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Abstract 

Background  The accumulation of amyloid-β (Aβ) peptide in the brain is a hallmark of Alzheimer’s disease (AD), occur-
ring years before symptom onset. Current methods for quantifying in vivo amyloid load involve invasive or costly proce-
dures, limiting accessibility. Early detection of amyloid positivity in non-demented individuals is crucial for aiding early 
AD diagnosis and for initiating anti-amyloid immunotherapies at early stages. This study aimed to develop and validate 
predictive models to identify brain amyloid positivity in non-demented patients, using routinely collected clinical data.

Methods  Predictive models for amyloid positivity were developed using data from 853 non-demented participants 
in the MEMENTO cohort. Amyloid levels were measured potentially repeatedly during study course through Positron 
Emision Tomography or CerebroSpinal Fluid analysis.

The probability of amyloid positivity was modelled using mixed-effects logistic regression. Predictors included demo-
graphic information, cognitive assessments, visual brain MRI evaluations of hippocampal atrophy and lobar micro-
bleeds, AD-related blood biomarkers (Aβ42/40 and P-tau181), and ApoE4 status. Models were subjected to internal 
cross-validation and external validation using data from the Amsterdam Dementia Cohort. Performance also was eval-
uated in a subsample that met the main criteria of the Appropriate Use Recommendations (AUR) for lecanemab.

Results  The most effective model incorporated demographic data, cognitive assessments, ApoE status, and AD-
related blood biomarkers, achieving AUCs of 0.82 [95%CI 0.81-0.82] in MEMENTO sample and 0.90 [95%CI 0.86-0.94] 
in the external validation sample. This model significantly outperformed a reference model based solely on demo-
graphic and cognitive data, with an AUC difference in MEMENTO of 0.10 [95%CI 0.10-0.11]. A similar model with-
out ApoE genotype achieved comparable discriminatory performance. MRI markers did not improve model perfor-
mance. Performances in AUR of lecanemab subsample were comparable.

Conclusion  A predictive model integrating demographic, cognitive, and blood biomarker data offers a promising 
method to help identify amyloid status in non-demented patients. ApoE genotype and brain MRI data were not nec-
essary for strong discriminatory ability, suggesting that ApoE genotyping may be deferred when assessing the risk-
benefit ratio of immunotherapies in amyloid-positive patients who desire treatment. The integration of this model 
into clinical practice could reduce the need for lumbar puncture or PET examinations to confirm amyloid status.
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Background
The accumulation of brain amyloid-β (Aβ) plaques is a 
key pathological feature of Alzheimer’s disease (AD), 
which can occur several years before the onset of objec-
tive cognitive impairment [1, 2]. Aβ plaque targeting is 
a potential approach to modifying disease progression. 
Recent clinical trials have shown that high-clearance 
anti-amyloid immunotherapies (gantenerumab, aduca-
numab, lecanemab, and donanemab) effectively remove 
amyloid plaques, as measured by amyloid-PET [3–6]. 
Beyond biological efficacy, lecanemab and donanemab 
exhibit modest clinical effects on cognitive and func-
tional decline in early AD. Aducanumab, lecanemab, and 
more recently, donanemab, have been approved by the 
United States Food and Drug Administration (FDA).

Anti-amyloid immunotherapies are only approved for 
amyloid-positive patients in the early stages of AD. Early 
intervention aimed at reducing Aβ accumulation in cog-
nitively normal amyloid-positive individuals is under 
investigation as a potential strategy to alter disease pro-
gression [7].

Anti-Amyloid clinical trials consistently reported that 
the risk of amyloid-related imaging abnormalities (ARIA) 
is higher in patients receiving active anti-amyloid immu-
notherapies. Although most ARIA cases are asympto-
matic, some patients experience headaches, confusion, 
visual disturbances, and, in rare instances, life-threaten-
ing complications [8]. A higher risk of ARIA is associ-
ated with apolipoprotein E (ApoE) homozygous ε4 allele 
carriage, higher treatment doses, the presence of base-
line cerebral microhaemorrhages or cortical superficial 
siderosis, and the use of antithrombotics [9]. Although 
anticoagulant treatments and significant vascular lesions 
on magnetic resonance imaging (MRI) are contraindi-
cations for lecanemab treatment, ApoE4 status (even 
homozygous ε4 allele carriage) is not a formal contrain-
dication according to the U.S. Appropriate Use Recom-
mendations (AUR) for lecanemab [10]. However, it is 
recommended to determine ApoE4 status and discuss 
the risk-benefit ratio before starting treatment [10].

In this new era of anti-amyloid treatments, only two 
methods are available in clinical practice to detect cer-
ebral amyloid: lumbar puncture (LP) for cerebrospinal 
fluid (CSF) collection and amyloid positron emission 
tomography (PET) neuroimaging. These procedures are 
either invasive or expensive, and only available in spe-
cialised clinical centres. Such limitations create practi-
cal, economic, and accessibility challenges in identifying 
eligible candidates for these treatments, emphasising the 
need for accurate and accessible tools to determine amy-
loid status.

In this context, we aimed to develop predictive mod-
els for amyloid positivity in individuals with subjective 

cognitive complaints or mild cognitive impairment, using 
measures routinely collected in clinical practice, and to 
evaluate their performance in a population that met the 
main criteria of the AUR for lecanemab.

