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Apolipoprotein E as a β-amyloid-independent
factor in Alzheimer's disease
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Abstract

APOE, which encodes apolipoprotein E, is the most prevalent and best established genetic risk factor for late-onset
Alzheimer’s disease. Current understanding of Alzheimer’s disease pathophysiology posits an important role for
apolipoprotein E in the disease cascade via its interplay with β-amyloid. However, evidence is also emerging for
roles of apolipoprotein E in the disease process that are independent of β-amyloid. Particular areas of interest are
lipid metabolism, tau pathology, neuroenergetics, neurodevelopment, synaptic plasticity, the neurovasculature, and
neuroinflammation. The intent of this article is to review the literature in each of these areas.

 

assess research in each of these areas.
Review
Introduction
Alzheimer’s disease (AD) is the most common cause of
dementia in older people and a rapidly growing public
health issue. Research over the preceding two decades
has led to important insights regarding the potential role
of β-amyloid, the primary constituent of plaques, in AD
pathogenesis, yet well-conceived therapeutic strategies
based upon the amyloid cascade hypothesis have failed to
achieve significant disease modification. The most prevalent
and best-established genetic risk factor for late-onset,
sporadic AD is APOE, encoding apolipoprotein E (apoE),
first described in the early 1990s [1]. Frequently, the role of
APOE in AD risk is understood in the context of the inter-
play of apoE with β-amyloid, and this topic has been
recently reviewed [2]. However, there is a growing body of
literature supporting additional roles for apoE in AD risk,
both via its normal physiological function and via patho-
genic dysfunction that is independent of β-amyloid.
Recent debate has focused on the efficacy of elevating

or decreasing apoE levels as a therapeutic strategy, and
it remains unclear what fraction of apoE-related risk is
representative of a loss of normal apoE function versus a
gain of toxic function. For these reasons, APOE warrants
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significant study as an independent factor in AD.
Established and emerging areas of investigation include
effects on lipid metabolism, tau pathology, neuroenerge-
tics, neurodevelopment, the neurovasculature, and neuro-
inflammation. The intent of this article is to review and
Apolipoprotein E structure and function
APOE has three common alleles in humans: APOE ε2
(US frequency ~10%), APOE ε3 (US frequency ~70%),
and APOE ε4 (US frequency ~20%) [3]. When compared
with persons homozygous for APOE ε3 (risk neutral),
APOE ε4 homozygotes have up to 15 times the risk and
APOE ε4 heterozygotes up to four times the risk for
developing AD. APOE ε2 is associated with decreased
risk for AD [4].
apoE is a 34 kDa, 299 amino acid glycoprotein with

two major functional domains. The N-terminal domain
of apoE exists as a four-helix bundle containing the apoE
receptor binding region at residues 136 to 150. The C-
terminal domain has an α-helical structure and contains
the major lipid binding region at residues 244 to 272. A
hinge region containing residues 165 to 215 links the
terminal domains when the protein is unbound by lipid.
The encoded proteins differ at two amino acids – apoE2
has cysteine at residues 112 and 158, apoE3 has cysteine
at residue 112 and arginine at residue 158, and apoE4 has

arginine at residues 112 and 158 [5]. apoE4 is considerably
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more likely to exhibit a phenomenon known as domain
interaction due to the presence of arginine at residue 112
[5]. The location of this residue is thought to result in the
side chain of the arginine at residue 61 (N-terminal
domain) forming a salt bridge with the glutamate at
residue 255 (C-terminal domain) [6]. While this model
has been challenged [7,8], these alternative studies used a
mutated version of the protein (F257A, W264R, V269A,
L279Q, and V287E), and therefore may have limited
physiological relevance, particularly in the absence of a
direct comparison between apoE3 and apoE4. In summary,
the structural differences between apoE3 and apoE4 are
thought to be important for apoE4’s association with AD
pathophysiology, although the picture is far from clear.
The primary functional role of apoE in the brain is to

