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B-site amyloid precursor protein-cleaving enzyme
1(BACET1) inhibitor treatment induces AB5-X
peptides through alternative amyloid precursor
protein cleavage
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Abstract

Introduction: The (3-secretase enzyme, [3-site amyloid precursor protein-cleaving enzyme 1 (BACE1), cleaves
amyloid precursor protein (APP) in the first step in 3-amyloid (AB) peptide production. Thus, BACET is a key target
for candidate disease-modifying treatment of Alzheimer’s disease. In a previous exploratory AR biomarker study, we
found that BACET inhibitor treatment resulted in decreased levels of AR1-34 together with increased AB5-40,
suggesting that these AB species may be novel pharmacodynamic biomarkers in clinical trials. We have now
examined whether the same holds true in humans.

Methods: In an investigator-blind, placebo-controlled and randomized study, healthy subjects (n =18) were
randomly assigned to receive a single dose of 30 mg of LY2811376 (n =6), 90 mg of LY2811376 (n =6), or placebo
(n =6). We used hybrid immunoaffinity-mass spectrometry (HI-MS) and enzyme-linked immunosorbent assays to
monitor a variety of AR peptides.

Results: Here, we demonstrate dose-dependent changes in cerebrospinal fluid (CSF) AB1-34, AB5-40 and AR35-X
after treatment with the BACET-inhibitor LY2811376. AB5-40 and AB5-X increased dose-dependently, as reflected by
two independent methods, while AB1-34 dose-dependently decreased.

Conclusion: Using HI-MS for the first time in a study where subjects have been treated with a BACE inhibitor, we
confirm that CSF AB1-34 may be useful in clinical trials on BACE1 inhibitors to monitor target engagement. Since it
is less hydrophobic than longer AB species, it is less susceptible to preanalytical confounding factors and may thus
be a more stable marker. By independent measurement techniques, we also show that BACE1 inhibition in humans
is associated with APP-processing into N-terminally truncated AR peptides via a BACET-independent pathway.

Trial registration: ClinicalTrials.gov NCT00838084. Registered: First received: January 23, 2009, Last updated: July 14,
2009, Last verified: July 2009.
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Introduction

Alzheimer’s disease (AD) is a slowly progressing brain dis-
ease manifesting several neuropathological characteristics
including accumulation of extracellular plaques, mainly
composed of amyloid-B (AP) peptides of various lengths
[1,2]. AP is derived via two-step enzymatic cleavage of
the transmembrane amyloid precursor protein (APP)
catalyzed by the [-site APP-cleaving enzyme 1 (BACEI,
[-secretase) [3] and y-secretase [4]. BACE1 cleaves APP at
the first amino acid of the AP domain and is crucial for
the production of AP peptides starting at position 1, in-
cluding AB1-42. Thus, BACEL is a key target for disease-
modifying AD treatments, since one focus for such
therapies is to minimize A production [5].

To evaluate the biochemical effects of novel BACE1
inhibitor candidates, biomarkers that reflect target engage-
ment are needed [6]. Analyzing a wide range of A species
in cerebrospinal fluid (CSF) gives useful information on
APP metabolism in humans [7,8]. In a recent preclinical
study, we showed that APP-transfected cells and dogs
treated with several different BACEI-inhibitors expressed
decreased levels of AB1-34 and concurrently increased the
levels of AB5-40 in cell media and CSF, suggesting that these
peptides may be pharmacodynamic markers of BACE1
inhibition in the central nervous system (CNS) [9]. Inhib-
ition of y-secretase, another AD drug candidate approach,
increased APP processing via the o-secretase-mediated
pathway [10-13] and decreased CSF levels of AP1-34 in
humans, even at dosages when AP1-42 was unchanged,
further supporting the use of novel CSF biomarkers to
monitor target engagement of anti-Ap drugs [14-16].

Here, for the first time with a peptidomics approach,
we have demonstrated changes in CSF levels of Ap1-34
and AB5-40 in humans treated with the BACELI inihibi-
tor LY2811376 (Eli Lilly and Company, Indianapolis, IN,
USA). The translation of these findings from preclinical
models to man indicates that CSF AP1-34 and APp5-40
have potential utility as markers of BACE1 inhibition in
clinical research. Furthermore, the results strongly suggest
that AP peptides starting at amino acid 5 are produced
through a non BACE1-dependent pathway in humans.

