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Abstract
Background Polygenic risk scores (PRS) and subjective cognitive decline (SCD) are associated with the risk of 
developing dementia. It remains to examine whether they can improve the established cardiovascular risk factors 
aging and dementia (CAIDE) model and how their predictive abilities compare.

Methods The CAIDE model was applied to a sub-sample of a large, population-based cohort study (n = 5,360; aged 
50–75) and evaluated for the outcomes of all-cause dementia, Alzheimer’s disease (AD) and vascular dementia (VD) 
by calculating Akaike’s information criterion (AIC) and the area under the curve (AUC). The improvement of the 
CAIDE model by PRS and SCD was further examined using the net reclassification improvement (NRI) method and 
integrated discrimination improvement (IDI).

Results During 17 years of follow-up, 410 participants were diagnosed with dementia, including 139 AD and 152 
VD diagnoses. Overall, the CAIDE model showed high discriminative ability for all outcomes, reaching AUCs of 0.785, 
0.793, and 0.789 for all-cause dementia, AD, and VD, respectively. Adding information on SCD significantly increased 
NRI for all-cause dementia (4.4%, p = 0.04) and VD (7.7%, p = 0.01). In contrast, prediction models for AD further 
improved when PRS was added to the model (NRI, 8.4%, p = 0.03). When APOE ε4 carrier status was included (CAIDE 
Model 2), AUCs increased, but PRS and SCD did not further improve the prediction.

Conclusions Unlike PRS, information on SCD can be assessed more efficiently, and thus, the model including SCD 
can be more easily transferred to the clinical setting. Nevertheless, the two variables seem negligible if APOE ε4 carrier 
status is available.
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Introduction
Fifty-five million people are living with dementia world-
wide, and this number is projected to rise to nearly 
80 million by 2030 [1]. However, according to the latest 
report of the Lancet standing Commission, up to 45% of 
all dementia cases can be prevented or delayed by alter-
ing 14 risk factors associated with daily living [2]. This 
indicates a high potential for early intervention and 
prevention.

To date, many different dementia risk prediction mod-
els have been developed based on varying requirements 
and settings. While some models are used as predictive 
models for long-term risk, others are used for diagnos-
tic purposes or short-term risk prediction. Although 
such models can aid early detection of dementia, existing 
models require further improvement [3, 4]. For example, 
most existing models lack external validation [5–7]. Fur-
thermore, since the field of dementia risk factors is highly 
dynamic and new factors keep being reported, dementia 
risk prediction models must be dynamic and easily modi-
fiable [7, 8].

The Cardiovascular Risk Factor Aging and Dementia 
(CAIDE) model is an established and well-validated, mul-
tifactorial risk prediction model including modifiable as 
well as non-modifiable dementia risk factors [9]. In the 
same-titled development cohort, an AUC of 0.776 (95% 
confidence interval (CI): 0.717–0.836) was reached for 
predicting dementia diagnoses during 20 years of follow-
up. Nevertheless, the CAIDE model only contains a gen-
eral set of risk factors and might be further improved.

Previous studies have shown that patients reporting 
subjective cognitive decline (SCD), e.g., in the form of 
memory complaints, are at higher risk of mild cognitive 
impairment (MCI) and dementia [10–12]. It is assumed 
that SCD emerges 10–15 years before the onset of objec-
tive cognitive decline [12]. Thus, SCD is one of the ear-
liest indicators of dementia [13]. In addition, the use of 
polygenic risk scores (PRSs) for risk prediction has been 
established during the last decades [14]. PRSs derived 
from genome-wide association studies (GWAS) calcu-
late a person’s total genetic risk of disease and provide an 
emerging tool to differentiate the risk of developing AD 
at an individual level. They are thus commonly used for 
research purposes as well as in clinical settings [14–16]. 
Numerous studies have proven the successful prediction 
of the risk of developing dementia, specifically AD, by 
PRSs [16–19].

Therefore, this study aims to extend the well-estab-
lished CAIDE model for dementia by PRS and SCD to 
assess as well as compare their predictive abilities for all-
cause dementia, AD, and VD within 17 years of follow-
up of a large population-based cohort of older adults. In 
addition, the models’ discrimination performances are 
evaluated in subgroups for mid-life (50–64) and late-life 

(65–75) to examine whether the performance of the 
extended models varies by age.

Methods
Study population
Analyses for this study were conducted using the 
ESTHER study. The ESTHER study (German name: 
Epidemiologische Studie zu Chancen der Verhütung, 
Früherkennung und optimierten Therapie chronischer 
Erkrankungen in der älteren Bevölkerung) is a prospec-
tive cohort study initiated between 2000 and 2002. Par-
ticipants were recruited throughout Saarland, a German 
federal state, when visiting one of 420 cooperating physi-
cians for a general health checkup at their general practi-
tioners (GPs). The GPs asked their patients for consent to 
participate in the ESTHER study during this visit. Over-
all, the study comprises 9,940 participants aged 50 to 75, 
who were followed up 2, 5, 8, 11, 14, and 17 years after 
baseline. Details have been described elsewhere [20, 21]. 
Compared to a National Health Survey performed in a 
representative sample of the German population in 1998, 
sociodemographic baseline characteristics were simi-
larly distributed in the respective age categories of the 
ESTHER study [22]. The ethics committees of the Hei-
delberg Medical Faculty of Heidelberg University and the 
state medical board of Saarland, Germany, approved the 
study.

