception
and design of study, interpretation of data, critical revision of manuscript for
important intellectual content, and approval for publication; CB: analysis and
interpretation of data, critical revision of manuscript for important intellectual
content, and approval for publication; SD: contribution to interpretation of data,
critical revision of manuscript for important intellectual content, and approval for
publication; SEB: contribution to interpretation of data, critical revision of
manuscript for important intellectual content, and approval for publication. All
authors agree to be accountable for all aspects of the work.

Acknowledgements
We gratefully acknowledge financial support from the Canadian Institutes of
Health Research (#125740 & #13129), the Linda C. Campbell Foundation, and
Heart & Stroke Foundation Canadian Partnership for Stroke Recovery. BLC is the
recipient of a L’Oréal Canada for Women in Science Research Excellence
Fellowship, JR receives partial funding from the Canadian Vascular Network, and
SD is a Research Scholar from the Fonds de recherche du Québec – Santé.
Additionally, we graciously thank the Sunnybrook Health Sciences Centre,
Hurvitz Brain Sciences Program at the Sunnybrook Research Institute, Brill Chair
Neurology, and the University of Toronto for financial and salary support (SEB).
We are grateful to Dr. Larry Leach who provided valuable suggestions regarding
methodology. Data collection and sharing for this project was funded by the
Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health
Grant U01 AG024904) and DOD ADNI (Department of Defense award number
W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the
National Institute of Biomedical Imaging and Bioengineering, and through
generous contributions from the following: AbbVie, Alzheimer’s Association;
Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen;
Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals,
Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its
affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen
Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson
Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck &
Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack
Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging;
Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The
Canadian Institutes of Health Research is providing funds to support ADNI
clinical sites in Canada. Private sector contributions are facilitated by the
Foundation for the National Institutes of Health (www.fnih.org). The grantee
organization is the Northern California Institute for Research and Education,
and the study is coordinated by the Alzheimer's Disease Cooperative Study at
the University of California, San Diego. ADNI data are disseminated by the
Laboratory for Neuro Imaging at the University of Southern California. Data
used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design and implementation of
ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://adni.loni.
usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Author details
1LC Campbell Cognitive Neurology Research Unit, Sunnybrook Health
Sciences Centre, 2075 Bayview Avenue, Rm A4 21, Toronto, Ontario M4N
3 M5, Canada. 2Heart & Stroke Foundation Canadian Partnership in Stroke
Recovery, Sunnybrook Health Sciences Centre, Toronto, Canada. 3Sunnybrook
Health Sciences Centre, Brain Sciences Research Program, Sunnybrook
Research Institute, Toronto, Canada. 4Université Laval, Faculté de médecine
(Radiologie), Québec, Canada. 5Centre de recherche de l’Institut universitaire
en santé mentale de Québec, Québec, Canada. 6Department of Medicine
(Neurology), University of Toronto, Institute of Medical Science, Québec,
Canada.

Received: 13 July 2015 Accepted: 30 September 2015

References
1. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC,

et al. The diagnosis of mild cognitive impairment due to Alzheimer’s
disease: recommendations from the National Institute on Aging-
Alzheimer's Association workgroups on diagnostic guidelines for
Alzheimer's disease. Alzheimers Dement. 2011;7:270–9.

2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental
Disorders. 5th ed. Arlington, VA: American Psychiatric Publishing; 2013.

3. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med.
2004;256:183–94.

4. Belleville S, Fouquet C, Duchesne S, Collins DL, Hudon C. Detecting early
preclinical Alzheimer’s disease via cognition, neuropsychiatry, and
neuroimaging: qualitative review and recommendations for testing.
J Alzheimer’s Dis. 2014;42:S375–82.

5. Brooks BL, Iverson GL, Holdnack JA, Feldman HH. Potential for misclassification
of mild cognitive impairment : A study of memory scores on the
Wechsler Memory Scale-III in healthy older adults. J Int Neuropsychol
Soc. 2008;14:463–78.

6. Loewenstein DA, Acevedo A, Potter E, Schinka JA, Raj A, Greig MT, et al.
Severity of medial temporal atrophy and amnestic mild cognitive
impairment: selecting type and number of memory tests. Am J Geriatr
Psychiatry. 2009;17:1050–8.

7. Summers MJ, Saunders NLJ. Neuropsychological measures predict decline
to Alzheimer’s dementia from mild cognitive impairment. Neuropsychology.
2012;26:498–508.

