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Abstract 

Background  Plasma p-tau217 has emerged as the most promising blood-based marker (BBM) for the detection 
of Alzheimer Disease (AD) pathology, yet few studies have evaluated plasma p-tau217 performance in memory clinic 
settings. We examined the performance of plasma p-tau217 for the detection of AD using a high-sensitivity immuno-
assay in individuals undergoing diagnostic lumbar puncture (LP).

Methods  Paired plasma and cerebrospinal fluid (CSF) samples were analysed from the TIMC-BRAiN cohort. Amyloid 
(Aβ) and Tau (T) pathology were classified based on established cut-offs for CSF Aβ42 and CSF p-tau181 respectively. 
High-sensitivity electrochemiluminescence (ECL) immunoassays were performed on paired plasma/CSF samples 
for p-tau217, p-tau181, Glial Fibrillary Acidic Protein (GFAP), Neurofilament Light (NfL) and total tau (t-tau). Biomarker 
performance was evaluated using Receiver-Operating Curve (ROC) and Area-Under-the-Curve (AUC) analysis.

Results  Of 108 participants (age: 69 ± 6.5 years; 54.6% female) with paired samples obtained at time of LP, 64.8% 
(n = 70/108) had Aβ pathology detected (35 with Mild Cognitive Impairment and 35 with mild dementia). Plasma 
p-tau217 was over three-fold higher in Aβ + (12.4 pg/mL; 7.3—19.2 pg/mL) vs. Aβ- participants (3.7 pg/mL; 2.8—
4.1 pg/mL; Mann–Whitney U = 230, p < 0.001). Plasma p-tau217 exhibited excellent performance for the detection 
of Aβ pathology (AUC: 0.91; 95% Confidence Interval [95% CI]: 0.86–0.97)—greater than for T pathology (AUC: 0.83; 
95% CI: 0.75–0.90; z = 1.75, p = 0.04). Plasma p-tau217 outperformed plasma p-tau181 for the detection of Aβ pathol-
ogy (z = 3.24, p < 0.001). Of the other BBMs, only plasma GFAP significantly differed by Aβ status which significantly 
correlated with plasma p-tau217 in Aβ + (but not in Aβ-) individuals. Application of a two-point threshold at 95% 
and 97.5% sensitivities & specificities may have enabled avoidance of LP in 58–68% of cases.
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Conclusions  Plasma p-tau217 measured using a high-sensitivity ECL immunoassay demonstrated excellent perfor-
mance for detection of Aβ pathology in a real-world memory clinic cohort. Moving forward, clinical use of plasma 
p-tau217 to detect AD pathology may substantially reduce need for confirmatory diagnostic testing for AD pathology 
with diagnostic LP in specialist memory services.
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Background
The increasing availability of Alzheimer Disease (AD) 
biomarkers has led to a paradigm shift towards the con-
ceptualisation of AD as a clinical-biological diagnosis 
rather than one based on clinical phenotype alone [1, 
2]. Detection of pathological hallmarks of AD—accu-
mulation of amyloid β (Aβ) in plaques and hyper-phos-
phorylated tau in neurofibrillary tangles—in vivo using 
Aβ and p-tau in cerebrospinal fluid (CSF) [3] or using 
amyloid/tau-Positron Emission Tomography (PET) 
[4]—has enabled more accurate diagnosis for those liv-
ing with AD.

More recently, there has been unprecedented progress 
in the development and validation of blood-based mark-
ers (BBMs) in AD [5]. BBMs are likely to have a trans-
formative role in facilitating early and precise diagnosis 
as well as informing prognostication for those living with 
AD as they are cheaper, less invasive and more accessi-
ble than traditional diagnostic tools (CSF sampling/PET 
imaging). BBMs are also likely to have a crucial role in 
identifying individuals suitable for access to clinical trials 
and emerging disease-modifying therapies (DMTs) such 
as anti-amyloid immunotherapies [6–15]. Recent appro-
priate use guidelines for BBMs encourage their cautious 
use in specialised memory clinics—with confirmation of 
results using CSF/PET where possible [6].

Whilst Aβ42/Aβ40 is an established biomarker in CSF, 
its performance as a BBM is limited by peripheral Aβ 
production which reduces diagnostic sensitivity. Addi-
tionally, plasma Aβ42/Aβ40 also demonstrates low fold-
change, putting high demand on analytic precision and 
stability over time [16]. Meanwhile, p-tau species have 
emerged as promising BBMs for AD detection, with sev-
eral p-tau epitopes (p-tau181, p-tau217 and p-tau231)—
changing at different stages of the AD continuum 
[17–20]. Currently, p-tau217 is the most promising BBM 
for detection of AD pathology [21–25] and may differen-
tiate AD from other dementias [26–30]. Plasma p-tau217 
can detect cortical Aβ accumulation and may medi-
ate the association between Aβ plaques and subsequent 
tau tangle pathology [31–34]. Plasma p-tau217 may also 
have prognostic utility—levels are associated with future 
AD progression as measured by clinical decline and hip-
pocampal/cortical atrophy [18, 20, 22, 29, 35].

There is growing evidence that plasma p-tau217 is an 
amyloid response measure – with increases in concen-
tration beginning soon after CSF Aβ positivity occurs 
but before the cut-point for Aβ PET positivity has been 
reached. This makes plasma p-tau217 a promising early 
diagnostic measure of Aβ pathology in those presenting 
to specialist memory services [5, 36–38]. Importantly, 
p-tau217 has the potential to democratise AD diagno-
sis as it may offer a cost-effective and scalable diagnostic 
measure which could substantially reduce need for fur-
ther invasive/expensive testing with CSF/PET – particu-
larly in the context of specialist memory clinics [39, 40].