transport cholesterol and other lipids, which are vital for
multiple functions including synapse formation and
repair. apoE is highly expressed in the liver and brain
(with the primary brain source being astrocytes), and in
the brain is associated with high-density lipoprotein-like
lipoproteins [9]. apoE is secreted and loaded with lipids
via the ATP-binding cassette transporter (ABCA1) to
form lipidated lipoprotein particles. Endocytosis of these
particles occurs via interaction with apoE receptors,
namely low-density lipoprotein (LDL) receptor (primarily
in glia) and LDL receptor-related protein 1 (primarily in
neurons) [10]. Important to note is that despite its low ex-
pression in neurons at baseline, apoE can be significantly
expressed in neurons in response to injury or stress [3].
While there are apparent structural differences between

apoE isoforms, the differential impact on lipid metabolism
and the relation to risk for AD remains an open question.
Data from neuronal cultures support apoE4’s acceptance
of lipids being impaired in comparison with apoE2’s
acceptance in both astrocytes and neurons [11]. Mice
expressing human apoE4 have altered cholesterol and lipid
metabolism in the brain [12]. Notably, effects on lipid
transport may have a particular impact on synaptogenesis
and neurodevelopment, as discussed in a later section of
this review, as well as the ability to repair membrane
damage. In this case, apoE4-associated risk would repre-
sent a loss of protein function. Additionally, apoE is
known to have significant impacts in the periphery, with
apoE4 being associated with hyperlipidemia and heart
disease [13]. How these peripheral effects may impact the
risk association of apoE with AD is unknown, and it is
important to note that there is little interaction between
brain and peripheral cholesterol metabolism [14].
The cellular source of apoE is highly regulated;

neuronal production of apoE appears to be mediated by
signals from astrocytes [15]. Neuronal apoE is known to
be upregulated in response to injury [16,17]. Postmortem
human samples showed that apoE4 undergoes neuron-
specific proteolysis [18], and that this is dramatically
pronounced in comparison with apoE3 and apoE2. This
effect is thought to be due to apoE4’s tendency to exhibit
domain interaction. Transgenic mice expressing human
apoE4 demonstrate that apoE4 is cleaved by a putative
chymotrypsin-like serine protease termed apoE cleaving
enzyme (AECE) [19]. Although neurons take up apoE
secreted by astrocytes (the normal physiological process),
this apoE proteolysis occurs in the neuronal secretory
pathway and not in an endocytic pathway, which seems to
indicate neuronal-source specificity to this event [20]. The
biochemical stability of apoE is dependent on C-terminal
segments [21,22]. AECE-cleaved apoE4 missing C-
terminus residues 272 to 299 (apoE4Δ272–299) can translo-
cate from the secretory pathway to the cytosol [23]. The
LDL-receptor binding region (residues 136 to 150), which
is rich in positively-charged amino acids arginine, lysine,
and histidine, is required for escape in Neuro-2a mouse
neuroblastoma cultures [23]. An enrichment in positively-
charged amino acids is also seen in the protein-
translocation domains of certain viral proteins, suggesting
a similar mechanism for membrane penetration [23].
However, such a potential mechanism has not been tested
directly on apoE cytoplasmic translocation.

Apolipoprotein E and tau pathology
apoE is known to have effects on tau pathology, which is
a hallmark of AD, although the pathophysiology remains
uncertain. Full-length apoE4 expressed in Neuro-2a
cultures acts along with zinc to phosphorylate tau via
the extracellular signal-regulated kinase pathway, and
neuron-specific apoE4 expression in mice results in high
levels of phosphorylated extracellular signal-regulated
kinase and phosphorylated tau in the hippocampus [24].
apoE3 is effective at binding the microtubule-binding
repeat region of tau, the region responsible for the
formation of paired helical filaments; apoE4 does not
bind this region and thus may not be as effective at
limiting formation of neurofibrillary tangles [25].
apoE cleavage fragments (via the processes described