Methods
Participants and data collection
The MEMENTO cohort, a French prospective clinical 
study, consecutively recruited 2,323 participants from 26 
memory clinics between April 2011 and June 2014. Eligi-
ble participants had either subjective cognitive complaints 
(SCC) or mild cognitive impairment (MCI) with a Clinical 
Dementia Rating (CDR) score ≤ 0.5 (no dementia). Exclu-
sion criteria were a history of head trauma resulting in 
persistent neurological deficits, recent stroke with ongoing 
neurological impairments during the preceding 3 months, 
brain tumour, epilepsy, schizophrenia, a known gene 
mutation for autosomal dominant AD, and illiteracy. Par-
ticipants attended follow-up every six to twelve months for 
five years. A comprehensive clinical examination was con-
ducted at each visit, and participants underwent an annual 
neuropsychological assessment. Brain MRI was conducted 
at baseline and every two years, along with blood sampling 
for biobank storage. According to the protocol, both exam-
inations were mandatory at baseline. Lumbar puncture 
and amyloid PET imaging were optional. The study proce-
dures have been previously published [11].

In this project, the study population was restricted to 
participants aged ≥ 60 years with known amyloid status 
and without dementia at the time of amyloid status deter-
mination (see the flowchart in Fig. 1A).

Determination of amyloid status
Amyloid status was assessed using amyloid PET and CSF 
analysis. A lumbar puncture was repeatedly offered dur-
ing on-site visits, with a maximum of three procedures 
per participant. The levels of amyloid-β 42 (Aβ42) and 
amyloid-β 40 (Aβ40) peptides in CSF from the cen-
tralised biobank were analysed using the standardised 
sandwich immunoassay method with the commercial 
INNOTEST Kit (Fujirebio, Belgium). Participants were 
classified as CSF-amyloid positive if their Aβ42 level was 
< 750 pg/mL.

Two optional ancillary studies, Insight-PreAD (at inclu-
sion) and MEMENTO-AmyGing (initiated on average 2 
years after baseline), provided amyloid PET images for a 
subsample of MEMENTO participants [12, 13]. In these 
ancillary studies, a second examination was offered 2 
years later. The Center for Image Acquisition and Pro-
cessing (CATI; http://​cati-​neuro​imagi​ng.​com/) ensured 
the standardisation of amyloid PET imaging acquisition 
and performed quality control checks and post-process-
ing of the PET images.

http://cati-neuroimaging.com/
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Depending on the centre, PET imaging was per-
formed using either 18  F-Florbetapir (18  F-AV45, 
Amyvid) or 18  F-Flutemetamol (Vizamyl). Amy-
loid positivity was defined as a standard uptake value 
ratio (SUVr) of > 0.88 for Florbetapir and > 1.063 for 
Flutemetamol [14].

In total, 1505 amyloid assessments (CSF or PET) were 
available; 59% of the participants (n = 504) had more than 
one amyloid measurement available (Fig. 1C). The analy-
ses were conducted using amyloid status as the statistical 
unit.

The high concordance between Aβ42 concentrations 
in CSF and amyloid PET results (with Florbetapir or 
Flutemetamol) in patients with mild cognitive impair-
ment justified considering these three methods to be 
interchangeable for amyloid status determination [15, 16].

Predictors of amyloid positivity
Candidate predictors were selected based on a literature 
review and their availability. For predictors collected or 
measured repeatedly over time, the measurement closest 
to the amyloid assessment (CSF or PET) was used. Pre-
dictors were categorised into demographic and health 
factors, cognition factors, blood and genetic factors, and 
brain-imaging factors, as described below.

Demographic and health factors
During face-to-face interviews, information was col-
lected regarding age, sex, level of education, body mass 
index (BMI), and family history of dementia. The French 
baccalaureate was considered a high educational level; a 
family history of dementia was recorded if at least one 
grandparent, parent, aunt, uncle, first cousin, or sibling 
had been affected.

Cognition factors
At each annual on-site visit, a comprehensive neuropsy-
chological test battery was administered to assess mem-
ory, executive functions, language, and attention. Levels 
of performance on the following four cognitive tests were 
considered potential predictor variables: (i) the Mini-
Mental Score Examination (MMSE) as a global measure 
of cognitive performance, (ii) the sum of the three free 
recalls from the Free and Cued Selective Reminding Test 
(FCSRT) as a measure of memory performances [17], 
(iii) semantic verbal fluency (number of animals named 
in 120 s) [18], and (iv) the Trail-Making Test B (TMTB) 
for executive functions measured by the time required 
to complete the task [19]. Investigators and neuropsy-
chologists received training to ensure standardised scor-
ing while administering the neuropsychological test 

Fig. 1  Selection and distribution of amyloid assessments. The MEMENTO cohort, France, 2011–2014. A Flowchart of the study. B Number 
of amyloid assessments available per participant. C Amyloid assessments at each annual follow-up visit. CDR: Clinical Dementia Rating scale, ApoE: 
apolipoprotein E, Aβ: amyloid beta, amyloid PET: amyloid positron emission tomography, LP: lumbar puncture, SCD: subjective cognitive decline. 
An individual could meet more than one exclusion criterion
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battery. FCRST and semantic verbal fluency scores were 
standardised.