Dementia assessment and study sample
Dementia diagnoses were assessed during the 14- and 
17-year follow-ups of the ESTHER study. The mean 
follow-up time was 14.8 years (± SD 3.5 years) with a 
maxiumum of 19.8 years due to the duration of 2 years of 
baseline recruitment. Standardised questionnaires were 
sent to the study participants’ GPs, including whether 
they were aware of a dementia diagnosis of their patient. 
If so, the GPs were asked to provide details such as the 
type of dementia, the date of diagnosis, and all available 
medical records from other specialised providers like 
neurologists or memory clinics. Questionnaires were also 
sent to the GPs of participants lost to follow-up due to ill 
health or death.

Information about a dementia diagnosis was received 
from 6,357 ESTHER study participants (Fig.  1). For the 
outlined analyses, participants without information on 
SCD (n = 167), without genetic information for PRS cal-
culation (n = 528), and with missing values in any of the 
CAIDE model variables (n = 266) were excluded. Hence, 
the study sample comprised 5,360 study participants.

CAIDE model and covariates
The CAIDE model is an established and well-validated 
dementia risk prediction model developed using a sample 
of 1,409 participants of the CAIDE study [9]. The CAIDE 
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Fig. 1 Flowchart of selected study participants based on the ESTHER study. Abbreviations: GP, general practitioner; SCD, subjective cognitive decline; PRS, 
polygenic risk score, CAIDE, Cardiovascular Risk Factors Aging and Dementia
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study is a Finnish population-based cohort study inves-
tigating cardiovascular risk factors, aging and dementia. 
Participants aged 39 to 64 at baseline were followed up 
for 20 years. During this follow-up period, 61 partici-
pants developed dementia. The CAIDE model includes 
age, education, sex, systolic blood pressure, body mass 
index (BMI), total cholesterol, and physical activity. A 
second version of the model (CAIDE Model 2) also com-
prises participants’ APOE ε4 carrier status.

All variables included in the CAIDE model were avail-
able in the ESTHER study. Categorization of variables 
had to be recalibrated due to differences in the age range, 
the education system and the assessment of physical 
activity between the studies. In detail, age was used as 
a continuous variable, education categories have been 
changed from 0 to 6, 7–9, ≥ 10 years to ≤ 9, 10–11, ≥ 12 
years, and physical activity has been changed from two 
categories (inactive and active) to three categories (inac-
tive, low, and medium or high). Furthermore, the con-
tinuous variables age, systolic blood pressure, BMI, and 
total cholesterol were tested for their best-fitting func-
tion using fractional polynomials [23]. Since the linear 
function was the best-fitting function for all variables 
in predicting all-cause dementia, AD, and VD (data not 
shown), they were kept as continuous variables.

Information about age, sex, education, BMI, and physi-
cal activity was collected via standardised self-adminis-
tered questionnaires during the baseline assessment of 
the ESTHER study, while the systolic blood pressure was 
measured by the participants’ GPs. Serum samples drawn 
at baseline were used to measure the study participant’s 
total cholesterol levels by an enzymatic colorimetric test 
with the Synchron LX multicalibrator system (Beckman 
Coulter, Galway, Ireland). To determine APOE geno-
types, DNA was extracted from whole blood samples 
through a sorting-out procedure. Genotyping of blood 
cell-derived DNA was carried out using the Illumina 
Infinium OncoArray and Global Screening Array Bead-
Chips (Illumina, San Diego, CA, USA). Quality control 
assessment was performed according to the Nature Pro-
tocols article by Anderson and colleagues [24]. The Mich-
igan Imputation Server was utilized for the imputation of 
the quality-controlled data. For this, SHAPEIT2 was used 
to phase the data, and MiniMac 4 was used to impute 
to the HRC Version r1.1 2016 reference panel [25, 26]. 
APOE genotypes were finally determined using TaqMan 
single-nucleotide polymorphism (SNP) assays (Applied 
Biosystems, California, USA) were used. Missing APOE 
information (5% of APOE data) was imputed based on 
quality-controlled imputed genetic data. Further details 
have been described elsewhere [27].

Polygenic risk score calculation and subjective cognitive 
decline
PRS were calculated based on AD-associated SNPs 
identified by Kunkle et al., with a GWAS significance 
threshold of p < 5*10− 8 [28]. For this purpose, the num-
ber of risk alleles was summed and weighted according 
to the extent of the association as previously described 
in detail [17]. SNPs in the APOE locus (chromosome 19, 
45,404,000–45,418,000) were not included in this PRS.