Methods

Subjects

The study, conducted at PAREXEL International Early
Phase Los Angeles, CA, USA, from February to June 2009,
was previously reported in detail [17]. In brief, the study
was a subject- and investigator-blind, placebo-controlled,
randomized, single-dose design. The California Institu-
tional Review Board approved the study. All subjects pro-
vided written informed consent before the beginning of
the study. The trial was conducted in compliance with the
Declaration of Helsinki and International Conference on
Harmonisation/Good Clinical Practice guidelines. Eighteen

Page 2 of 8

healthy subjects (21 to 49 years old, seventeen men and
one woman) participated in the study and were randomly
assigned to receive a single dose of 30 mg of LY2811376
(n =6), 90 mg of LY2811376 (n =6) or placebo (n =6). An
indwelling lumbar catheter was placed four hours before
administration of the study drug and subjects remained
supine for the duration of the CSF sample collection
period. CSF samples were collected prior to and at regular
intervals over 36 hours after drug administration and
analyzed by immunoprecipitation in combination with
mass spectrometry (MS). All CSF samples were collected
in polypropylene tubes and stored at -80°C.

Hybrid immunoaffinity-mass spectrometry
Immunoaffinity capture of AP species was combined with
matrix-assisted laser desorption/ionization time-of-flight
(MALDI-TOF) MS for analyzing a variety of Ap peptides
in a single analysis as described in detail elsewhere [18]. In
brief, the anti-Ap antibodies 6E10 and 4G8 were se-
parately coupled to magnetic beads. After washing of the
beads, the 4G8 and 6E10 coated beads were used in com-
bination for immunoprecipitation. After elution of the
immune-purified AB peptides, analyte detection was
performed on an UltraFlextreme MALDI TOF/TOF in-
strument (Bruker Daltonics, Bremen, Germany). For rela-
tive quantification of AP peptides, an in-house developed
MATLAB (Mathworks Inc. Natick, MA, USA) program
was used. For each peak the sum of the intensities for the
three strongest isotopic signals was calculated and normal-
ized against the sum for all the A peaks in the spectrum,
followed by averaging of results for separately determined
duplicate samples. In the 30-mg group, one sample, six
hours post treatment, was omitted from further analysis
due to blood in the CSF.

Cell experiments

SH-SY5Y cells [19] obtained from the European Collection
of Cell Cultures (ECACC 94030304), stably expressing
human APP, were maintained in Dulbecco’s modified
Eagle’s medium F-12 (Invitrogen, Carlsbad, CA, USA) sup-
plemented with 10% fetal bovine serum, L-glutamine and
antibiotics. SH-SY5Y cells were treated with the BACEI-
inhibitor B-secretase inhibitor IV (Calbiochem, Merck,
compound 3, Darmstadt, Germany) [20], LY2811376, or
dimethyl sulfoxide (DMSO) and incubated for 20 hours.