Blood and genetic factors
Baseline blood samples were centrally stored at -80 °C in 
the Genomic Analysis Laboratory-Biological Resource 
Centre (LAG-CRB) at the Pasteur Institute, Lille (BB-
0033-00071). The ratio between blood levels of Aβ42 and 
Aβ40 (Aβ42/40) and the phosphorylated tau (P-tau181) 
concentration were measured in plasma and serum sam-
ples using Simoa technology and commercial kits on 
a Quanterix HD-X Analyzer. Specifically, the Neurol-
ogy 3-Plex A Advantage Kit (item no. 101995) was used 
for Aβ42 and Aβ40, and the P-tau181 Advantage V2 Kit 
(item no. 103714) was used for P-tau181. These analy-
ses were performed at the research platform of Bor-
deaux University Hospital (Bordeaux Biothèques Santé, 
Center for Biological Resources). The Aβ42/40 ratio and 
P-tau181 concentration were measured in all baseline 
blood samples, then used in the models as continuous 
standardised log-transformed variables.

The apolipoprotein E (ApoE) genotype (0, 1, or 2 
alleles) was determined by KBiosciences (UK) [11]. The 
number of ε4 alleles was included as a categorical predic-
tor variable in the models.

Brain‑imaging factors
Brain MRI was performed on 1.5- or 3-Tesla MRI scan-
ners at all centres, at inclusion and at the 2- and 4-year 
follow-ups. Similar to the amyloid PET acquisitions, MRI 
scans were centralised, quality-controlled, and post-pro-
cessed by CATI.

We considered two MRI markers visually assessed: 
hippocampal atrophy and the number of lobar cer-
ebral microbleeds (CMBs). The Scheltens scale for hip-
pocampal atrophy scoring was used, and the highest 
atrophy score (from 0 to 4) between the right and left 
hippocampus was considered [20]. CMBs were visu-
ally evaluated by a team at the Toulouse Department of 
Neurology (Hôpital Pierre-Paul Riquet) from T2*-GRE 
MRI sequences using the Microbleed Anatomical Rating 
Scale (MARS) to assess the presence, quantity, and dis-
tribution of CMBs [21]. Microbleeds were categorised as 
lobar (in cortical and cortico-subcortical areas) or deep 
(in the basal ganglia, thalamus, or brainstem). The num-
ber of lobar CMBs was used as a continuous variable in 
the models.

The Amsterdam dementia cohort (ADC)
The ADC cohort, established at the Alzheimer Center 
Amsterdam within the Amsterdam University Medical 
Center since 2000, aims to support patients while advanc-
ing disease research [22]. Participants were included 

for external validation using the same inclusion criteria 
as the development sample (age ≥ 60 years, CDR ≤ 0.5, 
with CSF or PET amyloid measurement within 1 year 
of plasma biomarker measurement). Variables differing 
between the development and validation studies are pre-
sented in Table S1.

Statistical analysis
Participant characteristics were described both globally 
and according to amyloid positivity status, with frequen-
cies and percentages for qualitative variables and with 
medians and first and third quartiles (Q1-Q3) for quan-
titative variables in both the development and external 
validation samples. The development of the prediction 
models followed the Transparent Reporting of a Mul-
tivariable Prediction Model for Individual Prognosis or 
Diagnosis (TRIPOD) recommendations [23].

The baseline model (Model 1) was computed using 
only cognitive, demographic, and health variables 
(Fig.  2). Subsequently, combinations of other predictors 
(ApoE4 status, AD-related blood biomarkers, and brain 
imaging) were incorporated (Models 2–6; Fig.  2). These 
nested models reflect the range of daily routine clinical 
data available to memory clinic physicians.

Because a participant’s amyloid status could be meas-
ured at multiple time points during follow-up using 
two techniques (CSF and amyloid PET), we utilised 
mixed-effect logistic regression models to predict amy-
loid status, with a random effect on the intercept to 
adjust for the non-independence of the measurements. 
Model performance was assessed using the following 
metrics:

1.	 Brier score (BS) for prediction errors, ranging from 0 
to 1, with a lower score indicating better model per-
formance.

2.	 Area Under Curve (AUC) and Receiving Operator 
Characteristic (ROC) curve for discrimination, rang-
ing from 0 to 1, with 1 indicating perfect discrimina-
tion ability.

3.	 Calibration curves for agreement between pre-
dicted and observed probabilities of amyloid positiv-
ity, where a smaller gap between the bisector of the 
graph and the model’s prediction curve indicates bet-
ter calibration.

4.	 Global accuracy evaluated using the Youden Index, 
which maximises both sensitivity (true positive rate) 
and specificity (true negative rate). The specificity 
of each model was determined at a fixed sensitivity 
of 0.9, adapting the recommendations of the Global 
CEO Initiative on Alzheimer’s Disease for the accept-
able performance of blood biomarker tests for amy-
loid pathology [24].
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The added value of Models 2 to 6 relative to the base-
line model (Model 1) was estimated and referred to as 
AUC Delta and Brier score Delta, respectively.