SCD was assessed via self-administered health ques-
tionnaires during the baseline assessment, including a yes 
or no question regarding short-term memory complaints 
(Do you have difficulty remembering things that have 
happened in the recent past (hours to a few days)?).

Statistical analyses
Baseline characteristics of included ESTHER study par-
ticipants were calculated for participants with incident 
all-cause dementia, AD, and VD diagnosis as well as par-
ticipants without dementia diagnosis during follow-up. 
Additional comparisons of, baseline characteristics of 
ESTHER study participants included and excluded from 
the analyses showed reasonably comparable results (Sup-
plemental Table 1).

Cox proportional hazard regression models adjusted 
for age, sex, education, systolic blood pressure, BMI, total 
cholesterol, physical activity and APOE ε4 carrier status 
were calculated to assess the association between CAIDE 
model variables and the outcomes of all-cause demen-
tia, AD, and VD. Furthermore, the associations between 
the predictors of interest (PRS and SCD) and the three 
dementia outcomes were examined. Statistical signifi-
cance was assessed by the Wald test.

The discriminative ability of CAIDE Model 1 and 
CAIDE Model 2 for all-cause dementia, AD, and VD 
was determined by Akaike’s information criterion (AIC) 
and the area under the receiver operating characteristic 
(ROC) curve (AUC) and 95% confidence intervals (CIs). 
For this purpose, the “survcstd” macro of SAS was used. 
Model calibration of all prediction models was examined 
by May-Hosmer’s simplification of the Gronnesby-Bor-
gan test [29]. To examine the improvement of the CAIDE 
Model by PRS and SCD, the net reclassification improve-
ment (NRI) method was applied [30, 31]. For this, three 
cut-offs were chosen individually for each outcome with 
an equal distribution of incident dementia diagnoses 
and applied to the analyses. In addition, the extent of the 
model’s improvement was assessed by the integrated dis-
crimination improvement (IDI) [30, 31]. In both meth-
ods, CAIDE Model 1 and CAIDE Model 2 were used as 
reference models, and PRS and SCD were added to the 
models. The latter was modelled as a binary categorical 
variable, while the PRS was modelled continuously (per 
one standard deviation increase). Analyses were carried 
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out in the total sample, as well as in subgroups for mid-
life (50–64 years) and late-life (65–75 years) for all out-
comes and CAIDE Model 1 and 2, respectively.

All analyses were conducted using the Statistical Anal-
ysis System (SAS, version 9.4, Cary, North Carolina, 
USA). Statistical tests were two-sided using an alpha level 
of 0.05.

Results
Baseline characteristics for all variables included in the 
basic CAIDE model are described separately for par-
ticipants with incident all-cause dementia, AD, and VD 
diagnosis as well as for those without a dementia diag-
nosis in Table 1. Among the included 5,360 study partici-
pants, 410 were diagnosed with dementia. Of those, 139 
participants had an AD diagnosis, and 152 were diag-
nosed with VD. The mean age at baseline of participants 
who later developed incident all-cause dementia was five 
years higher (mean (± SD): 66.3 (5.2) years) compared 
to participants without dementia diagnosis (61.7 (6.5) 
years). Most participants (> 70%) had an education of no 
more than 9 years. Systolic blood pressure, BMI and total 
cholesterol levels of study participants were comparable 
between participants with and without later dementia 

diagnoses. Those who were later diagnosed with demen-
tia more frequently reported low or inactive levels of 
physical activity than those with no dementia diagnosis 
(71.2% compared to 62.9%). Finally, the proportion of 
APOE ε4 carriers was much higher among those who 
later developed dementia, in particular among those who 
were diagnosed with AD (50.4%), than among partici-
pants with no dementia diagnosis (25.0%).

In a Cox regression model adjusted for all CAIDE 
model variables, age and APOE ε4 carrier status in 
Model 2 were statistically significantly associated with all 
dementia outcomes (Supplemental Tables 2–4). In addi-
tion, higher education (inverse), male sex, and higher 
physical activity (inverse) showed significant associations 
with all-cause dementia (Supplemental Table 2). In analy-
ses focusing on the AD outcome, only physical activity 
was significantly associated (Supplemental Table 3). In 
analyses focusing on VD, only male sex was significantly 
associated (Supplemental Table 4).