The performance of p-tau217 in detecting Aβ pathol-
ogy may vary by platform used. Mass Spectrometry-
based methods usually considered the gold standard 
are limited by high cost, availability and throughput. 
Recently, immunoassays for BBMs have been devel-
oped with excellent performance for the detection of 
Aβ pathology [41, 42]. In a head-to-head comparison of 
multiple p-tau assays in individuals with Mild Cognitive 
Impairment (MCI), several plasma p-tau217 immuno-
assays showed high and consistent accuracy for detection 
of Aβ [43, 44]. More broadly, immunoassays for p-tau217 
have demonstrated excellent performance in detecting 
CSF Aβ status in several cohort studies [45, 46].

The accuracy of plasma p-tau217 is clearly estab-
lished in cohort and population studies, but fewer 
studies have evaluated p-tau217 immunoassays in real-
world memory clinic settings – one of the important 
contexts for BBM use in AD diagnosis [6]. There are 
several studies which clearly support the accuracy of 
p-tau217 immunoassays to detect Aβ pathology in 
clinical practice [44, 45, 47, 48]. However, further rep-
lication studies are needed to assess real-world clinical 
performance in different clinical contexts and across 
different platforms depending on access/availabil-
ity and cost. Whilst many of these employ the digital 
ELISA Single molecule array (Simoa) platform, here we 
assessed the diagnostic performance of a commercially 
available (research-use only) high-sensitivity plasma 
p-tau217 electrochemiluminescence (ECL) immuno-
assay. This approach allows femtogram/mL measure-
ment of analytes typically not detected by conventional 
ECL immunoassays [47, 49–51]. We assessed the use 
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of plasma p-tau217 measured using this platform for 
the detection of Aβ positivity in individuals presenting 
with early cognitive symptoms to a specialist memory 
service and undergoing diagnostic workup including 
LP for detection of AD pathology.

Methods
Study setting and participants
The current study used biological samples and partici-
pant data from the Tallaght University Hospital Insti-
tute of Memory and Cognition – Biobank for Research 
in Ageing and Neurodegeneration (TIMC-BRAiN), 
the protocol for which has been previously published 
[52]. The Regional Specialist Memory Centre (RSMC) 
at Tallaght University Hospital (TUH) in Dublin, Ire-
land assesses 400–500 patients annually experienc-
ing cognitive symptoms. In the RSMC, patients are 
assessed in the first instance by an Advanced Nurse 
Practitioner (ANP) in memory and in addition to 
comprehensive clinical history and examination typi-
cally undergo cognitive testing including administra-
tion of the Addenbrooke’s Cognitive Assessment III 
(ACE-III) and Frontal Assessment Battery (FAB), neu-
roimaging, routine investigations and where appropri-
ate, diagnostic CSF sampling for AD biomarkers. All 
cases are discussed at an interdisciplinary case confer-
ence meeting led by consultants in geriatric medicine 
and neurology to inform diagnosis, further investiga-
tions and management as appropriate. CSF sampling 
is typically performed in individuals presenting with 
cognitive symptoms at MCI/mild dementia stage to 
detect or rule-out AD pathology as either a primary or 
co-pathology, depending on clinical phenotype and in 
accordance with recent guidelines [53].

Alongside routine assessment and workup, patients 
attending the RSMC are offered the opportunity to 
donate biological samples and clinical data to the 
TIMC-BRAiN Biobank. For the purposes of TIMC-
BRAiN, each participant’s diagnostic results are dis-
cussed at a dedicated monthly biobank diagnostic 
meeting where a final biobank diagnosis adjudicated by 
a consultant-led MDT. For consensus diagnosis, each 
participants diagnosis is divided into both functional 
status (Subjective Memory Complaints [SMCs]/MCI/
Dementia) and a primary aetiological diagnosis (AD, 
Lewy Body Disease [LBD], Frontotemporal Dementia 
[FTD] etc.) as previously outlined [52]. For the current 
study, we included all TIMC-BRAiN participants who 
underwent diagnostic LP from January-December 2023 
inclusive. Detailed demographic and clinical informa-
tion was collected alongside cognitive assessment and 
final biobank diagnosis as previously reported [52].

Biological sampling and processing
Paired blood and CSF samples were obtained at time 
of diagnostic LP and stored for future analysis. Once 
diagnostic samples were collected by drip method, an 
additional 5  mL of CSF was collected in 2.5  mL sterile 
polypropylene tubes (Sarstedt Ltd; Cat No: 63.614.625) 
for processing and storage in the TIMC-BRAiN biobank. 
Biobank CSF samples were processed in a sterile manner 
on-site with centrifugation (440  g × 10 min) and storage 
of cell-free CSF in 0.5 mL aliquots. Paired plasma samples 
at time of LP were obtained by aseptic venepuncture and 
collected in 9 mL K2EDTA tubes (Greiner Bio One Ltd; 
Cat No: 455045), which were centrifuged (1.8 g × 10 min) 
with plasma aliquoted into 0.5 mL sterile cryovials. Once 
processed, CSF/plasma are stored at -80  °C for future 
analysis. All paired CSF and plasma samples are pro-
cessed by trained staff on-site within 30 min to minimise 
impact of sample handling on pre-analytical variability.

