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Abstract

Introduction: Modulation of the gamma-secretase enzyme, which reduces the production of the amyloidogenic
Ab42 peptide while sparing the production of other Ab species, is a promising therapeutic approach for the
treatment of Alzheimer’s disease. Satori has identified a unique class of small molecule gamma-secretase
modulators (GSMs) capable of decreasing Ab42 levels in cellular and rodent model systems. The compound class
exhibits potency in the nM range in vitro and is selective for lowering Ab42 and Ab38 while sparing Ab40 and total
Ab levels. In vivo, a compound from the series, SPI-1865, demonstrates similar pharmacology in wild-type CD1
mice, Tg2576 mice and Sprague Dawley rats.

Methods: Animals were orally administered either a single dose of SPI-1865 or dosed for multiple days. Ab levels
were measured using a sensitive plate-based ELISA system (MSD) and brain and plasma exposure of drug were
assessed by LC/MS/MS.

Results: In wild-type mice using either dosing regimen, brain Ab42 and Ab38 levels were decreased upon
treatment with SPI-1865 and little to no statistically meaningful effect on Ab40 was observed, reflecting the
changes observed in vitro. In rats, brain Ab levels were examined and similar to the mouse studies, brain Ab42 and
Ab38 were lowered. Comparable changes were also observed in the Tg2576 mice, where Ab levels were measured
in brain as well as plasma and CSF.

Conclusions: Taken together, these data indicate that SPI-1865 is orally bioavailable, brain penetrant, and effective
at lowering Ab42 in a dose responsive manner. With this unique profile, the class of compounds represented by
SPI-1865 may be a promising new therapy for Alzheimer’s disease.

Introduction
Alzheimer’s disease (AD) is a severe neurodegenerative
disease that is defined by two pathological features,
amyloid plaques and neurofibrillary tangles. Because
amyloid plaques appear before the onset of clinically-
defined dementia symptoms, neurodegeneration and
subsequent cognitive impairment are hypothesized to be
a downstream consequence of b-amyloid (Ab) peptide
dysregulation [1-3]. Ab peptides are small fragments
cleaved from a much larger integral membrane protein,
the amyloid precursor protein (APP). In the AD cascade,
APP is cleaved initially by b-secretase (BACE), leaving
the C99 fragment in the membrane, which is then

cleaved by gamma-secretase, an aspartyl protease com-
plex [4,5]. Gamma-secretase continues to make sequen-
tial cleavages every three to four amino acids [6-9],
resulting in Ab fragments ranging in size from 49 to
fewer than 34 amino acids [10,11]. Much of the focus in
AD research has been on Ab42, since it has been shown
to be the most amyloidogenic and neurotoxic fragment
[12-14]. More recently, Ab43 has also been shown to
have these detrimental properties [15]. To test the
hypothesis that lowering Ab42 levels may slow the pro-
gression of or prevent AD, multiple amyloid-targeted
therapeutic approaches have been developed and moved
into human clinical trials. These include Ab clearance-
directed immunotherapies as well as inhibitors of BACE
or gamma-secretase enzyme activities, both of which are
required for Ab production.* Correspondence: Barbara.Tate@satoripharma.com
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To prevent the production of these neurotoxic Ab
peptides, researchers have focused on developing small
molecule inhibitors of BACE and gammasecretase. In
preclinical animal models, in vivo administration of
gamma secretase inhibitors led to severe side effects,
including an increased number of goblet cells in the
intestine and decreased intrathymic differentiation and
lymphocyte development [16-18]. These adverse events
were found to be the result of inhibiting gamma-secre-
tase’s ability to process other substrates, specifically
NOTCH [19-21], which is critical for cell development
and differentiation [22]. Similar adverse events were also
observed in recent clinical trials of semagacestat and
avagacestat, further suggesting that complete inhibition
of gamma-secretase is not a viable approach [23-25].
Much remains unknown about the approach to prevent
Ab production through BACE inhibition, as a subset of
those molecules are currently in human clinical trials
[26].
The discovery of multiple structural classes of com-

pounds that modulate gamma-secretase activity, instead
of inhibiting it, offers the potential promise of avoiding
the mechanism-based adverse events observed with
gamma-secretase inhibitors. Gamma-secretase modula-
tors (GSMs) are observed to decrease the production of
the more amyloidogenic Ab42 peptide, while preserving
total Ab levels and sparing gamma-secretase cleavage of
the other substrates, such as NOTCH. Modulation
allows the initial cleavage of substrates, but alters the
processivity of the enzyme by shifting the production of
Ab peptides to the shorter, non-amyloidgenic forms
without affecting the total level [27]. A first generation
GSM, Flurizan from Myraid Genetics was tested in a
Phase 3 trial. However, the compound is a weak modu-
lator (IC50 = 250 μM), lacks brain penetration, and pro-
duced side effects [10,28]. The compound failed to show
efficacy, and development was halted in 2008 [29]. Since
the approach of gamma modulation has not been ade-
quately tested in humans, it is still believed that a more
potent, drug-like compound could be a viable therapeu-
tic approach.
Here we describe the in vivo pharmacology for a novel