Enzyme-linked immunosorbent assay

For quantification of APs4 and APs, using ELISA,
microtiter plates were coated with 10 pg/mL 2G3 [21]
(anti-AP,_40; epitope including valine at position 40, Eli
Lilly & Company, Indianapolis, IN, USA) or 266 [22]
(anti-Ap; ; epitope 13-28, Eli Lilly & Company) over-
night at 4°C. After blocking plates in 2% bovine serum
albumin (BSA), dilutions of APs_4 standards (Anaspec)
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and CSF samples were incubated on plates in 1% BSA,
0.55 M guanidine-HCL, 5 mM Tris in phosphate buffered
saline (PBS) with complete ethylenediaminetetraacetic
acid (EDTA)-free protease inhibitor (Roche, Mannheim,
Germany) overnight at 4°C. After washing in PBS-0.05%
Tween 20, biotinylated 5H5 (anti-Afs_,; epitope including
arginine at position 5, Eli Lilly & Company) was used to
detect the truncated AP beginning at the arginine at
position 5. The 5H5 monoclonal antibody was developed
in mice following standard methods and the specificity for
the truncated APs, was investigated by acid urea gel (a
technique that separates A peptides by mass and charge)
and ELISA methods. Acid urea gel separation of synthetic
AP peptides followed by Western blotting with 5H5
revealed complete selectivity for the truncated APs.4 as
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compared to full-length AP; 4. Additionally, acid urea gel/
5H5 Western blotting analysis of human cortical tissue from
multiple Alzheimer’s subjects resulted in a single identifiable
band that co-migrated at the same position as the synthetic
APs_4 standard. Note, the migration of the AP peptides in
this gel system completely separates the APs4 from all
other A peptides (truncated or full-length). ELISA analyses
to investigate the 5H5 epitope selectivity demonstrated
a 20,000-fold selectivity for the APs, epitope versus the
full-length peptide (AB;.). Following additional washes in
PBS-0.05% Tween 20, plates were incubated with streptavi-
din-horseradish peroxidase (HRP) (Biosource, San Diego,
CA, USA) and subsequently, 3,3",5,5"-Tetramethylbenzzi-
dine (TMB) (Sigma, St. Louis, MO, USA) color develop-
ment was monitored at 650 nm in a spectrophotometer.
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Figure 1 Mass spectra displaying the effect of treatment on multiple AP species in cell media. (A) DMSO (vehicle), (B) 1.25 uM of the
BACET-inhibitor LY2811376, (C) 2.5 uM of the BACET-inhibitor LY2811376, (D) 1.25 uM of the BACE-inhibitor BACE IV and (E) 2.5 uM of the
BACE-inhibitor BACE IV in media from SH-SY5Y cells. *Represent unidentified peaks. AB, -amyloid; BACE, B-site APP-cleaving enzyme; DMSO,
dimethy! sulfoide.
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Quantification of CSF sAPPa and sAPPB was con-
ducted as described previously and the results from
these analyses have already published [17].

Statistical analysis

The time series for each treatment were analyzed using
Friedman’s test (SPSS v13, Chicago, IL, USA). A dose-
dependent effect was considered significant if P <0.05 and
if the P-value decreased with increasing dose. Association
analyses were performed by Spearman’s rank correlation
and the correlation coefficient is presented by spearman’s
rho (rs).

Results

LY2811376 induces a characteristic AB peptide pattern in
a human-derived neuroblastoma cell line

As expected, SH-SY5Y cells treated with the BACEI-
inhibitor LY2811376 or BACE IV secreted less AP1-40
and AP1-42 to the cell medium while the relative levels
of AP5-40 (relative to the other AP peptides detected)
increased, as compared to vehicle-treated cells (Figure 1).
These data clearly demonstrate that LY2811376 inhibits
BACE1 activity and that the generation of AP5-40 is
BACE independent.
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The BACE1 inhibitor LY2811376 causes a relative
reduction in CSF AB1-34 and an increase in CSF AB5-40 in
humans as reflected by mass spectrometry
To evaluate if the BACE1-mediated changes described in
exploratory AP biomarker studies were translatable to
humans, the CSF mass spectrometric A peptide pattern
from untreated subjects was compared to the pattern from
subjects treated with different concentrations of the
BACE1l-inhibitor LY2811376. Representative CSF Ap
peptide mass spectra from a subject before treatment
and 36 hours after drug administration are shown in
Figure 2A-D. Although barely detectable versus background
before treatment, BACE1 inhibition increased the mass
spectrometric signal for AB5-40 while the signal correspond-
ing to AP1-34 decreased. In total, 13 AP species ranging
from AP1-15 up to AP1-42 were reproducibly detected.
The BACEL inhibitor LY2811376 dose-dependently
reduced AP1-34 relative to baseline with a nadir of 42% in
the 30-mg group (P =0.002) and 57% in the 90-mg group
(P <0.001) respectively, 24 hours after drug administration
(Figure 3A). By contrast, LY2811376 dose-dependently
increased AP5-40 to a maximum relative to baseline after
18 hours in the 30-mg (P =0.213) and the 90-mg
(P <0.001) groups, respectively (Figure 3B). The mass
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Figure 2 Mass spectra displaying multiple AB species recovered from human CSF specimens by immunoprecipitation with the anti-Af
antibodies 6E10 and 4G8. (A) Pre-treatment, (B) 12, (C) 24, and (D) 36 hours post treatment with 90 mg of LY2811376. The right-hand panels
are magnified spectra displaying the increase in AB5-40 and decrease in AB1-34 in response to treatment. AR, -amyloid; CSF, cerebrospinal fluid.
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Figure 3 The relative mass spectrometric change from baseline and ELISA-derived concentrations in response to a single dose of