Missing data for predictors (Table S2) were imputed 
using the multivariate imputation by chained equations 
(MICE) method (MICE package in R software). Twenty 
imputed datasets were generated, considering sets of 
measures in clusters for the same participant. For each 
imputed dataset, fivefold repeated cross-validation (50 
iterations) was implemented to calculate Brier scores and 
AUCs (BScv and AUC​cv), along with their corresponding 
variances. The final equation for each prediction model, 
as well as the associated performance indicators, was 
obtained by pooling the results of the twenty imputed 
datasets in accordance with Rubin’s rule [25].

The linearity assumptions of quantitative variables 
were checked using Fractional Polynomials (mfp package 
in R software) of order 2, and variables were transformed 
if necessary [26]. Both AD-related blood biomarker 

variables were log-transformed, and the lobar micro-
bleeds variable was square-root transformed.

External validation : the Amsterdam dementia cohort (ADC)
The equations of the six prediction models were applied 
to the ADC sample for external validation, and their dis-
criminatory power was evaluated by calculating the AUC. 
The difference in amyloid positivity prevalence between 
the development and validation samples was addressed 
by adjusting the intercept of each model, using the ratio 
of prevalence in the validation sample to prevalence in 
the development sample [27].

Sensitivity analyses
We tested the models’ abilities to predict amyloid posi-
tivity in a subsample of participants who met the main 
exclusion criteria of the AUR for lecanemab. This sub-
sample excluded participants who had subjective cogni-
tive decline, were receiving anticoagulant therapy, had 

Fig. 2  Distribution of predictors according to the six amyloid-status prediction models. The MEMENTO cohort, France, 2011–2014. Aβ: amyloid 
beta, BMI: body mass index, memory test: Free and Cued Selective Reminding Test (FCSRT) used in the MEMENTO cohort and the Rey Auditory 
Verbal Learning Test (RAVLT) in the external validation cohort ADC, TMT B: Trail-Making Test B, MMSE: Mini-Mental State Examination, CDR: Clinical 
Dementia Rating scale, ApoE: apolipoprotein E, MRI: magnetic resonance imaging
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more than four cerebral microbleeds, presented with 
cortical superficial siderosis, or had severe white matter 
hyperintensities (Fazekas 3).

Cortical superficial siderosis was investigated by a team 
at the Toulouse Department of Neurology, and white 
matter hyperintensity volumetry was determined using 
the automated WHASA software, complemented by a 
visual assessment performed centrally at CATI by two 
trained physicians using the Fazekas scale [28, 29].

Due to the significantly increased risk of ARIA in indi-
viduals homozygous for ApoE ε4, the prescription of 
anti-amyloid drugs for these patients remains an open 
question. For this reason, the models also were tested on 
the AUR population for lecanemab, excluding ApoE ε4 
homozygous individuals.

A second sensitivity analysis aimed to assess the impact 
of the delay between baseline measurements of AD-related 
blood biomarkers and the determination of amyloid status 
on model performance. The elapsed time between these 
measurements was included as a covariate in the models. 
By testing the statistical significance of this delay variable, 
we sought to determine whether time-related changes in 
biomarker levels could affect prediction accuracy.

Analyses were conducted using R (version 4.1.3) and 
SAS 9.4.

Results
Among the 2323 individuals enrolled in MEMENTO, 
853 were included in the models development popula-
tion (development sample) (Fig.  1A), comprising 1505 
amyloid evaluations (504 individuals with at least two 
measurements, Fig.  1B). Among these 504 individuals, 
92% maintained a stable amyloid status throughout the 
follow-up period, while 8% experienced a change in amy-
loid status. Most amyloid examinations in MEMENTO 
participants were performed at baseline and after 2 years 
of follow-up (Fig. 1C). Of these examinations, 31% were 
LPs and 69% were amyloid PET scans (48% Florbetapir 
amyloid PET, 21% Flutemetamol amyloid PET).

Characteristics of development and validation samples
Table  1 describes participant characteristics at the time 
of amyloid status determination in the development and 
external validation samples. In the MEMENTO analyti-
cal sample, a participant could undergo multiple amyloid 
status assessments during the course of the study. Amy-
loid status was positive in 28.0% of examinations in the 
development sample and in almost half (49.2%) of those 
in the validation sample.

Compared to the development sample, participants in the 
ADC sample were younger (68 vs. 74 years), had a higher 
frequency of a family history of AD (54% vs. 38%), included 
a larger proportion of men (62% vs. 43%), had a higher rate 

of MCI (CDR = 0.5; 57% vs. 42%), and had a higher rate of 
ApoE ε4 allele homozygosity (13.8% vs. 3.1%).

In both the development and external validation samples, 
Aβ positivity was associated with older age, worse cognitive 
performance, higher ApoE ε4 carriage, and more severe 
hippocampal atrophy. Additionally, the blood Aβ42/40 
ratio was lower, and the level of P-tau181 was nearly two-
fold higher in Aβ + participants than in Aβ- participants.

Predictive performance and accuracy of the models
The performances of the six prediction models in the 
development sample are shown in Fig. 3, with the asso-
ciated odds ratios displayed in Table S3. Model 1, which 
included only demographic and cognitive predictors, 
demonstrated moderate predictive performance with an 
AUC​cv of 0.72 [95% CI 0.71–0.72] and a BScv of 0.17 [95% 
CI 0.17–0.17] (Fig. 3A).