series of compounds, represented by SPI-1865 (Figure 1).
All compounds within the series that have been tested in
vivo show a PK/PD relationship in rodents as robust as
SPI-1865 (data not shown). The compound scaffold is
derived from an initial hit, a triterpene glycoside (SPI-014),
which was discovered through a screen of a natural pro-
ducts library for compounds with GSM properties [30].
Following a comprehensive and focused research effort,
compounds like SPI-1865 were identified [31,32]. The
compounds in this series, including SPI-1865, have a novel
and proprietary structure, as well as the unique effect on

the Ab profile of lowering both Ab42 and Ab38, without
effecting Ab40 in cellular systems [33]. Using immunopre-
cipitation/mass spectrometry (IP/MS) analysis of condi-
tioned media from Satori compound-treated versus
control 2B7 cells, it was observed that the total Ab levels
are maintained with concomitant lowering of Ab38 and
Ab42 and increases in Ab37 and Ab39 [34]. Furthermore,
since increasing substrate levels do not result in an IC50

shift, it is likely that SPI-1865 binds to the gamma-secre-
tase complex as do other GSMs [35-37] instead of the
APP substrate [33,34]. In the studies described here, the
effects of SPI-1865 on Ab38, Ab40 and Ab42 in both wild-
type and transgenic animals were examined. The Ab
changes observed in these studies reflect the changes
observed in our cellular systems, resulting in a decrease of
both Ab38 and Ab42 in all three models, suggesting that
SPI-1865 maintains its GSM properties in vivo.

Materials and methods
Test compound
SPI-1865 was prepared in a manner as described in
Bronk et al., patent WO2011109657 A1 20110909.
Merck GSM1 was prepared as described in Madin et al.,
patent WO2007116228 A120071018.

Cell culture and compound treatment
CHO-2B7 cells (Mayo Clinic) are Chinese hamster ovary
cells stably transfected with human bAPP 695wt [38,39].
The cells were cultured in Ham’s F12 media (Thermo
Fisher SH30026.01, Waltham, MA, USA) supplemented
with 10% FBS, 0.25 mg/mL Zeocin and 90 ug/mL penicil-
lin/streptomycin at 37°C in a 5% CO2 atmosphere. For
compound treatment, cells were plated in 96-well plates at
a density of 1.0 × 105 cells/mL and allowed grow to 100%
confluence over two days. Test compounds in dimethyl
sulfoxide (DMSO) were diluted 100-fold directly into the
media before being adding to the cells. Immediately prior
to adding compound-containing media to the cells, the
cells were washed once with 1X PBS. Conditioned media
from CHO-2B7 cells were collected after 5 hrs of treat-
ment and the levels of Ab peptides were assessed as
described below.

Figure 1 General structure of Satori gamma-secretase
modulators (GSMs), including SPI-1865.
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Ab in vitro assay measurement
Conditioned media were collected after 5 hrs of treat-
ment and diluted with one volume of MSD blocking
buffer (1% BSA in MSD wash buffer). MSD Human
(6E10) Ab 3-Plex plates, which are pre-spotted with
three separate spots in each well containing capture
antibodies against the unique C-terminal ends of Ab38,
Ab40 and Ab42, respectively, were blocked with MSD
blocking buffer for one hour. Samples were transferred
to the blocked plates with 6E10 detection antibody and
incubated for 2 hrs at room temperature with orbital
shaking followed by washing and reading according to
the manufacturer’s instructions (SECTOR® Imager 2400
Meso Scale Discovery, Gaithersburg MD, USA).

In vivo study methods
The animal handling and procedures were performed
either at Agilux Laboratories in Worcester, MA, USA,
or Cerebricon in Kuopio, Finland. All animal handling
and procedures were conducted in full compliance to
AAALAC International and NIH regulations and guide-
lines regarding animal care and welfare. These protocols
were reviewed and approved by Agilux’s or Cerebricon’s
respective Institutional Animal Care and Use Commit-
tees (IACUC) prior to any activities involving animals.
Female transgenic mice (Tg2576, 3 months of age; n =

20), wild-type male CD-1 mice (six weeks of age; n = 8
to 12) or wild-type male Sprague Dawley rats (200 to
225 g body weight; n = 12) were utilized to assess in
vivo efficacy.
For wild-type rat and mouse studies, all animals were

acclimated to the test facility for a minimum of two
days prior to initiation of the study. Compounds were
dosed orally in 10:20:70 ethanol/solutol/water or
10:20:70 ethanol/cremaphor/water via oral gavage. Sam-
ples were harvested at either at 6 or 24 hrs post dose
for Ab and compound exposure measurements. Blood
samples were collected into K2ethylenediaminetetraace-
tic acid (EDTA) and stored on wet ice until processed
to plasma by centrifugation (3,500 rpm at 5°C) within
30 minutes of collection. Each brain was dissected into
three parts: left and right hemispheres and cerebellum.
Brain tissues were rinsed with ice cold PBS (without
Mg2+ or Ca2+), blotted dry and weighed. Plasma and
cerebella were analyzed for parent drug via liquid chro-
matography/tandem mass spectrometry (LC/MS/MS).
Parent drug levels were compared to a standard curve
to establish the plasma and brain levels.
In the transgenic studies, compound was dosed in