30 mg or 90 mg of the BACE inhibitor LY2811376. (A) Mass spectrometric change in the CSF AB1-34 time course after LY2811376 treatment
and (B) mass spectrometric change in the CSF AB5-40 time course after LY2811376 treatment. (C) ELISA-derived concentrations of the CSF
AB5-40 time course after LY2811376 treatment and (D) ELISA-derived concentrations of the CSF AB5-X time course after LY2811376 treatment.
Open circles represent placebo, grey squares represent treatment with 30 mg LY2811376 and closed triangles represent treatment with 90 mg
LY2811376. Data are presented as mean + SD and n =6 for both graphs. AB, 3-amyloid; BACE, 3-site APP-cleaving enzyme; CSF, cerebrospinal fluid;

spectrometric signal for AB5-40 in the placebo group was
below the limit of detection while in the 90-mg treatment
group the signal-to-noise ratio was 4 to 5. At 36 hours
post-treatment, both AB5-40 and AP1-34 had started to
return towards baseline levels in both treatment groups.

The BACE1-inhibitor LY2811376 causes an absolute
increase in both CSF AB5-40 and AB5-X in humans as
reflected by ELISA

The increase in AB5-40 detected by mass spectrometry
in response to treatment with the BACEL inhibitor
LY2811376 was further confirmed by a proprietary
ELISA. While the placebo concentrations were low, in
the range of approximately 100 pg/mL and approxi-
mately 50 pg/mL for AB5-X and AB5-40, respectively,
there were clear increases in the LY2811376 high dose
(90 mg) group over time for both AP5-X and Ap5-40
(Figure 3C-D) of which the increase in AP5-X was sta-
tistically significant (P =0.02). The ELISA-determined

concentrations of AB5-42 were too low to yield an ac-
curate assessment, which is in agreement with the mass
spectrometric data where AB5-42 could not be detected
in any treatment group.

In the 90-mg dose group, there was a compensatory
increase in the concentrations of both AB5-X and sAPP«a
(rs =0.94, P =0.02) while AP5-X was negatively corre-
lated with sAPPB (rs=-0.89, P =0.03) as presented in
Figure 4A,B. There were no correlations between the
two peptides starting at amino acid five and sAPPa or
sAPPp in the 30-mg and placebo groups.

Discussion

In the present study, we show marked effects on CSF
AP5-40 (which increases) and AP1-34 (which decreases)
in response to BACE1 inhibitor treatment. These findings
confirm earlier pre-clinical data [9] and suggest that CSF
AB5-40 and AB1-34 may be useful pharmacodynamic
markers for assessing the biochemical effects of BACE-1
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Figure 4 Correlation between AB5-X and (A) sAPPa and (B)
sAPPB in the 90-mg treatment group. A(, 3-amyloid; APP,
amyloid precursor protein.

inhibitors in the CNS in clinical trials. The relatively low
concentrations of both AB5-40 and AB5-X fit previous
findings with comparable percentage reductions in Ap1-
40 versus ABX-40 and AB1-42 versus ABX-42 in dog CSF
following oral administration of LY2811376 [17].