Compared with the reference Model 1, predictive per-
formance improved with the inclusion of ApoE status 
(Model 2, AUC​cv = 0.76 [95% CI 0.75–0.76], BScv = 0.16 
[95% CI 0.16–0.16]), as well as AD-related blood bio-
markers (Model 3, AUC​cv = 0.80 [95% CI 0.79–0.80], BScv 
= 0.15 [95% CI 0.15–0.15]). Conversely, the addition of 
hippocampal atrophy and lobar microbleeds to Model 
1 did not enhance predictive performance (Model 4, 
AUC​cv = 0.71 [95% CI 0.70–0.72], BScv = 0.17 [95% CI 
0.17–0.18]). The best performance was obtained when 
demographic, cognitive, ApoEε4, and AD-related blood 
variables were included in the same model (Model 5, 
AUC​cv = 0.82 [95% CI 0.81–0.82], BScv = 0.14 [95% CI 
0.14–0.15]). The addition of MRI variables to Model 5 
did not further enhance predictive performance (Model 
6, AUC​cv = 0.81 [95% CI 0.80–0.82], BScv = 0.14 [95% CI 
0.14–0.16]). Thus, although its performance was simi-
lar to that of Model 6, Model 5 was more parsimonious. 
Excluding Model 6, the best balances of sensitivity and 
specificity according to Youden’s index were observed 
for Models 5 and 3 (Model 5: Se = 0.64/Sp = 0.84, Model 
3: Se = 0.77/Sp = 0.69). When sensitivity was fixed at 0.9, 
Models 5 and 3 demonstrated the highest specificities of 
0.48 and 0.39, respectively. All calibration curves in the 
training set showed that the predictions had high accu-
racy and reliability compared with actual observations 
(Fig. 3B).

The models were also tested by adding all significant 
interactions between the different variables of the six 
models. No improvement in performance was observed 
(results not shown). For the sake of parsimony and to 
ensure the simplicity and interpretability of the mod-
els, we therefore chose to retain the version without 
interactions.

To explore the impact of reducing the number of vari-
ables, we assessed three simplified models, each retaining 
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Table 1  Distribution of characteristics according to amyloid status in the development (N = 1505) and external validation (N = 260) 
samples

Note Sample characteristics according to amyloid status were evaluated at the time of the examination in the MEMENTO population; the same participant might have 
contributed multiple times

Aβ Amyloid beta, BMI Body mass index, ADC Alzheimer Disease Cohort, FCSRT Free and Cued Selective Reminding Test, TMT B Trail-Making Test B, MMSE Mini-Mental 
State Examination, CDR Clinical Dementia Rating scale, ApoE apolipoprotein E
* High educational level: above the baccalaureate, aThe recall memory test used in the MEMENTO cohort was the Free and Cued Selective Reminding Test (FCSRT) and 
the Rey Auditory Verbal Learning Test (RAVLT) was used in the external validation cohort ADC, bThe verbal fluency test (animals) was conducted for 2 min in MEMENTO 
and for 1 min in ADC, cin ADC, all cerebral microbleeds were used

Development set: MEMENTO Validation set: ADC

Aβ – Aβ + Total Aβ – Aβ + Total

N (%) 1090 (72.4) 415 (27.6) 1505 132 (50.8) 128 (49.2) 260

Characteristics at amyloid assessment:

  Demographics
    Sex female - n (%) 629 (57.7) 230 (55.4) 859 (57.1) 37 (28.0) 61 (47.7) 98 (37.7)

    Age (years) - median [Q1-Q3] 73.3 [67.9–77.6] 76,5 [72,1–80,1] 74,3 [68,8–78,3] 66.5 [63.2–70.0] 68.7 [65.5–71.4] 67.6 [63.9–71.2]

    High educational level* - n (%) 520 (47.8) 172 (41.4) 692 (46.0) 35 (26.5) 31 (24.2) 66 (25.4)

    Family history of AD - n (%) 346 (31.9) 143 (34.6) 489 (32.7) 58 (43.9) 83 (64.8) 141 (54.2)

    BMI < 25 kg/m²- n (%) 517 (47.4) 220 (53.0) 737 (49.0) 50 (37.9) 72 (56.2) 122 (46.9)

  Cognition
    Memory testa (number of words) - 
median [Q1-Q3]:

    FCSRT – Free recall 31 [26–35] 26 [17–32] 30 [24–34] - - -

    RAVLT – Free recall - - - 20 [15–25] 20 [15–25] 20 [15–25]

    TMT B (time in seconds) - median 
[Q1-Q3]

84 [65–110] 105 [79–152] 89 [67–117] 90.0 [71.8-123.2] 104.0 [78.8-138.8] 95.5 [75-131.2]

    Verbal fluency (animals)b (number 
of words) - median [Q1-Q3]:

    Conducted in 2 min 30 [24–36] 28 [21–34] 29 [23–35] - - -

    Conducted in 1 min - - - 20 [17-24.2] 19 [16–23] 12 [16–24]

    MMSE (total score) - median [Q1-Q3] 29 [28–30] 28 [26–29] 29 [27–30] 28 [27–29] 27 [26–29] 28 [26–29]

    CDR = 0 - n (%) 660 (61.7) 194 (48.1) 854 (58.0) 73 (55.3) 39 (30.5) 112 (43.1)