Cox regression models further showed significant 
associations of PRS and SCD with all-cause dementia 
in Model 1 (Table 2). When APOE ε4 carrier status was 
added in Model 2, the association between PRS and all-
cause dementia lost statistical significance, but SCD 

Table 1 CAIDE model variables of the study population (n = 5,360)
CAIDE model variables No dementia

(n = 4,950)
All-cause dementia
(n = 410)

Alzheimer’s disease 
(n = 139)

Vascular dementia 
(n = 152)

Data Data p-valuea Data p-valuea Data p-valuea

Age (years), mean (SD) 61.2 (6.4) 66.9 (5.2) < 0.001 66.7 (5.2) < 0.001 66.9 (5.0) < 0.001
Mid-life (50–64 years), n (%) 3330 (67.3) 128 (31.2) 46 (33.1) 47 (30.9)
Late-life (65–75 years), n (%) 1620 (32.7) 282 (68.8) 93 (66.9) 105 (69.1)
Education (years), n (%) 0.001 0.036 0.135
≤9 3592 (72.6) 331 (80.7) 115 (82.7) 122 (80.3)
10–11 752 (15.2) 38 (9.3) 13 (9.4) 16 (10.5)
≥ 12 606 (12.2) 41 (10.0) 11 (7.9) 14 (9.2)
Sex, n (%) 0.072 0.968 0.076
Female 2680 (54.1) 203 (49.5) 75 (54.0) 71 (46.7)
Male 2270 (45.9) 207 (50.5) 64 (46.0) 81 (53.3)
SBP (mmHg), mean (SD) 138.9 (19.5) 142.4 (19.2) < 0.001 142.2 (19.2) 0.046 142.8 (19.5) 0.007
BMI (kg/m2), mean (SD) 27.7 (4.4) 27.6 (3.9) 0.924 27.1 (3.8) 0.304 27.7 (4.0) 0.957
Total cholesterol (mmol/L),
mean (SD)

5.69 (1.3) 5.69 (1.3) 0.975 5.73 (1.3) 0.545 5.68 (1.3) 0.925

Physical activityb, n (%) < 0.001 0.001 0.178
Inactive 830 (16.8) 108 (26.3) 43 (30.9) 34 (22.4)
Low 2284 (46.1) 184 (44.9) 57 (41.0) 71 (46.7)
Medium or high 1836 (37.1) 118 (28.8) 39 (28.1) 47 (30.9)
APOE genotypes, n (%) < 0.001 < 0.001 0.014
ε4 non-carrier 3710 (75.0) 243 (59.3) 69 (49.6) 99 (65.1)
ε4 carrier 1240 (25.0) 167 (40.7) 70 (50.4) 53 (34.9)
Abbreviations: APOE, apolipoprotein E; SBP, systolic blood pressure; BMI, body mass index

Note: Numbers printed in bold are statistically significant.
a Result of statistical test (Mann-Whitney-U, Wilcoxon Rank-sum, or χ2 test as appropriate) for comparison with group “No dementia”.
b “Inactive” was defined by < 1 h of vigorous or < 1 h light physical activity per week. “Medium or high” was defined by ≥ 2 h of vigorous and ≥ 2 h of light physical 
activity/week. All other amounts of physical activity were grouped into the category “Low”.
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remained a significant predictor. For dementia subtypes, 
PRS was statistically significantly associated with AD, 
while SCD was statistically significantly associated with 
VD.

The performance of CAIDE Models 1 and 2 for all-
cause dementia, AD, and VD are shown in Table 3. May-
Hosmer’s simplification of the Gronnesby-Borgan test 
verified good calibration for all models (data not shown). 
Overall, the CAIDE model showed a high discrimina-
tive ability in the total population with an AUC > 0.78 in 
Model 1. AUCs further improved to 0.800, 0.827, and 
0.793 for the outcomes of all-cause dementia, AD, and 
VD, respectively, when APOE ε4 carrier status was added 
to the CAIDE model (Model 2).

Generally, the extension of CAIDE Model 1 by PRS 
and SCD only led to marginal improvements in AUCs. 
However, IDI and NRI revealed statistically significant 
improvements for some models. Adding SCD to CAIDE 
Model 1 led to a statistically significant improvement 
of NRI (4.4%, p = 0.04) and IDI in predicting all-cause 
dementia. In contrast, in the case of AD, extending 
CAIDE Model 1 by PRS but not SCD revealed statisti-
cally significantly better prediction with an NRI of 8.4% 
(p = 0.03) and significant IDI. For VD, the extension by 
SCD again led to a significant improvement of the NRI 
(7.7%, p = 0.01) but IDI was not statistically significant.

When APOE ε4 carrier status was included in CAIDE 
Model 2, AUCs did not further improve by adding PRS 
and SCD to the models. Also, NRI and IDI statistics 
showed no statistically significant changes except for 
CAIDE Model 2 plus SCD for the outcome of all-cause 
dementia. In this case, IDI was statistically significant, 
and NRI showed an improvement of 3.1% but did not 
reach statistical significance (p = 0.06).