Diagnostic CSF analysis and definition of AD pathological 
biomarkers
All participants undergoing diagnostic LP have CSF ana-
lysed for Aβ1-42, p-tau181 and t-tau as part of routine 
clinical care. Clinical samples were analysed either on the 
Roche Elecsys ® Immunoassay using a Cobas E801 ana-
lyser or using the Fujirebio Innotest ® as part of routine 
clinical practice. For the current study, as we were evalu-
ating the performance of p-tau217 to detect Aβ and tau 
pathology, Aβ levels ≤ 1030 pg/mL (Elecsys®)/ ≤ 712.0 pg/
mL (Innotest ®) on CSF diagnostic testing were consid-
ered indicative of Aβ pathology (A +) whilst p-tau 181 
levels of ≥ 27  pg/mL (Elecsys®)/ ≥ 58.6  pg/mL (Innotest 
®) were considered as indicative of tau pathology (T +). 
Cut-offs for the Elecsys® platform were based on local 
application of validated cut-off values from Roche Diag-
nostics [54, 55]. Innotest® cut-off values were derived 
based on consensus and external validation as part of 
the Irish Network for Biomarkers in Neurodegeneration 
which has been described elsewhere [56].

Electrochemiluminescence immunoassays
We used a high-sensitivity assay from MesoScaleDiscov-
ery (MSD) (S-PLEX; Cat No: K51APFS) to assess levels 
of p-tau217 in both plasma and CSF samples. Briefly, the 
commercially available research use only S-PLEX assay 
uses ECL technology. Plates are coated with Streptavidin 
and a biotinylated antibody. Analytes of interest (in this 
case p-tau phosphorylated at threonine 217) are captured 
in standard sandwich format and a “TURBO BOOST®” 
mouse monoclonal antibody used for detection, which 
is enhanced with “TURBO-TAG®” reagents. Calibrator 
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controls supplied with the kit consists of p-tau217 (full-
length recombinant phosphorylated tau – isoform tau441 
– protein expressed in a human cell line).

Samples (paired plasma and CSF) were thawed on ice 
and measured across five individual plates according to 
the manufacturer’s instructions. A plasma pool of 12 
donors from TIMC-BRAiN selected for maximal spread 
of age, BMI, and symptom severity were created and ana-
lysed across all experiments to assess inter-assay Coeffi-
cients of Variation (CVs). Inter-assay CVs were calculated 
as the CV of the plasma pool across all five plates whilst 
intra-assay CVs were calculated from the CV of sample 
duplicates. Samples were randomised across the plates 
and the assessor blinded to the clinical status of each 
donor. Once completed, each plate was read on a MSD 
QuickPlex SQ 120 Analyser and Discovery Workbench 
4.0 Software used to analyse results.

In parallel to analysing samples for p-tau217, separate 
plasma and CSF aliquots from each participant were 
analysed in single-plex for p-tau181 and in multi-plex 
for total tau (t-tau), Neurofilament Light (NfL) and Glial 
Fibrillary Acidic Protein (GFAP) using ultra-sensitive 
S-PLEX p-tau181 and S-PLEX neurology kits from MSD 
(K-156AGMS/ K-15639S) respectively. Experimental lay-
out and analyses were identical as for p-tau217 and con-
ducted according to manufacturer’s instructions.

Statistics
Descriptive statistics consisted of means with standard 
deviation and medians with Interquartile Range (IQR) 
as appropriate. Between-group differences between dis-
ease stage (MCI or Dementia) or Aβ/tau positivity were 
carried out using t-tests and Mann–Whitney U tests. In 
order to assess the performance of p-tau217 in detect-
ing Aβ or tau pathology as defined above (positive Aβ/
elevated ptau181 on CSF respectively – using estab-
lished clinical cut-offs), Receiver Operating Characteris-
tic (ROC) analysis was used and Area Under the Curve 
(AUC) with 95% Confidence Interval (95% CI) calculated. 
To examine for optimal cut-off a Youden index was com-
puted and the cut-off with the maximal value taken for 
further analysis. In the first instance, we examined the 
performance of p-tau217 given clear existing evidence for 
its association with early Aβ pathology. In order to evalu-
ate the performance of different cut-points, we employed 
a two-threshold approach for sensitivities and specifici-
ties of 90%, 95% and 97.5%, following previously pub-
lished approaches aimed at integrating BBMs into clinical 
workflows [40]. In line with this approach, those scoring 
below the sensitivity threshold were deemed to have low 
likelihood of Aβ positivity whilst those with scores above 
specificity cut-offs were deemed to have high likelihood 
of Aβ positivity. Those in between the two thresholds 

were deemed to have intermediate likelihood of Aβ posi-
tivity. In order to evaluate how many LPs may have been 
avoided at each sensitivity/specificity level, we consid-
ered that those in the low and high likelihood categories 
would not undergo confirmatory LP and those in the 
intermediate category would require confirmatory LP.

We subsequently assessed the diagnostic performance 
of p-tau181 using the same method and compared AUCs 
of p-tau217 and p-tau181 using the DeLong test. For fur-
ther analysis of GFAP, NfL and t-tau, we first assessed 
between-group differences in Aβ + ve vs Aβ -ve individu-
als. We subsequently performed correlational analysis 
(Spearman’s R) to assess the relationship between these 
markers and plasma p-tau217, stratified by Aβ status. 
This was performed for all plasma and CSF biomarkers 
assessed. Across all analyses, an alpha level of p < 0.05 
was considered statistically significant. Analysis was 
conducted in STATA v17.0 (StataCorp, Texas, USA) and 
GraphPad Prism v10.0 (Graphpad Software Inc, Boston, 
Massachusetts, USA).