Since the discovery and molecular cloning of BACE1 in
1999 by several independent groups, this enzyme has been
a tempting target for pharmacological lowering of cerebral
Ap levels with the intent of treating or preventing AD. To
date, there are only a few reports of BACE1 inhibitors that
have demonstrated sufficient access to the brain. In a recent
paper, oral administration of the non-peptidic BACEL in-
hibitor LY2811376 to healthy subjects (same patients as in-
cluded in the present study) dose-dependently lowered CSF
AB1-40, AP1-42 and sAPPP levels and dose-dependently
increased CSF sAPPq, providing evidence of desirable cen-
tral pharmacodynamic effects on APP processing [17]. In
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another study, a therapeutic antibody that reduces BACE1
activity was used, resulting in lowered CNS Af concentra-
tions in preclinical models [23]. Whether this approach can
be translated to humans and if other A species besides
AB1-40 are affected in response to treatment remain to be
elucidated.

LY2811376 treatment consistently increased CSF levels
of AP5-40. The increase of AB5-40 in response to BACE1
inhibition clearly suggests that production of A peptides
starting at position 5 is formed via a BACE1-independent
APP-processing pathway [9]. In agreement with this, it has
been suggested that inhibition of BACE1 might be linked
to a distinct processing of APP between Phe4 and Arg5
mediated by a-secretase-like proteases [24]. Other en-
zymes which might cleave in this region of AP include a-
chymotrypsin, myelin basic protein and protease IV [25].
However, while these enzymes have been shown to cleave
AP in vitro, data from the CNS showing which enzyme
that cleaves between Phe4 and Arg5 inhibition of BACE1
is lacking.

Recently, we showed in pre-clinical models that CSF
AP1-34 is a sensitive marker for BACE1 inhibition [9].
We have previously shown, in two independent clinical
trials, that CSF AB1-34 is a pharmacodynamic marker of
y-secretase inhibition in humans [14,15] and here we
show for the first time that it is also a marker of BACE1
inhibition in humans. It has been shown that the cleav-
age between Leu34 and Met35 depends on both BACE1
and y-secretase [26,27]. Thus, AP1-34 is an intriguing
peptide to follow in clinical trials of BACE1 inhibitors
since cleavages at position 1 and position 34 both depend
on BACE. It is also possible that AP1-34 is more stable
than AP1-42, as it is less hydrophobic and may thereby be
less prone to preanalytical confounding factors.

AP5-40 has been found in AD brains [28], but the
exact role of this AP species in AD pathogenesis (and
normal physiology), if any, is unknown and we propose
that further studies of biological functions and how the
peptide might be relevant to AD pathophysiology are
warranted.

We found a positive correlation between sAPPa and
AP5-X. This correlation may reflect a compensatory in-
crease in APP cleavage at the a-site and between amino
acid 4/5, or that there might be more substrate for these
enzymes due to inhibition of BACE. We also found a
negative correlation between sAPPB and AP5-X, clearly
showing that while the amyloidogenic pathway is af-
fected, the (as yet) unknown enzyme generating AB5-X
cleaves its substrate more.

There are several non-quantitative aspects of HI-MS.
The relative quantification using mass spectrometry can-
not be interpreted as a direct reflection of an absolute or
relative abundance. However, in the present study we have
verified the mass spectrometric data showing increased
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relative levels of AB5-40 with a proprietary ELISA showing
increased concentrations of both Ap5-40 and AB5-X in re-
sponse to inhibition of BACE1L. What also should be noted
is that the ELISA measures an absolute concentration
while MS reports the relative change of AB5-40 relative to
all other AP peptides detected in the same spectra. A pre-
vious study on the same patients as those included in the
present study showed a marked decrease in CSF AP1-40
in response to LY2811376 treatment [17]. Due to the
relative quantification used in the present study, we were
not able to measure the expected decrease. However, by
implementing isotopically-labelled AP peptides for each
peptide of interest, relative small changes in response to
treatment should be possible to detect with HI-MS.

Conclusions

In summary, our results confirm that CSF ABp1-34 may be
useful in clinical trials on BACE1 inhibitors to monitor tar-
get engagement. By independent measurement techniques,
we show that BACE1 inhibition in humans is associated
with APP-processing into N-terminally truncated AP pep-
tides via a BACEl-independent pathway. The data pre-
sented also provide evidence for CSF AB1-34 and AB5-40
as translatable pharmacodynamic markers for BACE1-
inhibition from cell and animal models to humans.
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