in the previous section) have been shown to have effects
on the cytoskeleton and intracellular trafficking. In
Neuro-2a cells, apoE4Δ272–299 expressed by transfection
interacts with cytoskeletal proteins to form tangle-like
structures containing phosphorylated tau [18]. Mice
expressing neuronal apoE4Δ272–299 at high levels develop
neurofibrillary tangles and die at 2 to 4 months. At
lower levels of expression, mice exhibit deficits in learn-
ing and memory at 6 to 7 months [19], and in humans
preclinical alterations in cognition more strongly reflect
the distribution of tau than of β-amyloid pathology
[26,27]. Any damage to neurons due to apoE4-specific
cleavage would reflect a toxic gain of function of the
protein. apoE impact on tau has also been proposed to
be one mechanism by which apoE4 has a significant

http://alzres.com/content/5/5/38


Wolf et al. Alzheimer's Research & Therapy Page 3 of 82013, 5:38
http://alzres.com/content/5/5/38
impact on neurogenesis and neuroenergetic processes,
as discussed below.

Apolipoprotein E and neuroenergetics
apoE has been associated with cerebral energy metabolism
via both β-amyloid-dependent and β-amyloid-independ-
ent mechanisms [28,29]. Brain imaging has provided
significant insight into APOE associations with AD. Cog-
nitively normal, late middle age (50 to 65 years old) APOE
ε4 homozygotes exhibit significant reductions in glucose
uptake (measured as the cerebral metabolic rate for
glucose via fluorodeoxyglucose positron emission tomog-
raphy) in the same parietal, prefrontal, and temporal
regions found to exhibit changes in probable AD patients
[30]. Additional studies found longitudinal declines in the
cerebral metabolic rate for glucose [31] and gene dose
effects [32]. Cognitively normal, 20-year-old to 39-year-
old APOE ε4 carriers exhibit a significantly decreased
cerebral metabolic rate for glucose in similar regions, in
this case decades ahead of any apparent pathology or
cognitive defects [33]. Recently, the APOE genotype was
shown to modulate the cerebral metabolic rate for glucose
in normal aging, with no contribution from fibrillar β-
amyloid. Additional work investigating mitochondrial ac-
tivity using cytochrome oxidase histochemistry to measure
enzymatic Complex IV function found that young-adult
APOE ε4 carriers display deficits in the superficial lamina
of the cortex, specifically the posterior cingulate cortex
[34]. Similar deficits are apparent in AD [35,36]. Changes
in mitochondrial function and glucose uptake may
therefore be an early indicator of AD-related risk and
physiological alteration.
There is evidence that apoE4 has deleterious effects on

neuroenergetics via interference with intracellular traf-
ficking as well as through direct effects on mitochondrial
function. The cytoskeleton plays an important role in
the trafficking of mitochondria [37]. Human apoE4-
expressing mice exhibit impairments in axonal transport
and accumulate mitochondria in axonal dilations [38]. In
PC12 cells, apoE4 can impair mitochondrial motility
when compared with apoE3 [39]. Interestingly, small-
molecule apoE structure correctors (reviewed in [40])
that alter apoE4’s structure to be more similar to apoE3
have been shown to ameliorate this effect [37].
apoE4 has also been shown to directly impair