Results
Participant characteristics & consensus diagnoses
Overall, 108 participants (age: 69 ± 6.5  years; 54.6% 
female) donated paired plasma and CSF samples at time 
of diagnostic LP. Of these, 64.8% (n = 70/108) had Aβ 
pathology detected on CSF – n = 35 with MCI and n = 35 
with mild dementia. For those with MCI and positive Aβ 
on CSF, AD was determined to be the primary pathol-
ogy in 34/35 cases whilst one individual with MCI and 
positive Aβ was awaiting further work-up. In those with 
dementia and positive Aβ, AD was judged to be the sole 
pathology causing dementia in 30 cases. Three individu-
als with positive Aβ were also met diagnostic criteria for 
Dementia with Lewy Bodies (DLB) and were determined 
to have AD-DLB dual pathology. Two individuals with 
dementia and positive Aβ (but negative CSF p-tau181) 
were judged by consensus to have probable behavioural 
variant FTD (bv-FTD)—one of whom was a pathogenic 
mutation carrier—with Aβ incidental/co-pathology.

The remaining participants (38/108; 35.2%) had nega-
tive Aβ on CSF testing. For those with MCI and negative 
Aβ (n = 33), 3 had consensus diagnosis of Lewy Body-
MCI whilst 28 had non-AD MCI following diagnos-
tic work-up. Two individuals with MCI were awaiting 
further investigations to determine aetiology. Of those 
with dementia and negative Aβ (n = 5), 2 were judged 
to have pure DLB without AD co-pathology and 3 were 
awaiting further investigations to determine aetiology. 
Demographic and clinical characteristics, in addition to 
immunoassay biomarker results presented by Aβ status, 
are provided below in Table 1.
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Plasma p‑tau217 accurately detects Alzheimer disease 
pathology in a memory clinic setting
Plasma P-tau217 was measured in all 108 study partici-
pants (Table 1). The lower limit of quantification (LLOQ) 
for the ECL assay was 0.85 pg/mL with detectable results 
for all samples tested. Median intra-assay CV for dupli-
cates was 4.15% and inter-assay CV was 9.32%. No par-
ticipant had a p-tau217 result above the upper limit of 
quantification (3,761 pg/mL).

Median plasma p-tau217 concentrations were over 
three-fold higher in Aβ + (12.4  pg/mL; 7.3—19.2  pg/
mL) than Aβ- participants (3.6  pg/mL; 2.8—4.1  pg/
mL; Mann–Whitney U = 230, p < 0.001) (Fig.  1). For 
the detection of Aβ pathology alone, p-tau217 dem-
onstrated excellent performance with an AUC of 0.91 
(95% CI: 0.86–0.97) (Fig.  1). By comparison, for detec-
tion of tau (T) pathology, p-tau217 concentrations were 
higher in T + (15.9  pg/mL; IQR: 10.1—20.9  pg/mL) 

than T- participants (7.5  pg/mL; IQR: 3.1 – 10.0  pg/
mL) (Mann Whitney U = 460, p < 0.001) and exhibited 
an AUC of 0.83 (95% CI: 0.75—0.90). The performance 
of plasma p-tau217 was significantly better for detec-
tion of Aβ pathology compared to T pathology (DeLong 
test, z = 1.75, p = 0.04). Of note, there were no significant 
differences between Aβ—T + and Aβ—T- participants 
or between Aβ + T- and Aβ + T + participants (Fig.  1). 
On comparing those with MCI and dementia with Aβ 
pathology detected, individuals with dementia due to AD 
had significantly higher levels of p-tau217 in comparison 
to those with MCI due to AD (Fig. 1).

In line with findings for plasma p-tau217, CSF p-tau217 
significantly differed in Aβ + ve vs Aβ-ve individuals 
(659.2 pg/mL; IQR: 270.8 – 1,094.3 in Aβ + vs. 145.1 pg/
mL; 94.8–250.8 in Aβ-; U = 376.5, p < 0.001). Plasma 
p-tau217 exhibited significant positive correlations 
with CSF p-tau217 in Aβ positive (Spearman’s r = 0.58, 

Table 1  Baseline characteristics of included participants from the TIMC-BRAiN cohort

108 Individuals donated paired plasma and CSF at time of diagnosis. Values are provided as means with Standard Deviations (SD) or medians with Interquartile 
Ranges (IQRs) as indicated. Proportions are given as the total number of individuals from those with either Mild Cognitive Impairment (MCI) or dementia. Biomarker 
results are provided in pg/mL or ng/mL as appropriate

NfL Neurofilament Light, GFAP Glial Fibrillary Acidic Protein

Characteristic Aβ + ve (n = 70) Aβ -ve (n = 38)

Age, Years (mean; SD) 69.6 ± 6.4 67.9 ± 6.6

Sex, Female (n; %) 40 (57.1%) 19 (50%)

Estimated Glomerular Filtration Rate (ml/min/1.73m2) 74 (58–87) 73.5 (64.5–83.5)

Duration of Symptoms, Months (median; IQR) 24 (12–36) 22 (12–14)

Addenbrooke’s Cognitive Assessment III (median; IQR) 68 (59–78) 78 (70–84)

Frontal Assessment Battery (median; IQR) 13 (11–16) 15 (12–17)

Clinical Stage (Consensus Diagnosis)

  Mild Cognitive Impairment (n; %) 35 (50%) 33 (87.8%)

  Dementia (n; %) 35 (50%) 5 (13.2%)

Primary Pathology (Consensus Diagnosis)