10:20:70 ethanol/solutol/water via oral gavage. Samples
were harvested at 24 hrs post dose for Ab and compound
exposure measurement. The mice were subjected to cis-
terna magna puncture and collection of cerebrospinal
fluid (CSF) (approximately 5 μl per mouse). Individual

CSF samples were flash-frozen on dry ice and stored at
-80°C. Thereafter, the mice were subjected to cardiac
puncture and blood samples were collected into K2EDTA
tubes and stored on wet ice until processed to plasma by
centrifugation (2,000 g at 4°C for 10 minutes) within
30 minutes of collection. The plasma was aliquoted for
both Ab measurements and parent drug using LC/MS/
MS. Both sets of tubes were frozen at -80°C. The brains
were perfused with non-heparinized saline (the blood
flushed away) and removed carefully. Brains were rinsed
with ice cold PBS (without Mg2+ or Ca2+), blotted dry,
dissected on ice into three pieces (left and right hemi-
sphere and cerebellum). Samples were frozen in liquid
nitrogen immediately prior to storage at -80°C. Cerebella
were analyzed for parent drug via LC/MS/MS. Parent
drug levels were compared to a standard curve to estab-
lish the plasma, brain and CSF levels.

Rodent Ab determination
This protocol is a modification of protocols described by
Lanz and Schachter [40] and Rogers et al. [41,42].
Frozen hemispheres were weighed into tared homogeni-
zation tubes (MP Biomedicals#6933050 for rat; MP Bio-
medicals, Solon, OH, USA) and (Simport#T501-4AT;
Simport, Beloeil, Qc, Canada) containing one 5-mm
stainless steel bead (Qiagen#69989 for mouse). For every
gram of brain, 10 mLs of either 6 M guanidine hydro-
chloride (wild-type rat and mouse) or 0.2% diethyl
amine in 50 mM NaCl (transgenic mouse) was added to
the brain-containing tubes on wet ice. Rat hemispheres
were homogenized for one minute and mouse hemi-
spheres were homogenized for 30 seconds at the 6.5 set-
ting using the FastPrep-24 Tissue and Cell homogenizer
(MP Biomedicals#116004500). Homogenates were
rocked for 2 hrs at 4°C, then pre-cleared by ultracentri-
fugation at 100,000 × g for one hour at 4°C. Pre-cleared
wild-type rat and mouse homogenates were concen-
trated over solid phase extraction (SPE) columns (Oasis
HLB 96-well SPE plate 30 μm, Waters#WAT058951;
Waters Corp., Milford, MA, USA). Briefly, SPE columns
were prepared by wetting with 1 mL of 100% methanol
followed by dH20 using vacuum to pull liquids through.
Brain homogenates were then added to the prepared
columns (1.0 mL from rat and 0.7 mL from wild-type
mouse). Columns were washed twice with 1 mL of 10%
methanol followed by two 1 mL washes with 30%
methanol. Labeled eluent collection tubes (Costar clus-
ter tubes #4413; Corning Inc., Corning, NY, USA) were
placed under SPE columns and samples were eluted
under very mild vacuum with 300 μL of 2% NH4OH/
90% methanol. Eluents were dried to films under
vacuum with no heat in a speed vacuum microcentri-
fuge. Films were resuspended in 150 μL of Meso Scale
Discovery (MSD, Gaithersburg, MD, USA) blocking
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buffer (1% BSA in MSD wash buffer) for one hour at
room temperature with occasional vortexing. Transgenic
mouse plasma (50 μL) was extracted in 500 μL of 6 M
guanidine hydrochloride briefly at room temperature
and then 450 μL was concentrated over SPE columns
and dried to films as described above. Transgenic
plasma films were resuspended in 225 μL of MSD
blocking buffer. Pre-cleared transgenic mouse brain
homogenates were diluted and neutralized as follows.
A volume of 45 μL of pre-cleared transgenic mouse
brain homogenates were diluted into 450 μL of blocking
buffer and were neutralized with 5 μL of 0.5 M Tris pH
6.8. For Ab38, Ab40 and Ab42 measurements, MSD 96-
well multi-spot Human/Rodent (4G8) Ab triplex ultra-
sensitive ELISA plates, which are pre-spotted with three
separate spots in each well containing capture antibodies
against the unique C-terminal ends of Ab38, Ab40 and
Ab42, respectively, were blocked with MSD blocking
buffer for one hour at room temperature with orbital
shaking. A volume of 25 μL of neat resuspended wild-
type rat or mouse brain homogenates were added in
duplicates to the blocked 3-plex Ab MSD plates with
SULFO-TAG 4G8 antibody (MSD). Diluted and neutra-
lized transgenic mouse brain homogenates, neat resus-
pended transgenic plasma samples or transgenic mouse
CSF samples (diluted 1:10 in MSD blocking buffer) were
added as described above to blocked MSD 96-well
multi-spot Ab triplex ultra-sensitive ELISA plates with
SULFO-TAG 6E10 antibody (MSD). The Ab 3-Plex
plates were incubated for 2 hrs at room temperature
with orbital shaking followed by washing and reading