mitochondrial function. apoE4 binds the alpha and beta
subunits of the F1 portion of ATP synthase in liver [41],
although the functional consequences of this are unclear.
In Neuro-2a cultures expressing apoE4Δ272–299, apoE4
fragments cause mitochondrial dysfunction that requires
the lipid-binding region (residues 244 to 272) [23]. In
further study using Neuro-2a, apoE4Δ272–299 demon-
strated the ability to bind ubiquinol cytochrome c reduc-
tase core protein 2 and cytochrome CI of Complex III and
cytochrome c oxidase subunit 4 isoform 1 of Complex IV
of the electron transport chain. This binding significantly
reduced the respiratory function of both complexes [42].
apoE4-expressing Neuro-2a and mouse primary neuron
cultures have reduced expression of subunits for all elec-
tron transport chain complexes [43]. Complex IV respira-
tory function is also significantly decreased. Proteomic
analysis in mice expressing human apoE found that
mitochondrially enriched fractions prepared from apoE4
and apoE3 mouse hippocampus differed in levels of
proteins associated with mitochondrial function, oxidative
stress response, and organelle transport [44]. In humans,
postmortem tissue from the middle temporal gyrus of
middle-aged APOE ε4 carriers displayed differential
expression in 70 transcripts, 30 of which are involved in
oxidative mitochondrial function, when compared with
age-matched noncarriers [45]. Further work is needed to
determine which of these potential insults exhibits
primacy or whether all interact to knock down bioener-
getic function.
apoE4 can induce endoplasmic reticulum stress in

astrocytes [46], an effect that does not occur in neurons
[47]. Interestingly, apoE4 trafficking is impaired in the
endoplasmic reticulum and Golgi apparatus in Neuro-2a
cultures, and small-molecule apoE structure correctors
can rescue this impairment [47]. Unlike neurons,
however, mouse primary astrocyte cultures expressing
apoE4 do not exhibit changes in electron transport chain
gene expression [43]. apoE4 may therefore alter neuronal
metabolic function via different mechanisms, including
direct mitochondrial impairment in the neurons them-
selves, and indirect effects via harm to astrocytes, which
provide neurons with essential metabolic support [46].
apoE isoforms expressed in b12 cells display differing
antioxidant ability in a manner correlated with disease risk
(apoE2 > apoE3 > apoE4) [48]. In AD, oxidative stress is
thought to be an early feature of pathophysiology [49,50].
Taken together, effects of apoE on neuroenergetics may
represent a toxic gain of function leading to mitochondrial
impairment, disrupted trafficking, or astrocyte damage
and/or loss of antioxidant or other normal functions
(see Figure 1).

Apolipoprotein E, neurodevelopment and synaptic plasticity
A number of brain imaging studies support a potential
differential effect for APOE genotypes in neurodeve-
lopment. In volumetric studies utilizing magnetic reson-
ance imaging, young APOE ε4 carriers display thinner
entorhinal cortices than noncarriers [51] and reduced
hippocampal volumes compared with both noncarriers
[52] and APOE ε2 carriers alone [53]. Additionally, mag-
netic resonance imaging studies in neonates have found
volumetric reductions in several regions of APOE ε4
carriers [54]. However, the APOE ε4 carrier to noncarrier

http://alzres.com/content/5/5/38


Figure 1 Effects of cell-type specific expression and aberrant processing of apolipoprotein E4 in the brain. Astrocyte-secreted
apolipoprotein E (apoE) is internalized by neurons, but apoE4 expression in astrocytes has been associated with endoplasmic reticulum (ER) stress
that may impair astrocyte function. Astrocyte-secreted apoE4 has also been associated with decreased blood–brain barrier (BBB) integrity via
signaling in pericytes, decreased synapse development, and alterations in inflammatory response. A smaller proportion of brain apoE expression is
attributed to neurons: apoE4 expressed in neurons (but not that internalized from astrocytes) is highly susceptible to cleavage by apoE cleaving
enzyme (AECE) in the secretory pathway, becoming AECE-cleaved apoE4 missing C-terminus residues 272 to 299 (apoEΔ272–299). This cleavage
product is capable of escaping the secretory pathway, self-aggregating in the cytosol, increasing tau fibrillization, interfering with mitochondrial
function and motility, and impairing neurogenesis. In neurons, full-length apoE4 has been associated with decreased dendritic arborization and
impairment of receptor trafficking. ETC, electron transport chain.