  Alzheimer Disease (n; %) 67 (95.7%) 0

  Lewy Body Disease/Dementia with Lewy Bodies (n; %) 0 5 (13.2%)

  Frontotemporal Dementia (n; %) 2 (2.9%) 0

  Other—Pending Further Investigations (n; %) 1 (1.4%) 5 (13.2%)

  Other—Aetiology Undetermined (n; %) 0 28 (73.7%)

Plasma Biomarker Results (S-PLEX)

  p-tau217, pg/mL (median; IQR) 12.4 (7.3–19.2) 3.6 (2.8–4.1)

  p-tau181, pg/mL (median; IQR) 2.1 (1.6–3.4) 1.4 (1.2–1.9)

  t-tau, pg/mL (median; IQR) 22.8 (17.0–29.7) 19.1 (16.4–26.3)

  NfL, pg/mL (median; IQR) 132.0 (75.4–188.5) 106.3 (69.9–188.5)

  GFAP, pg/mL(median; IQR) 60.6 (46.8–88.5) 44.7 (29.1–69.9)

Cerebrospinal Fluid (CSF) Biomarker Results (S-PLEX)

  p-tau217, pg/mL (median; IQR) 659.2 (270.8–1094.3) 145.1 (94.8–250.8)

  p-tau181, pg/mL (median; IQR) 43.3 (24.0–62.6) 11.8 (8.7–26.1)

  t-tau, pg/mL (median; IQR) 145.5 (80.6–239.3) 102.6 (73.8–214.0)

  NfL, ng/mL (median; IQR) 2.9 (1.7–3.8) 3.3 (1.7–4.2)

  GFAP, ng/mL (median; IQR) 2.9 (2.0–5.4) 2.6 (2.0–4.7)
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p < 0.001) but not Aβ negative individuals. Overall, CSF 
p-tau217 had an AUC of 0.83 (95% CI: 0.75, 0.91) for 
the detection of Aβ positivity. Plasma p-tau217 outper-
formed CSF p-tau217 for the detection of Aβ positivity, 
with a trend for statistical significance observed (z = -1.6, 
p = 0.05, DeLong Test) (Fig. 1).

At the point with maximal Youden Index using a sin-
gle-threshold approach applied to plasma p-tau217 for 
the detection of Aβ positivity—at a cut-off of 5.87  pg/
mL—plasma p-tau217 had a sensitivity of 84.3% and a 
specificity of 94.7%. At these cut-off values in the cur-
rent cohort, there were 2/38 (5.3%) “false positives” (CSF 

Aβ- participants with plasma p-tau217 values > 5.9  pg/
mL) and 11/70 (15.7%) “false negatives” (CSF Aβ + indi-
viduals with plasma p-tau217 values < 5.9  pg/mL). The 
false positives included: (i) a participant with amnestic 
MCI and a p-tau-217 value just above the cut-off (6.1 pg/
mL) and [14] a participant with strongly positive p-tau-
217 result (10.4 pg/mL) with normal CSF Aβ42 levels and 
clinical diagnosis solely consistent with DLB. Both of 
these had unimpaired renal function. The 11 false nega-
tives (Aβ positivity on CSF but p-tau217 levels below cut-
off) included: (i) 2 individuals with a consensus diagnosis 
of FTD, one of whom was a pathogenic mutation carrier, 

Fig. 1  P-tau217 Exhibits Excellent Performance for the Detection of Aβ Pathology in Individuals with MCI/Dementia. Plasma p-tau217 
was measured in 108 individuals undergoing diagnostic lumbar puncture for the detection of Alzheimer Disease pathology. Paired plasma samples 
were analysed for p-tau217. A (i) P-tau217 was nearly four-fold higher in Aβ + vs Aβ- individuals (Mann–Whitney U = 230; p < 0.001). The red dotted 
line indicates the Youden optimised cut-off. (A) (ii) p-tau217 exhibited excellent performance in the detection of Aβ + status (Area-Under the Curve 
[AUC]: 0.91; 0.86–0.97). B (i) P-tau217 was significantly elevated in T + vs T- individuals. (ii) Performance of p-tau217 for detection of T + pathology 
alone gave an AUC of 0.83 (0.75–0.90) which was significantly lower than that for Aβ positivity (DeLong test, p = 0.04). C (i) Significant differences 
were not seen in concentrations of p-tau217 between A- T- and A- T + individuals or between A + T- and A + T + individuals supporting the role 
of p-tau217 as a marker of amyloid positivity. (ii)For Aβ + individuals, concentrations were significantly higher (p = 0.03) in individuals with dementia 
vs MCI due to AD. D (i) CSF p-tau217 was significantly higher in individuals with Aβ positivity. (ii) CSF p-tau217 had lower performance than plasma 
p-tau217 with an AUC 0.83 (0.75–0.91) with a trend for statistical significance (p = 0.05). (iii) Significant correlations were observed between CSF 
and plasma p-tau in individuals with Aβ positivity. ****p < 0.0001, ***p < 0.001, ** < 0.01, *p < 0.05, ns: non-significant; AUC: Area-Under-the-Curve 
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and Aβ co-pathology/incidental pathology, (ii) 2 indi-
viduals with mild dementia due to AD (one individual 
Aβ + T + on CSF and one Aβ + T- on CSF) and (iii) 7 indi-
viduals with amnestic MCI attributable to AD pathology 
based on clinical phenotype and CSF results (2 of whom 
were Aβ + T + on CSF and 5 of whom were Aβ + T- on 
CSF). At this single point cut-off, plasma p-tau217 had a 
Positive Predictive Accuracy (PPA) of 97.18%, a Negative 
Predictive Accuracy (NPA) of 71.05% and an Overall Per-
cent Agreement (OPA) of 87.96%.