according to the manufacturer’s instructions (SECTOR®

Imager 2400, MSD). The average Ab concentrations
from duplicate measurements of each animal were con-
verted to percent vehicle values and the treatment
group averages were statistically compared by analysis of
variance (ANOVA). Statistical significance was defined
as P < 0.01 in all experiments.

Results
SPI-1865 decreases Ab42 and Ab38 in 2B7 cells
CHO-2B7 cells, which over-express human wild-type
APP, were treated with increasing concentrations of
SPI-1865. Conditioned media from CHO-2B7 cells were
collected after 5 hrs of treatment and the levels of Ab
peptides were assessed using the MSD 3-Plex assay for
Ab42, Ab40 and Ab38. As shown in Figure 2, SPI-1865
reduces both Ab38 and Ab42 with an IC50 of 259 nM and
106 nM, respectively. Ab40 was found to have an IC50 of
2.8 μM, resulting in > 20-fold selectivity for Ab42 over
Ab40. Total Ab only decreased at doses where cytotoxi-
city was observed, indicating that SPI-1865 is capable of
modulating gamma-secretase processivity, not inhibiting
enzyme activity.

SPI-1865 reduces Ab42 and Ab38 with a single oral dose in
Sprague Dawley rats
The compound was assessed for efficacy in Sprague
Dawley rats. SPI-1865 has a delayed Tmax and half-life
in excess of 24 hrs following a single oral dose in rats
(Table 1). Based on this profile, compound efficacy was
examined using a single oral dose and tissues were
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harvested 24 hrs post dose. Male Sprague Dawley rats
were administered an oral dose of 10, 30 or 100 mg/kg
SPI-1865 in a formulation of 10/20/70 of ethanol/crema-
phor/water. The average amounts of Ab38, Ab40 and
Ab42 (pg Ab/g of brain) for the vehicle-treated group of
rats were 312 ± 21, 3,094 ± 192 and 682 ± 61, respec-
tively. As shown in Figure 3, at all doses, a significant
lowering of brain Ab42 and Ab38 levels was observed
compared to vehicle-treated animals. Ab40 was signifi-
cantly reduced at only the highest dose by 22 ± 5%
(average percent lowering ± standard error of the mean,
SEM). The decreases in Ab42 levels were dose-respon-
sive and correlated with the exposures in both brain and
plasma. In the rats dosed with 10 mg/kg SPI-1865, brain
levels reached 2.8 ± 0.3 μM and plasma levels were
3.3 ± 0.1 μM, which resulted in a lowering of Ab42 by
21 ± 6% relative to vehicle control. The compound
levels increased with the 30 mg/kg dose to 11 ± 1 μM

in the brain and 8.5 ± 0.3 μM in the plasma and resulted
in a 37 ± 5% decrease in Ab42. In the 100 mg/kg dose
group, brain levels reach 33 ± 2 μM and plasma levels
were 14 ± 1 μM of SPI-1865, leading to an Ab42 reduc-
tion of 50 ± 5%. Similar changes occurred with brain
Ab38 levels, resulting in dose-responsive reductions of
26 ± 5, 36 ± 3 and 47% ± 5 upon the administration of
10, 30 and 100 mg/kg SPI-1865, in that order. These data
demonstrate that SPI-1865 is capable of modulating
gamma-secretase in vivo and results in a similar Ab pro-
file as observed in vitro.

Efficacy in Sprague Dawley rats is improved following
multiple day dosing
To further investigate the effects of SPI-1865 in the rat,
a multiple-day study was performed. Male Sprague Daw-
ley rats were orally dosed once a day for six days with
10, 30 or 60 mg/kg of SPI-1865. The average amounts