Wolf et al. Alzheimer's Research & Therapy Page 4 of 82013, 5:38
http://alzres.com/content/5/5/38
difference in hippocampal volumes has not been found
consistently [55].
The cellular and molecular mechanisms of these

differences are unclear, but there are several interesting
lines of research. Mice expressing human apoE4 display
reduced neurogenesis, which is also apparent in apoE
knockout mice [56]. apoE4 fragmentation and tau phos-
phorylation are also associated with decreased matu-
ration of GABAergic neurons in primary cultures [56].
apoE4 mice also show declines in GABAergic neurons
with age that are associated with deficits in learning and
memory [57]. These effects are also found (to a more
severe degree) in mice expressing neuronal apoE4Δ272–299

[57]. Mouse studies have also shown that dendritic
arborization is decreased in apoE4-expressing mice,
compared with apoE2 or apoE3 knockin mice [56,58-60].
There is also evidence that neurite outgrowth is limited by
apoE4, in comparison with apoE2 or apoE3 [61-66].
Microtubule depolymerization associated with apoE–tau
interaction is thought to be important to apoE4 effects on
neurite outgrowth [64]. apoE has also been shown to be
involved in synaptogenesis via its cholesterol transport
abilities [67] and plays a role in maintaining the neural
progenitor pool in the adult dentate gyrus [68].
A number of mouse behavior studies have examined

the effects of apoE4 on learning and memory, although
outcomes have been inconsistent [69-72]. On the cellular
level, apoE4 mice display deficits in excitatory synaptic
transmission [60]. Interestingly, apoE4 is also believed to
sequester apolipoprotein E receptor 2, leading to impair-
ment of reelin signaling and synaptic plasticity, which is
not seen with apoE3 and apoE2 [73]. In humans, APOE ε4
homozygotes and APOE ε4 carriers exhibit declines in
memory (as assessed by neuropsychological testing) earlier
than APOE ε4 noncarriers, and before age 60, while
remaining free of clinically significant memory loss
[27,74-76]. Van der Flier and colleagues reviewed an
extensive literature and proposed that APOE ε4 carriers
have a more typical amnestic syndrome with greater hip-
pocampal atrophy and an older age of onset while non-ε4-
related AD was more likely to manifest as dysexecutive,
aphasic, apraxic, and visual variant syndromes with less
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hippocampal atrophy and a younger age of onset [77].
Murray and colleagues proposed three neuropathological
subtypes of AD based upon a large autopsy series including
hippocampal sparing (concordant with van der Flier’s non-
ε4 AD description) accounting for 11% of cases, typical AD
accounting for 75% of cases, and limbic predominant
accounting for 14% of cases [78]. APOE genotype failed to
distinguish these groups. A non-AD clinical diagnosis
(including the variant syndromes) was more common in
the hippocampal sparing group, but this did not appear to
relate to APOE ε4 carrier status (in contrast to van der
Flier’s hypothesis).
In addition to these neuronal effects, apoE plays a role

in oligodendrogenesis [79] – a number of brain imaging
studies show white-matter differences in carriers of
different APOE isoforms [28]. Further research on apoE’s
role in neurodevelopment and synaptic plasticity will be
important in linking brain imaging and observational
studies to underlying mechanisms, and to determine
whether and which of apoE’s potential risk-inducing
effects may in fact be congenital in nature.

Apolipoprotein E and the neurovasculature
apoE is associated with risk for cerebral amyloid
angiopathy and other cerebrovascular conditions including
cerebral hemorrhage and vascular dementia, in addition to
AD [80]. A significant portion of the risk for cerebral
amyloid angiopathy is probably mediated via β-amyloid
mechanisms, including effects of apoE on β-amyloid
accumulation and clearance. Cerebrovascular alterations
are known to play a part in neurodegeneration [81], and it
is well established that patients with AD have impaired
blood–brain barrier (BBB) function. Impairment of BBB
function can potentially impact blood flow and nutrient
supply and clearance of toxic molecules (including β-
amyloid), among other activities.
apoE4 in particular has been linked to deficits in β-