To explore alternative thresholds of sensitivity and 
specificity on assay performance, we applied a previously 
published two-threshold approach [40]. Three distinct 
thresholds were considered: (i) 90% sensitivity & 90% 
specificity, [14] 95% sensitivity & 95% specificity and (iii) 
97.5% specificity. Individuals below the sensitivity cut-off 
were deemed to have low likelihood of Aβ positivity and 

those above the specificity cut-off deemed to have high 
likelihood of Aβ positivity. Those falling between the two 
cut-offs were felt to have intermediate likelihood of Aβ 
positivity. Results are provided in Fig.  2 below in both 
graphical and tabular format. At 90% sensitivity and 90% 
specificity, the PPA, NPA and OPA (for p-tau217 positive 
and negative) were 95.24%, 81.08% and 90% respectively 
whilst at the 95% sensitivity and 95% specificity level, 
these values were 96.61%, 78.57% and 93.15% respec-
tively. Finally for the 97.5% sensitivity and 97.5% specific-
ity level, PPA was 96.61%, the NPA was 50% and OPA (for 
p-tau217 positive and negative) 93.5%. See Fig. 2.

If individuals deemed low or high likelihood based on 
these thresholds had not proceeded to LP, the potential 
number of LPs avoided in the current cohort would have 
been 93% (100/108) at the 90% sensitivity and 90% speci-
ficity threshold, 68% (73/108) at the 95% sensitivity and 

Fig. 2  Exploration of Two-Point Thresholds for Plasma p-tau217. A In order to examine different thresholds of sensitivity and specificity, we 
considered performance of plasma p-tau217 at three thresholds: (i) 90% sensitivity and 90% specificity; (ii) 95% sensitivity and 95% specificity; (iii) 
97.5% sensitivity. Those above these specificity and below these sensitivity cut-offs were judged to have high risk and low risk of CSF-determined 
Aβ positivity respectively. Shaded areas indicate those in the intermediate category, with scores above the specified sensitivity cut-off 
but below the specificity cut off. B Tabular results obtained by applying these cut-offs indicating low, intermediate and high risk of CSF-determined 
Aβ, presented by CSF-defined Aβ status. C Positive Predictive Accuracy (PPA), Negative Predictive Accuracy (NPA) and Overall Percent Agreement 
for p-tau217 positive and negative participants are provided at each threshold
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95% specificity threshold and 58% (63/108) at the 97.5% 
sensitivity and 97.5% specificity threshold.

Plasma p‑tau217 outperforms p‑tau181 for the detection 
of Aβ pathology
Plasma p-tau181 was measured in an identical fash-
ion using a high-sensitivity ECL assay with an intra-
assay CV of 7.9% and an inter-assay CV of 16%. Overall, 
median p-tau181 concentration was 1.7 times higher in 
Aβ + (2.3  pg/mL; IQR 1.7–4.2  pg/mL) vs Aβ- partici-
pants (1.4 pg/mL; IQR 1.2 – 2.0 pg/mL) (Mann–Whitney 
U = 661, p < 0.001). The AUC for p-tau181 for the detec-
tion of Aβ pathology was 0.72 (95% CI: 0.62—0.83) which 
was significantly lower than the performance of p-tau217 
for detection of Aβ pathology (DeLong test, z = 3.24, 
p < 0.001) (See Fig.  3). P-tau181 concentrations did not 
significantly differ between A- T- vs A- T + individuals or 
between A + T- vs A + T + individuals. Similarly, within 
those Aβ- or Aβ + ve, concentrations of p-tau181 did not 
differ by MCI or dementia status. Significant correlations 

were observed between plasma p-tau217 and plasma 
ptau-181 in Aβ positive individuals (Spearman’s R = 0.60, 
p < 0.001) but not in in Aβ negative individuals (R = 0.16, 
p = 0.34). Similarly, CSF p-tau181 was significantly cor-
related with plasma p-tau217 in Aβ positive (Spearman’s 
R = 0.63, p < 0.001) but not in in Aβ negative (R = 0.10, 
p = 0.60) participants (Fig. 3).

Correlation between plasma p‑tau217 and other markers 
in plasma and cerebrospinal fluid
In addition to measurement of p-tau217 and p-tau 181, 
GFAP, NfL and t-tau were measured in plasma and CSF 
in multiplex using the same high-sensitivity ECL plat-
form. Intra- and inter-assay CVs were as follows for each 
assay—9.8%/14.5% for GFAP, 11.4%/16.3% for NfL and 
3.9%/14.8% for t-tau.

On assessing GFAP, NfL and t-tau levels in CSF and 
plasma, only plasma GFAP differed significantly between 
Aβ positive and Aβ negative individuals (60.6  pg/mL; 
IQR: 46.8—88.5 in Aβ + vs 44.7  pg/mL; IQR: 29.1–69.9; 