Table 1 Pharmacokinetic properties of SPI-1865 in mouse and rat

Species Volume (L/kg)2 Brain/plasma (24 h)1 T1/2 (h)2 Tmax

Mouse 9.2 0.4 to 1.4 8.3 approximately 4 hrs

Rat 5.8 0.5 to 1.5 129 6 to 8 hrs

The pharmacokinetic properties of SPI-1865 were assessed in both mouse and rat. 1Based on various oral dosing regimens; 2Volume and T1/2 values are based on
intravenous drug delivery data. T1/2, half-life; Tmax, time of maximum concentration.
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Figure 3 SPI-1865 dose-responsively lowers b-amyloid (Ab)42 and Ab38 after a single oral dose. Sprague Dawley rats were orally
administered a single dose of SPI-1865 of 10, 30 or 100 mg/kg. Plasma and brain were harvested 24 hrs post dose and analyzed for compound,
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of Ab38, Ab40 and Ab42 (pg Ab/g of brain) for the vehi-
cle-treated group of rats were 98 ± 47, 2,690 ± 92 and
840 ± 32, respectively. As shown in Figure 4, the
10 mg/kg dose resulted in brain levels of 4.4 ± 0.2 μM,
plasma levels of 8.0 ± 0.4 μM, and approximately a 25%
reduction in both brain Ab38 and Ab42 levels with no
significant alteration in Ab40 as compared to vehicle
control. The 30 mg/kg dose lowered both Ab38 and
Ab42 levels in the brain by roughly 44%, with brain
exposures of 16 ± 1 μM and plasma levels 13 ± 1 μM,
once again without significantly affecting Ab40. At the
highest dose, Ab42 was reduced by 66 ± 1% at exposures
of approximately 45 μM (brain) and 19 ± 1 μM
(plasma). At this highest dose, Ab40 was significantly
lowered by 26 ± 2%. For all doses, Ab38 levels were low-
ered to a similar degree as Ab42. This demonstrates that
multiple-day administration of SPI-1865 can result in
higher compound exposures and enhanced lowering of
Ab42 levels.

SPI-1865 reduces Ab42 and Ab38 in both brain and
plasma of Tg2576 mice
The use of transgenic mouse models, which over-
express human APP, allows for the measurement of Ab

peptides in three compartments: the brain, plasma and
CSF. In this study, three month old female Tg2576 mice
(n = 20 per group) were administered SPI-1865 for six
days, which is sufficient to reach steady state exposures
based on previous murine pharmacokinetic analysis
(data not shown). The mice received 10, 30, 60 or
90 mg/kg of SPI-1865 orally once a day for six days or a
positive control, Merck GSM-1, orally once on day six.
Samples were harvested 24 hrs post dose for SPI-1865
and 6 hrs post dose for GSM-1. CSF and blood were
directly harvested and the brain was perfused prior to
collection.
As shown in Figure 5, dose-responsive decreases in Ab38

and Ab42 were observed in plasma with SPI-1865. In the
brain, there was a trend towards lowering Ab38 and Ab42
levels, but the changes did not reach statistical significance.
Ab42 seemed to be somewhat lower in the 90 mg/kg dose
group in the CSF, but the change was also statistically
insignificant. The average amounts of Ab38, Ab40 and Ab42
in the brain (pg Ab/g of brain), for the vehicle-treated
group of Tg mice were 4,202 ± 547, 44,052 ± 5,262 and
6,470 ± 812, respectively. In the plasma of the vehicle-trea-
ted Tg2576 mice, average Ab38, Ab40 and Ab42 levels were
found to be 412 ± 21 6,266 ± 251 and 1,294 ± 66 pg Ab/g
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and 4,384 ± 446, 35,137 ± 4,111 and 5,057 ± 785 pg Ab/g
in the CSF, respectively. At the highest dose, an Ab42
reduction of 76 ± 2% in the plasma was observed, with a
plasma exposure of 6.4 ± 0.5 μM as measured 24 hrs post
the final dose. The 10 mg/kg-treated group had no signifi-
cant effect on any brain Ab levels with drug levels in brain
of 0.5 μM and plasma drug levels of 1 μM. The 30 and
60 mg/kg treatment groups had more pronounced reduc-
tions, which correlated with the increased brain and plasma
exposures. For example, in the 60 mg/kg group, compound
levels reached 5.4 ± 0.5 μM in the plasma and 3.9 ±
0.4 μM in the brain that resulted in a decrease in Ab38 by
50 ± 2.4% and Ab42 by 71 ± 2% in the plasma, respectively.
Merck GSM-1 significantly reduced Ab42 and increased
Ab38 levels. In this study, large variability was observed in
both the brain and CSF samples, possibly due to blood
contamination in both tissues. The variability was also
observed in the vehicle and positive control groups, indi-
cating that this is not a consequence of SPI-1865
treatment.