In addition to the total population, the discriminative 
abilities of the CAIDE model were evaluated in mid-
life (50–64 years) and late-life (65–75 years) subgroups 
(Tables  4, 5 and 6). Overall, AUCs were consistently 
higher in the mid-life compared to the late-life subgroup 
for all outcomes. In contrast to the total population, PRS 
significantly improved the prediction of CAIDE Model 
1 for all-cause dementia in mid-life with an NRI of 6.9% 
(p = 0.008) (Table 4). In addition, as observed in the total 
population, the extension by SCD also led to a significant 
improvement in IDI for all-cause dementia in this sub-
group. However, the increase in NRI was only modest in 
this case and not statistically significant (2.0%, p = 0.62). 
The overall strongest improvement of the CAIDE model 
was achieved for AD when CAIDE model 1 was extended 
by PRS in the mid-life subgroup (NRI, 19.6%, p = 0.008) 
(Table  5). Also, IDI was statistically significant. For the 
outcome of VD, SCD led to significant improvements 
in NRI but not IDI in the late-life subgroup for CAIDE 
Model 1, whereas PRS led to a statistically significant 
NRI but not IDI in CAIDE Model 2 in both agegroups 
(Table 6).

Discussion
In this prospective cohort study, we evaluated potential 
improvement in dementia prediction with the established 
and well-validated CAIDE model by adding informa-
tion about a PRS and SCD. While the PRS significantly 
improved the prediction of AD only, information on SCD 
significantly improved the predictive ability of the CAIDE 
Model 1 for all-cause dementia and VD. However, no 
relevant improvement in prediction was achieved when 
APOE ε4 carrier status was included in CAIDE Model 2.

Table 2 Associations between predictors of interest and common subtypes of dementia
Predictors ntotal ncases Model 1a Model 2b

HR (95% CI) p-value HR (95% CI) p-value
All-cause dementia
SCD 5,360 410 1.49 (1.21–1.82) < 0.001 1.48 (1.21–1.82) < 0.001
Kunkle PRS per 1SDc 1.22 (1.11–1.34) < 0.001 1.03 (0.93–1.15) 0.350
Alzheimer’s disease
SCD 5,089 139 1.27 (0.89–1.83) 0.191 1.27 (0.88–1.83) 0.197
Kunkle PRS per 1SDd 1.51 (1.29–1.76) < 0.001 1.20 (1.00-1.43) 0.049
Vascular dementia
SCD 5,102 152 1.62 (1.16–2.25) 0.005 1.62 (1.16–2.25) 0.005
Kunkle PRS per 1SDe 1.04 (0.88–1.23) 0.680 0.91 (0.76–1.09) 0.291
Note: Numbers printed in bold are statistically significant (P < 0.05)

Abbreviations: HR, hazard ratio; CI, confidence interval; SD, standard deviation; SCD, subjective cognitive decline; PRS, polygenic risk score;
aModel 1 was adjusted for age, education, sex, systolic blood pressure, BMI, total cholesterol and physical activity
bModel 2 was adjusted for all variables listed in Model 1 and APOE ε4 carrier status
c1 SD of Kunkle’s PRS = 0.0100
d1 SD of Kunkle’s PRS = 0.0010
e1 SD of Kunkle’s PRS = 0.0099
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Previous studies
Very few dementia risk prediction models include infor-
mation on SCD. The self-administered Gerocognitive 
Examination (SAGE) score is a cognitive assessment tool 
for mild cognitive impairment (MCI) and early demen-
tia, including information on subjective cognitive decline 
(“Have you had any problems with memory or think-
ing?” Yes / only occasionally / no) as well as measures 
of cognitive function of different domains [32]. In its 
development cohort of 254 participants (> 59 years) from 
the cohort as well as the clinical setting, the model pre-
dicted the risk of developing dementia well with an AUC 
of 0.906. In a recent study, the authors tested the SAGE 
score compared to the Mini-Mental State Examina-
tion (MMSE) in 424 individuals and showed that SAGE 
predicts cognitive decline at least 6 months earlier than 
MMSE [33].

In the study of Licher and colleagues, a dementia risk 
prediction model was developed in a cohort based on 
the Rotterdam Study, including 20,324 individuals aged 
60 and older [34]. The model includes subjective mem-
ory decline, age, history of stroke, and need for assis-
tance with finances or medication. It predicted the risk 
of developing dementia with an AUC of 0.78 (95% CI: 
0.75–0.81) and was externally validated in the Epidemio-
logical Prevention Study of Zoetermeer (EPOZ), achiev-
ing a comparable predictive ability with an AUC of 0.75 
(95% CI: 0.67–0.82).