Fig. 3  P-tau217 Outperforms p-tau181 for the Detection of Aβ Positivity in Individuals with MCI/Dementia. Plasma samples were analysed 
for both p-tau181 and p-tau217. A P-tau181 was 1.7 times higher in Aβ + vs Aβ- individuals (Mann–Whitney U = 661; p < 0.001). B p-tau181 
exhibited inferior performance than p-tau217 in the detection of Aβ + status (Area-Under the Curve [AUC]: 0.91; 0.86–0.97 for p-tau217 vs 0.72; 
0.62–0.83, DeLong test p < 0.001). C Significant differences were not seen in concentrations of p-tau181 between A- T- and A- T + individuals 
or between A + T- and A + T + individuals. D There were no significant differences between dementia and MCI for either Aβ + or Aβ – groups. E 
Significant correlations were seen between plasma p-tau181 and plasma p-tau217 in Aβ + (Spearman’s R = 0.60, p < 0.001) but not Aβ – (Spearman’s 
R = 0.16, p = 0.34) individuals. F Significant correlations were seen between CSF p-tau181 and plasma p-tau217 again in Aβ + (Spearman’s 
R = 0.63, p < 0.001) but not Aβ – (Spearman’s R = 0.10, p = 0.60) individuals. ****p < 0.0001, ***p < 0.001, ** < 0.01, *p < 0.05, ns: non-significant; AUC: 
Area-Under-the-Curve 
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Fig. 4  Plasma P-tau217 is Significantly Correlated with Plasma GFAP, Plasma Total-tau and CSF Total-tau in Aβ + Individuals. Plasma and CSF samples 
were additionally analysed for Glial Fibrillary Acidic Protein (GFAP), Neurofilament Light (NfL) and Total tau (t-tau). A (i) Plasma GFAP significantly 
differed between Aβ + vs Aβ- individuals (U = 811, p = 0.004) (i-vi) None of the additional markers differed in Aβ + vs Aβ – individuals. B (i) Significant 
correlations were observed between plasma GFAP in Aβ + but not Aβ – individuals. (ii, v) No correlations were seen between plasma or CSF NfL 
and plasma p-tau217. (iv) CSF GFAP did not correlate with plasma p-tau217. (iii, vi) Significant correlations were seen between plasma p-tau217 
and both plasma and CSF t-tau in Aβ + but not Aβ – individuals. ****p < 0.0001, ***p < 0.001, ** < 0.01, *p < 0.05, ns: non-significant 
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Mann–Whitney U = 811, p = 0.004) (Fig.  4). There was 
a significant correlation between levels of plasma GFAP 
and plasma p-tau217 in Aβ + (Spearman’s r = 0.29, 
p = 0.02) but not Aβ- individuals. On examining correla-
tions between plasma p-tau217 and the other markers, 
significant correlations were observed between plasma 
p-tau217 and total tau levels in both plasma (Spear-
man’s R = 0.38, p = 0.002) and CSF (Spearman’s R = 0.29, 
p = 0.02) in Aβ + participants, but not in Aβ- participants 
(Spearman’s R = 0.14, p = 0.39 for plasma t-tau; Spear-
man’s R = 0.05, p = 0.79 for CSF t-tau) (See Fig. 4).

Discussion
In the current analysis of paired plasma and CSF 
obtained at time of diagnostic LP, we demonstrated 
excellent performance of a novel high-sensitivity plasma 
p-tau217 ECL immunoassay for the detection of Aβ posi-
tivity in individuals presenting to specialist memory ser-
vices with MCI/mild dementia– one of the key contexts 
in which BBM are likely to be of future use. Importantly, 
the performance of our assay is in line with previous 
studies on the use of high-sensitivity plasma p-tau217 
immunoassays for the detection of AD pathology [43, 46] 
and further supports the role of p-tau217 as the leading 
candidate BBM for detection of AD pathology.

In our study, p-tau217 had a higher AUC for detec-
tion of Aβ rather than tau pathology – a finding previ-
ously reported and supportive of p-tau217 as an amyloid 
response measure which increases following CSF positiv-
ity but preceding amyloid PET positivity [5]. In our data, 
the specificity of p-tau217 was greater than its sensitiv-
ity—with several “false negatives” having early amnes-
tic MCI secondary to AD pathology. It is possible that 
changes in p-tau217 have not yet occurred for these 
individuals despite Aβ positivity on CSF testing. As only 
individuals who were symptomatic and are presenting to 
memory services were evaluated in the current cohort, 
the potential for false negatives may be significantly 
higher than estimated in community/longitudinal cohort 
contexts where there be many more true negatives – thus 
resulting in a lower sensitivity in the current context in 
comparison to community or cohort studies [57].

Whilst overall diagnostic performance of p-tau217 is 
consistent with previous reports, it is worth noting that 
the sensitivity of p-tau217 using an immunoassay in our 
clinical cohort was slightly lower than that seen using 
immunoassays in some community/population-based 
cohorts [46]. The only previous study that examined the 
same high-sensitivity ECL immunoassay as the current 
study reported an AUC of 0.98 for detection of “AD-
like CSF” – namely both Aβ + and T + compared to A- 
T- CSF—which may explain why assay sensitivity in the 
current study was slightly lower as false negatives were 

mainly from Aβ + T—individuals with early amnestic 
MCI [47]. Future “round-robin” studies should compare 
the real-world sensitivities of different scalable immuno-
assays for p-tau217 in memory clinic cohorts to examine 
whether this is common across immunoassays or unique 
to the current study. Additionally, longitudinal studies in 
real-world memory clinic cohorts are required to tease-
out the longitudinal relationships between CSF, plasma 
and PET biomarkers which will undoubtedly inform 
repeat-testing and follow-up strategies in the context of 
specialist memory clinics.

Another important consideration in this manner is if 
in clinical use, how information is given to patients about 
the implications of both positive and negative test results 
as BBMs are implemented into memory services. This 
may be increasingly important if BBMs are used to tri-
age individuals for further work to determine eligibility 
for novel DMTs such as anti-amyloid immunotherapies 
and false negative results may erroneously limit access 
to anti-amyloid treatment. Further studies should evalu-
ate different strategies and clinical pathways for further 
investigation, workup and follow-up pathways specifi-
cally in memory clinics—where BBMs are likely to sig-
nificantly change these pathways.