8. Bertram L, Lill CM, Tanzi RE. The genetics of Alzheimer disease: back to the
future. Neuron. 2010;68:270–81.

9. Barnes J, Carmichael OT, Leung KK, Schwarz C, Ridgway GR, Bartlett JW,
et al. Vascular and Alzheimer’s disease markers independently predict brain
atrophy rate in Alzheimer's Disease Neuroimaging Initiative controls.
Neurobiol Aging. 2013;34:1996–2002.

10. Swartz RH, Stuss DT, Gao F, Black SE. Independent cognitive effects of
atrophy and diffuse subcortical and thalamico-cortical cerebrovascular
disease in dementia. Stroke. 2008;39:822–30.

11. Nestor SM, Rupsingh R, Borrie M, Smith M, Accomazzi V, Wells JL, et al.
Ventricular enlargement as a possible measure of Alzheimer’s disease
progression validated using the Alzheimer's disease neuroimaging initiative
database. Brain. 2008;131:2443–54.

12. Madsen SK, Gutman BA, Joshi SH, Toga AW, Jack CR, Weiner MW, et al.
Mapping Dynamic Changes in Ventricular Volume onto Baseline Cortical
Surfaces in Normal Aging, MCI, and Alzheimer’s Disease. Multimodal Brain
Image Anal. 2013;8159:84–94. Third Int Work MBIA 2013, held in conjunction
with MICCAI 2013, Nagoya, Japan, Sept 22, 2013 Proc/Li Shen, Tianming Liu,
Pew-Thian Yap, Heng Huang, Dinggang Shen, Carl-Fre.

13. Chou YY, Lepore N, Saharan P, Madsen SK, Hua X, Jack CR, et al. Ventricular
maps in 804 ADNI subjects: correlations with CSF biomarkers and clinical
decline. Neurobiol Aging. 2010;31:1386–400.

14. Nestor SM, Gibson E, Gao FQ, Kiss A, Black SE. A direct morphometric
comparison of five labeling protocols for multi-atlas driven automatic
segmentation of the hippocampus in Alzheimer’s disease. Neuroimage.
2012;66C:50–70.

15. Leung KK, Bartlett JW, Barnes J, Manning EN, Ourselin S, Fox NC. Cerebral
atrophy in mild cognitive impairment and Alzheimer disease: rates and
acceleration. Neurology. 2013;80:648–54.

16. Duchesne S, Valdivia F, Mouiha A, Robitaille N. Single time point high-
dimensional morphometry in Alzheimer’s disease: group statistics on
longitudinally acquired data. Neurobiol Aging. 2015;36:S11–22.

17. Carmichael O, Schwarz C, Drucker D, Fletcher E, Harvey D, Beckett L, et al.
Longitudinal changes in white matter disease and cognition in the first
year of the Alzheimer disease neuroimaging initiative. Arch Neurol.
2010;67:1370–8.

18. Drane D, Yuspeh R. Demographic characteristics and normative
observations for derived-Trail Making Test indices. Neuropsychiatry
Neuropsychol Behav Neurol. 2002;15:39–43.

19. Ivnik RJ, Malec JF, Tangalos EG, Petersen RC, Kokmen E, Kurland LT. The
Auditory-Verbal Learning Test (AVLT): Norms for ages 55 years and older.
Psychol Assess. 1990;2:304–12.

Callahan et al. Alzheimer's Research & Therapy  (2015) 7:68 Page 9 of 10

http://www.fnih.org
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


20. Tombaugh T. Normative Data Stratified by Age and Education for Two
Measures of Verbal Fluency FAS and Animal Naming. Arch Clin Neuropsychol.
1999;14:167–77.

21. Ivnik RJ, Malec JF, Smith GE, Tangalos EG, Petersen RC. Neuropsychological
tests’ norms above age 55: COWAT, BNT, MAE token, WRAT-R reading,
AMNART, STROOP, TMT, and JLO. Clin Neuropsychol. 1996;10:262–78.

22. Shirk SD, Mitchell MB, Shaughnessy LW, Sherman JC, Locascio JJ, Weintraub S,
et al. A web-based normative calculator for the uniform data set (UDS)
neuropsychological test battery. Alzheimers Res Ther. 2011;3:32.

23. Weintraub S, Salmon D, Mercaldo N, Ferris S, Graff-Radford NR, Chui H,
et al. The Alzheimer’s Disease Centers’ Uniform Data Set (UDS): the
neuropsychologic test battery. Alzheimer Dis Assoc Disord. 2009;23:91–101.

24. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM.
Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS- ADRDA
Work Group under the auspices of Department of Health and Human
Services Task Force on Alzheimer's disease. Neurology. 1984;34:939–44.

25. Schwarz C, Fletcher E, DeCarli C, Carmichael O. Fully-automated white
matter hyperintensity detection with anatomical prior knowledge and
without FLAIR. Inf Process Med Imaging. 2009;21:239–51.