PRSs are a widely used tool to assess an individual’s 
risk of developing dementia, especially AD [14, 15]. Nev-
ertheless, multifactorial dementia risk prediction mod-
els, including such a score, are still rare. In a study by 
Escott-Price and colleagues, several models, including 
information on polygenic scores, were tested in a subset 

Table 3 Evaluation of prediction models for all-cause dementia, Alzheimer’s disease and vascular dementia
Model performance measures Model 1a Model 2b

CAIDE CAIDE + PRS CAIDE + SCD CAIDE CAIDE + PRS CAIDE + SCD
All-cause dementia (n = 410)
AIC 6364.8 6351.6 6352.9 6318.2 6319.9 6306.5
AUC (95% CI) 0.785 

(0.765–0.806)
0.790 
(0.769–0.810)

0.788
(0.768–0.809)

0.800
(0.780–0.820)

0.800
(0.780–0.820)

0.803 
(0.782–0.823)

Reclassification
Events nup/ndown Ref. 37/29 44/30 Ref. 6/4 40/29
Nonevents nup/ndown Ref. 237/264 258/307 Ref. 37/45 244/266
NRI % c (p-value) Ref. 2.5% (0.219) 4.4% (0.040) Ref. 0.6% (0.335) 3.1% (0.064)
IDI % (p-value) Ref. 0.07% (0.070) 0.04% (0.011) Ref. 0.005% (0.968) 0.05% (0.008)
Alzheimer’s disease (n = 139)
AIC 2163.7 2141.0 2164.1 2124.0 2122.2 2124.4
AUC (95% CI) 0.793 

(0.758–0.827)
0.808 
(0.774–0.841)

0.793 
(0.759–0.827)

0.827
(0.795–0.859)

0.827 
(0.795–0.859)

0.827 
(0.795–0.859)

Reclassification
Events nup/ndown Ref. 28/20 7/7 Ref. 8/9 7/3
Nonevents nup/ndown Ref. 396/525 143/162 Ref. 181/193 138/153
NRI % d (p-value) Ref. 8.4% (0.026) 0.4% (0.859) Ref. -0.5% (0.841) 3.2% (0.128)
IDI % (p-value) Ref. 0.05% (0.030) -0.004% (0.510) Ref. 0.01% (0.132) 0.0003% (0.296)
Vascular dementia (n = 152)
AIC 2331.9 2363.7 2356.3 2355.4 2356.3 2349.8
AUC (95% CI) 0.789 

(0.757–0.822)
0.790 
(0.757–0.822)

0.794 
(0.761–0.828)

0.793
(0.760–0.826)

0.794 
(0.761–0.827)

0.798 
(0.764–0.831)

Reclassification
Events nup/ndown Ref. 4/2 24/14 Ref. 7/7 17/18
Nonevents nup/ndown Ref. 45/32 287/344 Ref. 99/97 289/317
NRI % e (p-value) Ref. 1.1% (0.316) 7.7% (0.010) Ref. -0.04% (0.981) -0.09% (0.975)
IDI % (p-value) Ref. 0.002% (0.837) 0.003% (0.093) Ref. -0.004% (0.359) -0.007% (0.068)
Note: Numbers printed in bold are statistically significant (P < 0.05)

Abbreviations: SCD, subjective cognitive decline; PRS, polygenic risk score; AIC, Akaike’s information criterion; AUC, area under the curve; NRI, net reclassification 
improvement; IDI, integrated discrimination improvement
aCAIDE Model 1 includes age, education, sex, systolic blood pressure, BMI, total cholesterol and physical activity
bCAIDE Model 2 includes all variables listed in Model 1 and APOE ε4 carrier status
cThe cutoffs for all-cause dementia were set to 7%, 15%, and 30%
dThe cutoffs for AD were set to 3%, 6%, and 11%
eThe cutoffs for VD were set to 3.5%, 7%, and 14%
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of 4.603 participants from the International Genomics of 
Alzheimer’s Project (IGAP) [18]. The model including the 
variables APOE, PRS, sex, and age, predicted the risk of 
developing AD the best, reaching an AUC of 0.78 (95% 
CI: 0.77–0.80).

Furthermore, Verhaaren et al. added a set of 10 risk 
genes to a model composed of age, sex, and APOE ε4 
[35]. Like in our study, the AUC increased only margin-
ally from 0.815 to 0.816. However, the authors did not 
apply further reclassification methods like NRI or IDI to 
determine the extent of improvement by the added risk 
genes.

Interpretation of findings
The reclassification analyses showed that SCD signifi-
cantly improved the prediction of the CAIDE model for 
all-cause dementia and VD. This result was further sup-
ported by Cox regression analyses showing a statisti-
cally significant association between SCD and all-cause 
dementia as well as VD. In the literature, participants 
reporting SCD have been shown to be at a higher risk of 
developing MCI and following dementia in a multitude 
of studies [10, 36, 37]. Meta-analyses revealed an annual 
conversion rate to MCI of 7% and to dementia of 5% [36]. 
Although SCD can be assessed in different ways, this 

does not appear to affect its effectiveness in predcting 
dementia risk [11, 37]. In our study, SCD was assessed by 
asking only one simple question to the participant. This 
is a major advantage in clinical translation of the created 
prediction model. In a clinical setting, obtaining all the 
necessary information to estimate an individual’s risk of 
developing dementia with the created prediction model 
would only require a concise physical examination and a 
patient interview, along with the submission of a blood 
sample. In addition, a further advantage of adding SCD to 
the CAIDE model is that SCD is one of the earliest indi-
cators that appears even before cognitive decline can be 
objectively measured [11, 38]. This makes early interven-
tion and prevention possible.