Most interestingly, when examining the total data set
from the transgenic mouse study, the plasma reductions
stand out as being significantly greater than those in
brain and CSF. It has been reported that the Tg2576
mice do produce peripheral Ab and SPI-1865 could be
impacting those sources directly [43]. Other studies with
SPI-1865 indicate that the compound is highly protein
bound, with 97.6% bound in the plasma and approxi-
mately 99.9% in the brain. When we calculate the free
fraction in plasma from the 90 mg/kg dose group where
there was 76% lowering of plasma Ab42, the free plasma
fraction is calculated to be 154 nM which exceeds the
IC50 of 106 ± 19 nM. If we perform a similar comparison
focusing on plasma levels using the 30 mg/kg group,
where 58% lowering was observed, the free plasma levels
are found to be 60 nM, which with inherent assay varia-
bility is reasonably close to the in vitro IC50 of 106 nM.
These data suggest that free plasma concentrations of
SPI-1865 are driving the efficacy that was observed in the
periphery. In the brain, the highest dose resulted in a
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Figure 5 Efficacy data for SPI-1865 in human amyloid precursor protein (APP)-overexpressing transgenic mice. SPI-1865 was orally
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non-significant 30% lowering and a calculated brain free
fraction of 6.9 ± 6 nM, which is in the range of the IC25

of 33 ± 18 nM. With the difficulty in measuring brain
protein binding accurately when the free fraction is quite
small, the high variability in measuring Tg2576 brain
Ab42 in vivo and the fact that there were no significant
data points for brain Ab42 lowering, we needed another
study investigating free brain versus free plasma concen-
trations as the cause of Ab42 reduction in the central
compartment.

SPI-1865 lowers Ab42 and Ab38 in wild-type CD-1 mice
To further examine the effects of SPI-1865, an improved
study design in wild-type mice, which have much less
variability in Ab levels, was performed. However, due to
very low plasma levels of Ab in wild-type mice, we are
unable to measure efficacy in plasma. Based on the half-
life of 8 hrs and a Tmax of approximately 4 hrs in the
mouse, samples were collected 6 hrs post dose to opti-
mize the measurement of Ab and compound exposures.
A twice-daily (BID) dosing regimen for six days was
selected to ensure steady state was attained and maxi-
mize the time SPI-1865 was engaged with the enzyme
complex. The results of this treatment are shown in
Figure 6. The average amounts of Ab38, Ab40 and Ab42
in the brain (pg Ab/g of brain) for the vehicle-treated
group of wild-type mice were 324 ± 8.5, 4,465 ± 98 and
1,012 ± 18, respectively. A significant lowering of brain
Ab42 was observed at all doses. Brain Ab38 was also sig-
nificantly lowered at the two top doses and a slight, but
significant lowering of 11% was observed for brain Ab40
levels at the 30 mg/kg dose. The total compound expo-
sures in the 50 mg/kg BID group were found to be
7.6 ± 0.3 μM in the plasma and 22 ± 1 μM in the brain
where brain Ab42 was decreased by 47 ± 2%. The
30 mg/kg BID treatment reduced brain Ab42 by 39 ± 2%
with a total plasma exposure of 4.4 ± 0.3 μM and brain
levels of 8.7 ± 1 μM. In the 15 mg/kg BID-treated ani-
mals, brain exposures of 3.6 ± 0.1 μM and a plasma
exposure of 3.4 ± 0.2 μM to reduce brain Ab42 by 22%.
The percent Ab42 lowering of each dosed animal was

plotted against the plasma (Figure 6B) and brain expo-
sures (Figure 6C) in μM. Best-fit lines were superim-
posed over the data revealing the roughly hyperbolic
nature of the PK/PD relationship in BID-dosed mice.
From these lines, the plasma and brain exposure levels
required for 25% and 50% Ab42 lowering were extrapo-
lated. We found that 25% Ab42 lowering correlated with
a 2.3 μM exposure in the plasma and 3.8 μM exposure
in the brain and the exposure levels associated with 50%
Ab42 lowering were 5.9 and 25.2 μM in the plasma and
brain, respectively. We compared brsain free-fraction
levels to the efficacy and once again found the expo-
sures to be below the IC25 (33 ± 18 nM) even at the

highest dose where 22 ± 1 nM was achieved and corre-
sponded with 47% reduction. Taken together with the
Tg2576 data, we cannot determine if brain free-fraction
plays a role in SPI-1865 efficacy. Conversely, plasma
free-fraction, and the observed efficacy in the brain,
appear to be strongly correlated. At the highest dose,
plasma free-fraction was calculated to 182 nM, which
resulted in a 47% reduction in brain Ab42, while the 30
mg/kg dose group was determined to have a plasma
free-fraction of 105 nM (39% lowering of brain Ab42)
and the low dose, a plasma free-fraction of 82 nM (22%
lowering of brain Ab42). With an in vitro Ab42 IC50 of
106 ± 19 nM and an IC25 of 33 ± 18 nM, there is a sig-
nificant correlation between plasma free-fraction and
brain efficacy. At all doses, the plasma free-fraction was
slightly higher than the amount of compound expected
to induce the same response in vitro, but the numbers
are within the range of variability. Taken together these
data further support the Tg2576 data that plasma free-
fraction of SPI-1865 correlates with brain efficacy.