amyloid clearance, and BBB breakdown in AD is most
prominent in patients who are carriers of APOE ε4 [82].
That said, recent evidence has indicated β-amyloid-inde-
pendent roles of apoE in cerebrovascular function and
dysfunction. apoE knockout mice demonstrate deficien-
cies in BBB integrity [83] and also demonstrate an
increased rate of decline in BBB integrity with age [84].
In an in vitro BBB model utilizing primary astrocyte
cultures from mice expressing human apoE4, the barrier
function of tight junctions was impaired [85]. An impor-
tant recent study utilizing apoE4 mice found that apoE4
promotes BBB decline via an inflammatory CypA–NF-
κB–matrix metalloproteinase pathway in pericytes in an
age-dependent manner [86]. This effect was not appa-
rent in apoE2 or apoE3 mice. Indeed, these proteins
were shown to suppress the pathway via LDL receptor-
related protein 1 [86], suggesting that apoE4 may impair
the BBB via a loss of function in comparison with the
other isoforms. Further research will be important in
clarifying the effects of apoE on the BBB.
In addition to these studies, brain imaging has

provided some insights into changes in young carriers of
APOE ε4, with H2

15O positron emission tomography
studies demonstrating alterations in at-rest and task-
activated cerebral blood flow [87,88]. Also, studies in
older individuals have identified functional magnetic
resonance imaging alterations in the absence of apparent
β-amyloid pathology in APOE ε4 carriers [89]. Healthy
aged APOE ε4 carriers also display greater longitudinal
reductions in cerebral blood flow as measured by H2

15O
positron emission tomography [90]. Notably, metabolic-
ally associated alterations in brain imaging (for example,
in fluorodeoxyglucose positron emission tomography
signal), such as those discussed earlier, could also be
driven by cerebrovascular changes.

Apolipoprotein E and neuroinflammation
A large amount of work has focused on the role of
inflammation in AD [91], including interactions with
apoE [92]. apoE is known to be involved in the inflam-
matory response, and has been shown to modulate the
expression of several cytokines in vitro and in vivo [93].
In particular, apoE has been studied in the context of
the innate immune system. Studies support that apoE4
can be proinflammatory when compared with apoE3
[94-96]. In a recent study in apoE mice, apoE4 (in com-
parison with apoE2 and apoE3) was associated with
increased glial activation, increased levels of microglia and
macrophages, and increased T-cell invasion in response to
lipopolysaccharide [97]. Interestingly, apoE4 mice also
displayed increased loss of synaptic proteins and altera-
tions in cytokine signaling (IL-1β, IL-6, and TNFα) [97].
In microglia cultures from rats, apoE4 is associated with
stimulation of prostaglandin E2 and IL-1β secretion [98].
There is also an apoE4 > apoE3 > apoE2 effect in the
toxicity to neurons from microglia [99]. Taken together,
these findings suggest apoE4 exhibits a gain of toxic
function with regard to inflammatory processes. Addition-
ally, apoE is known to be involved in antigen presentation
and modulation of nitric oxide production [100-103]. The
potential for apoE to impact disease via direct effects on
inflammatory processes is intriguing and in need of
further investigation.

Conclusion
Improving knowledge of how apoE imparts risk for AD is
an important aspect of ongoing research. A focus on β-
amyloid-independent mechanisms, in addition to more
traditional β-amyloid-associated mechanisms, will be vital
in developing a comprehensive understanding of AD
pathophysiology. Important advances have been made in

http://alzres.com/content/5/5/38


Wolf et al. Alzheimer's Research & Therapy Page 6 of 82013, 5:38
http://alzres.com/content/5/5/38
understanding the relationship of apoE to AD in a number
of physiological areas, including lipid metabolism, tau
processing, neuroenergetics, neurodevelopment, synaptic
plasticity, the neurovasculature, and neuroinflammation.
Notably, much of this work has been accomplished in a
limited number of laboratories. Encouraging other investi-
gators to replicate and extend these findings in existing
and novel models, and the new insights gained by such an
expansion, would go a long way both in validating and in
delineating the multifunctional importance of apoE in AD
pathophysiology.
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