In contrast to SCD, PRS calculation needs more 
resources. We found that adding PRS to the CAIDE 
model significantly improved prediction for AD only. This 
was even more distinct when the model was applied to 
the mid-life cohort. In this case, the prediction of AD was 
enhanced by nearly 20% (NRI: 19.6% p = 0.008, IDI: 0.02% 
p = 0.02). Moreover, Cox regression analyses showed a 
significant association between PRS and AD. This stands 
to reason, given that Kunkles’ PRS was developed based 
on a cohort that included only AD cases [28]. Our find-
ings indicate that Kunkles’ PRS is unsuitable for a general 

Table 4 Evaluation of the discriminative ability for all-cause dementia in mid-life and late-life
Model performance measures Model 1a Model 2b

CAIDE CAIDE 
+ PRS

CAIDE 
+ SCD

CAIDE CAIDE 
+ PRS

CAIDE 
+ SCD

aMid-life (50–64 years)[ntotal=3458, ncases=128]
AIC 1930.1 1919.4 1925.5 1908.0 1908.7 1903.3
AUC (95% CI) 0.731 

(0.692–0.771)
0.744 
(0.704–0.784)

0.735 
(0.696–0.774)

0.758 
(0.718–0.797)

0.759 
(0.719–0.799)

0.760 
(0.720–0.800)

Reclassification
Events nup/ndown Ref. 25/21 23/24 Ref. 8/6 20/20
Nonevents nup/ndown Ref. 266/392 283/377 Ref. 106/112 260/321
NRI %c (p-value) Ref. 6.9% (0.008) 2.0% 

(0.616)
Ref. 1.7% 

(0.455)
1.8% 
(0.631)

IDI % (p-value) Ref. 0.03% (0.018) 0.02% (0.018) Ref. -0.0007% (0.798) 0.02% (0.021)
bLate-life (65–75 years)[ntotal=1902, ncases=282]
AIC 3958.0 3955.4 3952.7 3935.5 3937.4 3930.4
AUC (95% CI) 0.673 

(0.641–0.705)
0.678 
(0.646–0.710)

0.678
(0.647–0.710)

0.697 
(0.666–0.728)

0.697 
(0.666–0.728)

0.699 
(0.669–0.730)

Reclassification
Events nup/ndown Ref. 23/23 39/41 Ref. 1/2 24/35
Nonevents nup/ndown Ref. 98/127 180/182 Ref. 3/4 156/164
NRI %d (p-value) Ref. 1.8% (0.462) -0.59% (0.851) Ref. -0.29% (0.531) -3.4% (0.237)
IDI % (p-value) Ref. 0.12% (0.119) 0.05% (0.031) Ref. -0.003% (0.874) 0.07% (0.023)
Note: Numbers printed in bold are statistically significant (P < 0.05)

Abbreviations: SCD, subjective cognitive decline; PRS, polygenic risk score; AIC, Akaike’s information criterion; AUC, area under the curve; NRI, net reclassification 
improvement; IDI, integrated discrimination improvement
aCAIDE Model 1 includes age, education, sex, systolic blood pressure, BMI, total cholesterol and physical activity
bCAIDE Model 2 includes all variables listed in Model 1 and APOE ε4 carrier status
cThe cutoffs for mid-life were set to 4.25%, 6.5%, and 10%
dThe cutoffs for late-life were set to 15%, 22.5%, and 35%
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dementia risk assessment. Adding a PRS to the CAIDE 
model might only be helpful for specific risk prediction 
of AD in mid-life. This is also supported and might be 
explained by a recent report of young AD patients having 
fewer co-pathologies in addition to AD, which leads to a 
more accurate risk prediction [39]. Another reason might 
be a genetic difference which was assumed by Gunn and 
colleagues showing that a PRS for AD is not predictive of 
dementia in long-living individuals compared to controls 
[40].

Moreover, our results also indicate that Kunkles’ PRS 
does not relevantly improve the prediction over CAIDE 
Model 2, including APOE ε4. Thus, the predictive value 
of other SNPs, in addition to the APOE ε4 polymorphism 
in PRSs, is questionable. APOE is a well-known risk fac-
tor for dementia, especially AD, and a fundamental com-
ponent in most dementia risk prediction models [5, 41, 
42]. In our study, APOE ε4 carrier status was one of the 
strongest predictors. Interestingly, not only the addi-
tional predictive value of PRS but also of SCD seemed 
negligible when APOE was part of CAIDE Model 2. This 
again emphasises the strength of APOE in dementia risk 
prediction.