    CDR = 0.5 - n (%) 409 (38.3) 209 (51.9) 618 (42.0) 59 (44.7) 89 (69.5) 148 (56.9)

  Genetic
    Presence of ApoE ε4 alleles - n (%)

    No ε4 allele 799 (76.6) 189 (47.1) 988 (68.4) 105 (79.5) 28 (21.9) 133 (51.2)

    1 ε4 allele 229 (22.0) 182 (45.4) 411 (28.5) 26 (19.7) 65 (50.8) 91 (35.0)

    2 ε4 alleles 15 (1.4) 30 (7.5) 45 (3.1) 1 (0.8) 35 (27.3) 36 (13.8)

  Blood
    AB42/40 ratio - median [Q1-Q3] 0.06 [0.05–0.07] 0.05 [0.04–0.06] 0.06 [0.05–0.06] 0.06 [0.05–0.06] 0.05 [0.05–0.06] 0.05 [0.05–0.06]

    Ptau181 - median [Q1-Q3] 0.70 [0.48–0.98] 1.20 [0.82–1.75] 0.79 [0.51–1.21] 1.4 [1.1–1.7] 2.1 [1.7–2.6] 1.7 [1.3–2.3]

  MRI
    Hippocampal atrophy

    No atrophy - n (%) 106 (9.8) 21 (5.1) 127 (8.5) 44 (33.3) 39 (30.5) 83 (31.9)

    Possible atrophy - n (%) 729 (67.6) 208 (50.5) 937 (62.9) 64 (48.5) 56 (43.8) 120 (46.2)

    Discrete atrophy - n (%) 175 (16.2) 109 (26.5) 284 (19.1) 22 (16.7) 28 (21.9) 50 (19.2)

    Moderate atrophy - n (%) 55 (5.1) 62 (15.0) 117 (7.9) 2 (1.5) 5 (3.9) 7 (2.7)

    Severe atrophy- n (%) 13 (1.2) 12 (2.9) 25 (1.7) 0 (0.0) 0 (0.0) 0 (0.0)

    Lobar microbleedsc - median [min - 
max]

0 [0–50] 0 [0–25] 0 [0–50] 0 [0–20] 0 [0-100] 0 [0-100]



Page 8 of 14Le Scouarnec et al. Alzheimer’s Research & Therapy          (2024) 16:219 

only the significant predictive variables (refer to table S3): 
(Model 2’) age, memory test, and ApoE4 status, (Model 
3’) age, memory test, and AD-related blood biomark-
ers, and (Model 5’) age, memory test, ApoE4 status, and 
AD-related blood biomarkers. Interestingly, simplify-
ing the models in this way did not result in any mean-
ingful changes in predictive performance (results not 
shown). Despite this, we opted to retain the broader set 

of variables to ensure that the models capture all poten-
tially relevant factors influencing amyloid positivity, par-
ticularly considering the heterogeneity across different 
clinical populations.

In the external validation sample, results were 
consistent, the predictive performance of Model 1 
improved with the addition of ApoE and/or AD-
related blood biomarkers (Model 1, AUC = 0.63 [95% 

Fig. 3  Development and validation of six Aβ-positivity prediction models. The MEMENTO and ADC studies. A Discrimination, error predictions, 
and performance. B ROC curves in a development (MEMENTO) and training set (ADC). C Calibration plots in the training set. BS: Brier score, AUC: 
area under the curve, Se/Sp: sensitivity/specificity, ApoE: apolipoprotein E, YI: Youden Index
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CI 0.57–0.70], Models 2 and 3, AUC = 0.83 [95% CI 
0.78–0.88]), but not with the addition of MRI vari-
ables (Model 4, AUC = 0.65 [95% CI 0.58–0.71, Model 
6, AUC = 0.90 [95% CI 0.86–0.94]). Model 5 showed the 
best performance in this population, with an AUC of 
0.90 [95% CI 0.86–0.94].

Sensitivity analyses
Model performances in the MEMENTO AUR subsam-
ple are shown in Fig. 4. The estimated AUCs were slightly 
higher than in the initial analytic sample; a significant 
increase was only observed for Models 1 and 4. The exclu-
sion of participants with SCD alone led to a significant 
improvement in AUC for all six models; use of the other 
four exclusion criteria did not result in significant changes. 
Models 3 and 5 were the most effective, with respective 
AUCs of 0.85 [0.80; 0.89] and 0.86 [0.82; 0.91] (Fig. 4).

The exclusion of ApoE ε4 homozygous participants 
did not significantly alter the AUCs of the models. 
Thus, model performances in the population follow-
ing AUR, which also considers this criterion, were 

comparable to performances observed in the initial 
AUR population.

The delay between the AD blood biomarker assess-
ment and the amyloid burden examination ranged 
from 0 to 2593 days, with a majority falling between 51 
days (Q1) and 957 days (Q3), and a median of 740 days 
(2 years). Inclusion of this delay as a covariate in the 
models did not change their predictive performances 
in the development sample.