Discussion
The studies described here demonstrate that SPI-1865 is
a novel modulator of gamma-secretase, which is capable
of lowering both Ab42 and Ab38 in multiple animal
models. In Sprague-Dawley rats, the compound effec-
tively lowered Ab42 levels following a single dose. With
once a day dosing for six days, the Ab42 and Ab38
response was improved. Given that the half-life of SPI-
1865 is greater than 24 hrs in the rat, improved efficacy
was anticipated, since accumulation of compound in the
plasma occurs following multiple days of dosing. How-
ever, the compound levels in the brain did not show the
same degree of accumulation with multiple dosing, even
though brain efficacy was improved. Based on multiple
in vitro studies (data not shown), SPI-1865 is not a sub-
strate for transporters nor does it cause CYP induction,
either of which may lower the brain exposure. Together
these data suggest that sustained exposure to SPI-1865
levels over multiple days contributes to enhanced effi-
cacy of the compound to modulate gamma-secretase.
SPI-1865 was next examined for efficacy in 3-month-

old, female Tg2576 mice. These mice produce human
APP with the SWE mutation via the prion promoter
[44]. The transgene expression has been shown to be
highest in the brain, but the transgene is also expressed
in peripheral tissues [43]. The peripheral production of
Ab in the Tg2576 mouse may influence the effects of
SPI-1865 on brain Ab versus plasma Ab levels when
comparing efficacy in transgenic and wild-type models.
Data from this study indicate that SPI-1865 readily

crosses the blood-brain barrier, as evident in the levels
of SPI-1865 measured in brain. The ability to measure
efficacy in both the brain and plasma compartments in
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the transgenic mice allows us to probe whether total or
free concentrations of compound drives efficacy. If total
compound were responsible for efficacy in both tissue
compartments, one would expect to see similar
decreases in Ab42 and Ab38 in both the plasma and
brain in the Tg2576, as the exposure in each compart-
ment is similar. However, what is observed is a signifi-
cantly improved lowering of Ab42 and Ab38 in the

plasma relative to the brain. The most likely reason for
the difference in efficacy between the two compartments
is the level of free drug available in the plasma versus
the brain. The level of compound binding in the plasma
is 97.6% based on in vitro studies, leaving 2.4% free
compound to interact with gamma-secretase. This is a
significantly higher free fraction than the estimates for
free fraction in the brain, where protein binding was
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Figure 6 Steady-state efficacy of SPI-1865 in wild-type mice. SPI-1865 was orally dosed twice daily (BID) for six days in male CD-1 mice.
Tissues were harvested 6 hrs after the final dose. The levels of compound, b-amyloid (Ab)38, Ab40, Ab42 were measured in brain. Compound
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1865 in cells.
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measured at approximately 99.9%. When the average
free fraction for each compartment is compared for the
90 mg/kg dose (braintotal = 6.9 μM; plasmatotal = 6.4
μM), the plasma free-fraction levels of 153 nM exceed
the in vitro IC50 of SPI-1865 (106 ± 19 nM) and plasma
Ab42 levels were lowered by 76 ± 2%. The average brain
free-fraction was only 6.9 nM, below the IC25 of 33 ±
18 nM, and while a trend toward lowering of Ab42 was
observed, it was not statistically significant. It is impor-
tant to note the high variability of Ab42 measurement in
the Tg2576 brains impacted the ability to see statistically
significant decreases in brain Ab42, even with a large
number of animals per group (n = 20) and may affect
our determination of free versus bound in the brain.
Moreover, it is challenging to get an accurate measure
of free concentration in brain when brain protein bind-
ing is greater than 99%. Even in the face of these techni-
cal challenges, the data presented here indicate that the
plasma free-fraction of SPI-1865 correlates most closely
with Ab lowering in that compartment.
In the Tg2576 study, the changes in CSF Ab levels

were examined along with the plasma and brain. While
treatment with SPI-1865 trended towards a decrease in
brain Ab38 and Ab42 and significantly lowered the
plasma levels of Ab42 at the three highest doses tested,

in the CSF the Ab peptide levels were not significantly
decreased. There are several possible explanations for
the lack of a significant effect. The high variability in
CSF Ab measurements within this study may mask an
effect on the Ab38 and Ab42 levels. In addition, the tim-
ing of sample collection relative to dosing may have
been more optimal to assess plasma changes than to
assess changes in brain and CSF Ab levels.
In wild-type mice, we further investigated the in vivo

activity of SPI-1865 once steady state plasma levels were
achieved. With a half-life of 8 hrs and a Tmax of
approximately 4 hrs in the mouse (Table 1), a six-day
BID dosing study was designed to measure exposure
and Ab levels 6 hrs post dose, allowing maximal efficacy
to be observed by capturing exposures near the maximal
plasma concentration and providing nearly continuous
engagement with the enzyme. This is different from the
Tg2576 study where once-a-day dosing was utilized for
six days and samples were harvested 24 hrs post dose.
In this study, there was much less variability of Ab
levels among animals than the Tg2576 mice and six
days of BID dosing resulted in a significant lowering of
brain Ab42 at all doses compared to vehicle-dosed ani-
mals. Plasma and CSF levels were not measured in this
experiment. When we examined plasma free-fraction