When applied to the mid-life and late-life subgroups, 
the CAIDE model showed a clearly higher discrimi-
native ability for all three outcomes in the mid-life 

subgroup. This has also been reported in previous stud-
ies replicating or applying the CAIDE model [3, 43] and 
is in line with the CAIDE model initially developed in a 
mid-life cohort. More research is needed about risk fac-
tors that can improve dementia risk prediction in older 
individuals.

Strengths and limitations
Strengths of this study include its prospective cohort 
design, a high number of participants, an extensive fol-
low-up period of 17 years and its comparability to the 
German healthcare setting.

Nevertheless, limitations encompass a possibil-
ity of under- or misdiagnosis of dementia and demen-
tia subtypes due to the community-based setting of the 
ESTHER study. In the ESTHER study, dementia diagno-
ses are made heterogeneously, and subtypes were often 
not diagnosed. Although this also reflects the reality of a 
community-based setting, which enhances the generaliz-
ability of the study and might explain the relatively low 
number of AD diagnoses, a possible under- or misdiag-
nosis of dementia might lead to an underestimation of 
results and may impact the strength and precision of pre-
diction models created.

Given the recalibration of the CAIDE model to the 
ESTHER study, the direct comparability to the CAIDE 

Table 5 Evaluation of the discriminative ability for Alzheimer’s disease in mid-life and late-life
Model performance measures Model 1a Model 2b

CAIDE CAIDE 
+ PRS

CAIDE 
+ SCD

CAIDE CAIDE 
+ PRS

CAIDE 
+ SCD

aMid-life (50–64 years)[ntotal=3330, ncases=46]
AIC 698.6 680.4 699.2 677.5 674.5 677.9
AUC (95% CI) 0.767 

(0.705–0.829)
0.794 
(0.734–0.854)

0.765 
(0.703–0.827)

0.809 
(0.743–0.875)

0.811 
(0.747–0.875)

0.808 
(0.743–0.873)

Reclassification
Events nup/ndown Ref. 12/6 5/2 Ref. 7/5 3/6
Nonevents nup/ndown Ref. 299/516 160/156 Ref. 175/230 113/119
NRI %c (p-value) Ref. 19.6% (0.008) 6.4% (0.163) Ref. 6.0% (0.250) -6.3% (0.110)
IDI % (p-value) Ref. 0.02% (0.025) -0.0006 (0.243) Ref. 0.002% (0.239) -0.001 (0.504)
bLate-life (65–75 years)[ntotal=1713, ncases=93]
AIC 1306.4 1301.5 1307.7 1290.1 1291.7 1291.5
AUC (95% CI) 0.689 

(0.633–0.745)
0.708 
(0.652–0.764)

0.688 
(0.633–0.744)

0.740 
(0.688–0.791)

0.738 
(0.686–0.791)

0.739 
(0.687–0.790)

Reclassification
Events nup/ndown Ref. 16/15 4/9 Ref. 3/4 1/7
Nonevents nup/ndown Ref. 189/218 84/72 Ref. 40/51 65/88
NRI %d (p-value) Ref. 2.9% (0.595) -6.1% (0.068) Ref. -4.0% (0.877) -5.0% (0.101)
IDI % (p-value) Ref. 0.06% (0.109) -0.01% (0.683) Ref. 0.01% (0.199) -0.004% (0.390)
Note: Numbers printed in bold are statistically significant (P < 0.05)

Abbreviations: SCD, subjective cognitive decline; PRS, polygenic risk score; AIC, Akaike’s information criterion; AUC, area under the curve; NRI, net reclassification 
improvement; IDI, integrated discrimination improvement
aCAIDE Model 1 includes age, education, sex, systolic blood pressure, BMI, total cholesterol and physical activity
bCAIDE Model 2 includes all variables listed in Model 1 and APOE ε4 carrier status
cThe cutoffs for mid-life were set to 1.5%, 3.5%, and 7%
dThe cutoffs for late-life were set to 5%, 8%, and 15%
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model is affected. In addition, since our study population 
is mainly of European descent aged 50 to 75 at baseline, 
results cannot be applied to other ethnicities and age 
groups.

Conclusion
This study showed that although AUCs only marginally 
increased when SCD and PRS were added to the CAIDE 
model, reclassification analyses reveal a statistically sig-
nificant improvement in the model’s prediction accuracy. 
Adding SCD to the CAIDE model significantly improved 
the prediction of all-cause dementia and VD. In contrast, 
the addition of PRS statistically significantly improved 
the discriminative ability for AD, especially in mid-life. 
This represents an essential difference in terms of clinical 
translation. Since information on SCD can be more eas-
ily assessed than the calculation of PRS, this constitutes 
a major advantage. However, both a PRS and SCD seem 
to be of limited, if any, predictive value if information on 
APOE ε4 carrier status is available.
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GWAS  Genome-wide association studies
IDI  Integrated discrimination improvement
MCI  Mild cognitive impairment
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NRI  Net reclassification improvement
PRS  Polygenic risk score
ROC  Receiver operating characteristic
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