Discussion
We developed six incremental models to predict brain 
amyloid positivity and validated them in an independent 
sample. The models included data typically collected in 
clinical practice prior to the administration of anti-amy-
loid immunotherapy, such as neuropsychological assess-
ments, AD-related blood biomarkers, ApoE genotype, 
hippocampal atrophy, and lobar microbleed ratings by 
brain MRI. Models that incorporated demographic data, 
cognitive scores, and either ApoE4 status or AD-related 
blood biomarkers demonstrated better discriminatory 

Fig. 4  Discrimination performance of six Aβ prediction models overall and in subsamples following the AUR criteria. The MEMENTO Cohort, France, 
2011–2014. Model 1: demographic and cognitive predictors, Model 2: Model 1 and ApoE4 status, Model 3: Model 1 and blood biomarkers, Model 
4: Model 1 and MRI, Model 5: Model 1, ApoE4 status, and blood biomarkers, Model 6: Model 1, ApoE4 status, blood biomarkers, and MRI. AUC: area 
under the curve, AUR: Appropriate Use Recommendations, SCD: subjective cognitive decline, ε4 homozygous: homozygous for ApoE ε4. AUR 
population for lecanemab: population without SCD participants, without anticoagulant treatment, without siderosis, without severe subcortical 
hyperintensities consistent with a Fazekas score of 3, and with fewer than five cerebral microbleeds. Total population: population used to develop 
the predictive algorithm
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power than those that included only demographic and 
cognitive variables. The addition of imaging data did not 
improve performance in either the development or vali-
dation sample.

Performance was not affected when the best prediction 
model was restricted to the subsample that met the main 
exclusion criteria of the AUR for lecanemab or the sub-
sample that excluded homozygous ε4 carriers.

Our model performances were comparable to findings 
in previous studies that included individuals with subjec-
tive cognitive complaints or mild cognitive impairment, 
where demographic, cognitive variables, and ApoE4 sta-
tus were used as predictors of amyloid positivity (AUCs 
ranged from 0.73 to 0.75) [30–32]. The addition of AD-
related blood biomarkers also resulted in AUCs between 
0.83 and 0.85 [33, 34]. Thus, consistent with the litera-
ture, the best model for predicting amyloid status in our 
study utilised demographic data, cognitive measure-
ments, ApoE status, and AD-related blood biomarkers. 
Notably, the same model without ApoE (Model 3) also 
exhibited good discriminatory ability (AUC​cv = 0.80 [95% 
CI 0.79–0.80]).

Model high performances were externally validated 
in a subsample of the ADC cohort, which comprised 
individuals without dementia. The model incorporat-
ing demographic data, cognitive measurements, ApoE 
status, and AD-related blood biomarkers was confirmed 
to the greatest discriminatory power for amyloid positiv-
ity (AUC = 0.90 [95% CI 0.86–0.94]). The improved pre-
dictive performance in the external validation sample 
could be explained by the higher proportion of MCI in 
the ADC sample compared with the MEMENTO cohort. 
Indeed, predictive performance also improved when 
the model was applied to the development subsample 
restricted to the AUR recommendations, which excluded 
non-MCI participants.

As in MEMENTO, the same model without ApoE4 
demonstrated strong discriminatory power, with an AUC 
of 0.83 [95% CI 0.78–0.88]. The impact of ApoE4 on model 
performance differed between the MEMENTO and ADC 
cohorts, which may be attributed to the varying propor-
tions of ApoE4 carriers. In subpopulations with a high 
prevalence of ApoE4, such as ADC, ApoE4 could plays 
a more significant role in predicting amyloid positivity. 
However, in more diverse populations like MEMENTO, 
the added value of ApoE4 may be less critical.

To our knowledge, no study has assessed the impact 
of incorporating ApoE4 status into a predictive model 
of amyloid positivity that includes multiple cognition-
related variables. An analysis using the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database sug-
gested that adding ApoE4 status to a model that included 
age and only the Rey Auditory Verbal Learning Test 

immediate recall test as a cognitive variable led to a 
0.09-point increase in AUC, which is twice the improve-
ment observed in our development model [35]. However, 
consistent with our results, several studies indicate that 
the inclusion of ApoE4 status does not notably enhance 
the performance of models that include already AD-
related blood biomarkers such as Aβ42/40, P-tau181, or 
P-tau217 [36, 37]. There is currently no recommendation 
for ApoE disclosure in routine clinical practice, except 
for discussing the individual risk-benefit ratio of anti-
amyloid immunotherapies. Indeed, ApoE genotype dis-
closure raises ethical concerns and might affect patients 
and their relatives [38]. ApoE4 status can be determined 
later if deemed necessary by the clinician to establish the 
best clinical care pathway, such as when discussing thera-
peutic options [38, 39]. In this context, Model 3, which 
excludes ApoE, may be the most suitable for clinical 
implementation in populations where the prevalence of 
ApoE carriers is not high, at least before discussing the 
risk-benefit ratio of anti-amyloid immunotherapies.

Recently, there has been extensive research into the use 
of blood biomarkers such as Aβ42/40 and phosphoryl-
ated Tau (p181, p217, p231) to predict amyloid status [40]. 
While these biomarkers significantly contribute to improv-
ing predictive models, our current and previous studies 
demonstrate that integrating cognitive and demographic 
variables substantially improves model performance [41].