Different strategies have been proposed on how best 
to integrate BBMs into clinical workflows. One proposal 
involve defining two different threshold values that max-
imise sensitivity and specificity. This strategy would allow 
a subset of positive and negative individuals via p-tau217 
levels to be identified, with an intermediate category of 
individuals with levels between the proposed cut-points 
– people in this category would require further confirma-
tory diagnostic testing such as CSF or PET would be 
of use [40]. Application of this approach in the current 
cohort revealed that at 95% sensitivity and 95% specific-
ity, 68% of LPs could have been potentially avoided and 
at a more stringent level of 97.5% sensitivity and 97.5% 
specificity, 58% may have been avoided. Optimal thresh-
olds require larger real-world studies across different 
clinical contexts than the cohort examined here. Impor-
tantly, our data support the high specificity of plasma 
p-tau217 as a BBM to confirm the presence of Aβ pathol-
ogy in specialist settings using a potential two-threshold 
approach, potentially meaning that individuals with early 
cognitive symptoms could avoid the need for further 
invasive or expensive diagnostic tests. Further studies 
may add novel insight into the sensitives of these assays 
in memory clinics and inform testing and clinical care 
pathways in these contexts.

Of note, whilst many immunoassays require rela-
tively sophisticated equipment, staff and resource allo-
cation (such as digital ELISA/Simoa platform), the 
assay evaluated here was a commercially available ECL 
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immunoassay. ECL technology is in widespread use in 
clinical contexts at present (currently the most common 
method by which CSF biomarkers are analysed). In par-
ticular, the use of automated ECL platforms – which are 
already in clinical use for other applications – have dem-
onstrated excellent performance for the measurement of 
p-tau217. For instance, two recent pre-print manuscripts 
have highlighted the potential utility of the automated 
Lumipulse™ platform in memory clinic contexts [58, 59]. 
Similarly, recent reports have demonstrated excellent 
performance of the automated Roche Cobas™ platform 
for plasma p-tau217 [60]. Automated systems are more 
scalable than the ECL assay used in the current study – 
which was a research use only immunoassay requiring 
more manual steps and hence is more laborious in real-
world clinical contexts than automated systems.

Our data is encouraging in suggesting that high-sensi-
tivity ECL platforms are a viable option for clinical test-
ing of plasma p-tau217. In the current data, p-tau217 
outperformed plasma p-tau181 which only had an AUC 
of 0.73 in our analyses. Whilst the performance of this 
p-tau181 is much lower than that of p-tau217, it is in 
line with results from a previous head-to-head compari-
son of the MSD p-tau181 S-PLEX immunoassay in an 
MCI cohort similar to ours which reported an AUC of 
0.64 for the detection of Aβ positivity [43]. Overall, our 
data supports the use of p-tau217 as the leading candi-
date BBM for detection of AD pathology. Interestingly, 
in the current study the correlation between plasma and 
CSF p-tau217 was not as strong as in previous reports. It 
is unclear why this is the case, however it is noteworthy 
that the AUC for CSF p-tau217 was lower than that for 
plasma – which trended towards statistical significance. 
Our data adds significant evidence to plasma as the opti-
mal matrix for testing p-tau217 given its superior perfor-
mance, and the lack of significance directly comparing 
CSF vs plasma may be due to the sample size under study 
in the current study.

Our study has several strengths. We demonstrate excel-
lent performance of p-tau217 using a commercially-
available ECL immunoassay. Further, our samples and 
data were obtained as part of routine diagnostic workup 
in a real-world memory clinic – one of the first contexts 
where BBMs are likely to be used. As part of this, par-
ticipants were assigned a consensus diagnosis in line with 
diagnostic criteria and best practice. We assessed the per-
formance of p-tau217 against CSF Aβ, which is the most 
common method currently used to define AD pathologi-
cal change. Moving forward, more data such as ours from 
real-world clinical cohorts and importantly incorporating 
longitudinal follow-up will be required to further estab-
lish most appropriate use, precise cut-off values and diag-
nostic pathways for BBMs in memory clinic services.

Limitations
There are several limitations to our study. In the first 
instance, our study is a single-centre study and only con-
sidered patients presenting to a single memory service. 
Further, our study did not include longitudinal analy-
sis of biomarkers and so cannot comment of temporal 
sequence of changes between CSF and plasma biomark-
ers. This may be particularly important in examining the 
individuals in our study with MCI and Aβ positivity on 
CSF despite plasma p-tau217 below the cut-off and in 
designing future clinical pathways for appropriate follow-
up and further diagnostic workup in individuals assessed 
using BBMs in memory clinics.

Conclusion
In conclusion, we assessed the real-world clinical per-
formance of a novel high-sensitivity plasma p-tau217 
immuno-assay for the detection of Aβ pathology in a 
real-world memory clinic setting. Plasma p-tau217 meas-
ured by this method demonstrated excellent performance 
with an AUC of 0.91 for detection of Aβ pathology and 
outperformed plasma p-tau181 for the detection of Aβ. 
Of note, plasma p-tau217 was significantly correlated 
with CSF p-tau217 levels as well as the concentration 
of plasma GFAP. Further studies will continue to evalu-
ate the real-world clinical utility of high-sensitivity ECL 
immuno-assays for the detection of Aβ pathology which 
may be a scalable and affordable platform for BBM 
assessment in routine clinical use.
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