26. Fan J, Upadhye S, Worster A. Understanding receiver operating
characteristic (ROC) curves. CJEM. 2006;8:19–20.

27. Hanley J, McNeil B. The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology. 1982;143:29–36.

28. Jak AJ, Bondi MW, Delano-Wood L, Wierenga C, Corey-Bloom J, Salmon DP,
et al. Quantification of five neuropsychological approaches to defining mild
cognitive impairment. Am J Geriatr Psychiatry. 2009;17:368–75.

29. Clark LR, Delano-Wood L, Libon DJ, McDonald CR, Nation DA, Bangen KJ, et
al. Are empirically-derived subtypes of mild cognitive impairment consistent
with conventional subtypes? J Int Neuropsychol Soc. 2013;19:635–45.

30. Bondi MW, Edmonds EC, Jak AJ, Clark LR, Delano-Wood L, McDonald CR, et
al. Neuropsychological criteria for mild cognitive impairment improves
diagnostic precision, biomarker associations, and progression rates.
J Alzheimers Dis. 2014;42:275–89.

31. Edmonds EC, Delano-Wood L, Clark LR, Jak AJ, Nation DA, McDonald CR, et al.
Susceptibility of the conventional criteria for mild cognitive impairment to
false-positive diagnostic errors. Alzheimers Dement. 2014;11:415–24.

32. Yu J-T, Tan L, Hardy J. Apolipoprotein E in Alzheimer’s disease: an update.
Annu Rev Neurosci. 2014;37:79–100.

33. Jedynak BM, Lang A, Liu B, Katz E, Zhang Y, Wyman BT, et al. A computational
neurodegenerative disease progression score: method and results with
the Alzheimer’s disease Neuroimaging Initiative cohort. Neuroimage.
2012;63:1478–86.

34. Gomar JJ, Bobes-Bascaran MT, Conejero-Goldberg C, Davies P, Goldberg TE.
Utility of combinations of biomarkers, cognitive markers, and risk factors to
predict conversion from mild cognitive impairment to Alzheimer disease in
patients in the Alzheimer’s disease neuroimaging initiative. Arch Gen
Psychiatry. 2011;68:961–9.

35. Heister D, Brewer JB, Magda S, Blennow K, McEvoy LK. Predicting MCI
outcome with clinically available MRI and CSF biomarkers. Neurology.
2011;77:1619–28.

36. Landau SM, Harvey D, Madison CM, Reiman EM, Foster NL, Aisen PS, et al.
Comparing predictors of conversion and decline in mild cognitive
impairment. Neurology. 2010;20:230–8.

37. Richard E, Schmand BA, Eikelenboom P, Van Gool WA: MRI and
cerebrospinal fluid biomarkers for predicting progression to Alzheimer’s
disease in patients with mild cognitive impairment: a diagnostic accuracy
study. BMJ Open. 2013;3. doi:10.1136/bmjopen-2012-002541

38. Stephan BCM, Tzourio C, Auriacombe S, Amieva H, Dufouil C, Alpérovitch A,
et al. Usefulness of data from magnetic resonance imaging to improve
prediction of dementia: population based cohort study. BMJ. 2015;350:1–10.

39. Ramirez J, McNeely AA, Scott CJM, Masellis M, Black SE. White matter
hyperintensity burden in elderly cohort studies. The Sunnybrook Dementia
Study, Alzheimer Disease Neuroimaging Initiative, and Three-City Study.
Alzheimers Dement. 2015. doi:10.1016/j.jalz.2015.06.1886.

40. Gorelick PB, Scuteri A, Black SE, DeCarli C, Greenberg SM, Iadecola C, et al.
Vascular contributions to cognitive impairment and dementia: a statement
for healthcare professionals from the american heart association/american
stroke association. Stroke. 2011;42:2672–713.

41. Arsenault-Lapierre G, Whitehead V, Belleville S, Massoud F, Bergman H,
Chertkow H. Mild cognitive impairment subcategories depend on the
source of norms. J Clin Exp Neuropsychol. 2011;33:596–603.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Callahan et al. Alzheimer's Research & Therapy  (2015) 7:68 Page 10 of 10

http://dx.doi.org/10.1136/bmjopen-2012-002541
http://dx.doi.org/10.1016/j.jalz.2015.06.1886

	Abstract
	Introduction
	Methods
	Results
	Conclusions

	Introduction
	Materials and methods
	Participants
	Measures
	Cognitive measures

	Outcome measure
	Imaging and genetic biomarkers
	Statistical analyses

	Results
	Discussion
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