Table 2 Summary of SPI-1865 PK/PD studies in wild-type and transgenic mouse and wild-type rat

Species and dosing regime Dose
(mg/kg)

Tissue Plasma
exposure (μM)

Brain
exposure (μM)

%Ab38
lowering

%Ab40
lowering

%Ab42
lowering

Collection
time (hrs)

Wild-type rat single dose 10 Brain 3.3 ± 0.1 2.8 ± 0.3 26 ± 5 1 ± 5 21 ± 6* 24

30 Brain 8.5 ± 0.3 11 ± 1 36 ± 3* 14 ± 4 37 ± 5* 24

100 Brain 14 ± 1 33 ± 2 47 ± 5* 22 ± 5* 50 ± 5* 24

Wild-type rat multiple doses 10 Brain 8.0 ± 0.4 4.4 ± 0.2 27 ± 3* 1 ± 2 24 ± 2* 24

30 Brain 13 ± 1 16 ± 1 49 ± 2* 8 ± 3 44 ± 2* 24

60 Brain 19 ± 1 45 ± 4 61 ± 2* 26 ± 2* 66 ± 1* 24

Tg2576 mouse multiple doses 10 Brain 1.1 ± 0.2 0.5 ± 0.1 -16 ± 12 -14 ± 11 -9 ± 10 24

30 Brain 2.5 ± 0.1 1.3 ± 0.1 6 ± 9 6 ± 9 7 ± 9 24

60 Brain 5.4 ± 0.5 3.9 ± 0.4 14 ± 10 2 ± 10 19 ± 8 24

90 Brain 6.4 ± 0.5 6.9 ± 0.6 27 ± 8 8 ± 9 30 ± 6 24

10 Plasma 1.1 ± 0.2 0.5 ± 0.1 25 ± 5 6 ± 7 25 ± 5* 24

30 Plasma 2.5 ± 0.1 1.3 ± 0.1 26 ± 5 17 ± 5 58 ± 3* 24

60 Plasma 5.4 ± 0.5 3.9 ± 0.4 50 ± 5* 15 ± 7 71 ± 2* 24

90 Plasma 6.4 ± 0.5 6.9 ± 0.6 46 ± 6* 9 ± 6 76 ± 2* 24

10 CSF 1.1 ± 0.2 0.5 ± 0.1 -2 ± 9 -3 ± 9 1 ± 11 24

30 CSF 2.5 ± 0.1 1.3 ± 0.1 4 ± 10 0 ± 11 6 ± 11 24

60 CSF 5.4 ± 0.5 3.9 ± 0.4 5 ± 9 -7 ± 12 22 ± 15 24

90 CSF 6.4 ± 0.5 6.9 ± 0.6 9 ± 11 10 ± 13 33 ± 14 24

Wild-type mouse multiple
twice-daily doses

15 Brain 3.4 ± 0.2 3.6 ± 0.1 13 ± 4 3 ± 2 22 ± 4* 6

30 Brain 4.4 ± 0.3 8.7 ± 1.0 30 ± 3* 11 ± 2* 39 ± 3* 6

50 Brain 7.6 ± 0.3 22 ± 1 28 ± 2* 9 ± 2 47 ± 2* 6

The pharmacokinetic and pharmacodynamic properties of SPI-1865 were assessed in mouse and rat model systems. *Statistically significant lowering of the
indicated b-amyloid (Ab) species compared to vehicle-treated animals (P < 0.01). CSF, cerebrospinal fluid. Values are given as the mean ± standard error of the
mean.
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versus efficacy, an Ab42 lowering of 22 ± 4%, 39 ± 3%
and 47 ± 2% occurred as the doses increased, and these
changes corresponded with free plasma concentrations
of 82, 105 and 182 nM, respectively. Together, this
wild-type mouse study in combination with the Tg2576
model and rat data, demonstrate the ability of SPI-1865
to lower both Ab38 and Ab42 in vivo.

Conclusions
Taken together the data shown in these studies demon-
strate that SPI-1865 is an efficacious gamma-modulator
in vivo (all in vivo data are summarized in Table 2).
This is demonstrated in multiple rodent models using a
single dose, multiple-day dosing or a multiple-day BID
dosing regimen. These data indicate that SPI-1865 is
orally bioavailable, brain penetrant, and has a different
Ab profile from other GSMs, both in vitro and in vivo.
SPI-1865 lowers Ab42 and Ab38 while sparing Ab40
levels. This novel GSM pharmacology is dose-respon-
sive, driven by the plasma free-fraction of the compound
and is capable of reducing both Ab42 and Ab38 levels in
APP over-expressing mice. Overall, SPI-1865 exemplifies
the unique Ab profile and good drug-like properties of
SPI compounds, and further suggests they may be novel
therapeutic approaches for Alzheimer’s disease.
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