The contribution of MRI to amyloid positivity predic-
tion is debated in the literature and highly dependent on 
the MRI marker used. Consistent with our findings, sev-
eral studies have demonstrated that measures such as 
hippocampal atrophy and cortical thickness do not add 
predictive power in individuals without dementia when 
cognitive variables are included in the model [42, 43]. 
However, contrasting findings have been reported by two 
studies showed that the integration of data requiring com-
plex MRI analysis resulted in a substantial improvement in 
AUC. The generation of such data requires dedicated teams 
and infrastructure. These studies used the probabilistic 
MRI score to assess the presence of Aβ or incorporated 
structural indicators of Aβ neuropathology, encompassing 
macrostructural and microstructural features across the 
entire cerebral cortex [34, 44]. Although patients attending 
memory clinics are very likely to undergo brain MRI as part 
of their care, such complex MRI-extracted data are unlikely 
to be readily available to physicians.

Importantly, the performance of prediction models 
(and thus their effectiveness) should be evaluated based 
on predefined clinical or research questions. In the con-
text of screening patients for eligibility for anti-amyloid 
immunotherapy, the Youden index, which maximises 
sensitivity and specificity, demonstrated that based on 
its performance, Model 3 (Se = 0.77, Sp = 0.69) could not 



Page 11 of 14Le Scouarnec et al. Alzheimer’s Research & Therapy          (2024) 16:219 	

serve as a substitute for LP or PET. Nevertheless, because 
these procedures are invasive and costly, setting a high 
sensitivity (Se = 0.9) for the model could reduce the 
number of confirmatory LPs or PETs. For example, in a 
population of 400 people with an amyloid positivity prev-
alence of 25%, Model 3 (Se = 0.9, Sp = 0.4) has a negative 
predictive value (NPV) of 0.92. This model would identify 
130 people at low risk of being amyloid positive (120 true 
negatives and 10 false negatives), for whom confirmatory 
testing could be avoided.

The main strength of this study lies in its use of the 
MEMENTO cohort, which enabled the collection of 
diverse, high-quality, and standardised data representing 
real-world information from multiple memory clinics. 
The large sample size of the MEMENTO cohort makes 
this project one of the largest studies on this topic. In 
addition, we leveraged the availability of repeated amy-
loid measurements in Memento participants, which pro-
vides better model specification and more precise risk 
estimates compared to using a single measurement per 
participant. Indeed, we also tested the predictive mod-
els using only the baseline amyloid data (N = 853). The 
AUCs and their confidence intervals remained similar 
to those obtained using longitudinal data, however, the 
calibration curves were less accurate (results not shown). 
Another strength is the external validation of the models 
in an independent sample, which confirmed the robust-
ness and generalisability of the models. These strength 
is partly due to our method of selecting predictive vari-
ables. Unlike other studies, which predicted Aβ positiv-
ity using data-driven approaches to identify predictors 
(such as random forest, LASSO-regularised linear regres-
sion, machine learning, or eXtreme Gradient Boosting 
(XGBoost)), which can handle a large number of predic-
tors and often derive them directly from the dataset, our 
models were based solely on predictors identified in the 
literature and available in routine clinical care [34, 35, 45, 
46]. This approach prevents overfitting to the develop-
ment data, ensures transparency regarding the variables 
used, and enhances clinicians’ understanding of the pre-
diction tool.

This study also had some limitations. First, while our 
study primarily focused on early AD-related blood bio-
markers for which plasma Aβ42/40 and pTau181 meas-
urements were available, plasma pTau217 has recently 
emerged as a highly effective biomarker, with some stud-
ies reporting AUCs exceeding 0.90 for predicting amyloid 
pathology [47, 48]. Assessing the impact of pTau217 on 
the performance of our prediction models using the same 
analytical strategy would provide valuable insights and 
surely further improve model accuracy.

Second, investigations of blood biomarkers have 
revealed significant variability in their concentrations, 

depending on the assay used. Compared to immunoas-
says, such as those employed in the MEMENTO cohort, 
mass spectrometry could provide more precise and reli-
able measurements of these analytes as biomarkers for 
cerebral Aβ [49–51]. However, this technique is more 
challenging to implement at a large scale, such as in 
memory clinics, compared with the commercial kits used 
in MEMENTO.

Third, this study is unique because we constructed a 
prediction model using interchangeably the three pri-
mary methods commonly used for assessing amyloid 
status: CSF analysis and two amyloid PET tracers (Flor-
betapir and Flutemetamol). Consideration of the amy-
loid status determined using these methods enabled the 
model to adjust for the range of examinations conducted 
in routine clinical practice.

Finally, the variables used to construct the prediction 
models were based on measurements taken closest to the 
determination of amyloid status, except for plasma bio-
markers (only from baseline blood samples). Thus, amyloid 
status could have been determined several months after 
baseline. We assumed minimal variation in these biomark-
ers over time and found no association when this delay 
was included in the models. However, any changes in these 
factors, particularly an increase in cerebral amyloid bur-
den, could lead to underestimation of the performances of 
prediction models incorporating these variables.

Conclusions
The models developed in this study offer a promising 
method to help identify non-demented patients likely to 
exhibit cerebral amyloid positivity, which would facilitate 
early diagnosis of AD or early intervention with anti-
amyloid immunotherapies. Their integration into clini-
cal practice could streamline treatment decision-making 
processes, reducing the need for reference examinations 
such as PET or CSF analysis.
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