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Abstract 

Background Alzheimer’s disease (AD) is the most prevalent dementia, showing higher incidence in women. 
Besides, lipids play an essential role in brain, and they could be dysregulated in neurodegeneration. Specifically, 
impaired plasma lipid levels could predict early AD diagnosis. This work aims to identify the main plasma lipids altered 
in early AD female mouse model and evaluate their relationship with brain lipidome. Also, the possible involvement 
of the estrous cycle in lipid metabolism has been evaluated.

Methods Plasma samples of wild-type (n = 10) and APP/PS1 (n = 10) female mice of 5 months of age were collected, 
processed, and analysed using a lipidomic mass spectrometry-based method. A statistical analysis involving univari-
ate and multivariate approaches was performed to identify significant lipid differences related to AD between groups. 
Also, cytology tests were conducted to confirm estrous cycle phases.

Results Three hundred thirty lipids were detected in plasma, 18 of them showed significant differences 
between groups; specifically, some triacylglycerols, cholesteryl esters, lysophosphatidylcholines, phosphatidylcholines, 
and ether-linked phosphatidylcholines, increased in early AD; while other phosphatidylcholines, phosphatidyletha-
nolamines, ceramides, and ether-linked phosphatidylethanolamines decreased in early AD. A multivariate approach 
was developed from some lipid variables, showing high diagnostic indexes (70% sensitivity, 90% specificity, 80% accu-
racy). From brain and plasma lipidome, some significant correlations were observed, mainly in the glycerophospho-
lipid family. Also, some differences were found in both plasma and brain lipids, according to the estrous cycle phase.

Conclusions Therefore, lipid alterations can be identified in plasma at early AD stages in mice females, with a rela-
tionship with brain lipid metabolism for most of the lipid subfamilies, suggesting some lipids as potential AD biomark-
ers. In addition, the estrous cycle monitoring could be relevant in female studies.
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Background
Nowadays, the main cause of dementia in the ageing pop-
ulation is Alzheimer’s disease (AD) [1], and the number 
of people affected is expected to increase in the coming 
years [2]. The incidence rate of AD is higher in women 
[3], and it could be not only because of the greater wom-
en’s longevity compared to men [4]. In fact, it could be 
due to sex differences (such as genetic or hormonal dif-
ferences), gender differences (environmental, social and 
cultural influences), or a combination of both [5]. Also, 
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APOE-ε4 genotype may have a stronger association with 
AD and neurodegeneration in women than in men, this 
may be explained by an interaction between the APOE 
genotype and estrogen [6]. Moreover, amyloid-β (Aβ) 
deposition has been observed exacerbated in postmeno-
pausal women APOE-ε4 carriers [7]. On the other hand, 
low educational attainment, which historically is more 
common in women, is a risk factor for dementia [8]. In 
addition, women have evidence of more rapid cognitive 
decline and neurodegeneration than men, despite having 
similar levels of Aβ and tau [6]. Therefore, female-focused 
studies identifying potential biomarkers are required to 
explain the differences and to advance in early detection.

Focusing on animal models, data from studies using 
female animals are thought to be complex due to the 
greater variability associated with the estrous cycle [9]. 
Although female mice do not appear to be more variable 
than male mice [10], there may be differences in some 
mechanisms. In fact, recent studies are being conducted 
in both sexes, but there is few studies using only female 
mice, or equal number of males and females [11]. Fur-
thermore, there is a lack of mice studies looking for AD 
biomarkers and considering the estrous cycle.

Regarding AD biomarkers, lipids could play an impor-
tant role since brain has a high lipid content. They are 
formed mainly in the liver and adipose tissue and are 
rapidly taken up by brain transporters through the blood 
and integrated into brain lipids [12]. Lipids are known to 
affect the structure and function of the blood–brain bar-
rier (BBB). Some lipids are able to cross the BBB and can 
regulate the transport of other substrates across the BBB. 
Under pathological conditions, several vasoactive agents, 
cytokines and chemical mediators are released from 
brain due to an increase in the BBB permeability. In addi-
tion, BBB dysfunction has been observed in many pathol-
ogies of the central nervous system, such as Parkinson’s 
and Alzheimer’s diseases [13]. It is believed that BBB dis-
ruption may influence the transport of Aβ into the brain, 
which has implications for AD prognosis [14].

Currently, AD diagnosis is based on expensive 
and invasive techniques [15], so the need to identify 
new biomarkers in plasma has gained importance in 
recent years [16]. In particular, the identification of 
lipid biomarkers in blood samples [17–19], since an 
imbalance of lipid metabolism is known to result in 
abnormal brain functionality, characterizing the dis-
ease progression [20]. Despite other risk factors of AD 
(e.g. increased blood pressure, bodyweight, smoking, 
decreased physical activity, traumatic brain injury) [21], 
some studies have reported a link between plasma lipid 
levels and AD [22, 23]. However, few studies focused 
on AD plasma lipidome for the identification of a large 
number of lipids as crucial metabolic factors in the 

pathophysiology of the disease [22]. Moreover, there is 
a connection between plasma and brain, since there is 
evidence of a negative correlation between lysophos-
pholipids and monounsaturated fatty acids in these 
samples [24]. In general, lipid alterations are correlated 
with cognitive impairment, showing a relationship 
with the severity of AD [25, 26], and the development 
of multiple psychiatric or neurological disorders asso-
ciated with cognitive decline [27]. In some cases, lipi-
domics may help to predict the AD progression [28]. 
Consequently, plasma lipids have potential utility as 
diagnosis AD biomarkers. On the other hand, a wide 
variety of mouse models have been used in these stud-
ies, with APPswe/PS1dE9 being one of the most stud-
ied. It is described as a double transgenic model of 
Alzheimer’s disease (AD) with familial amyloid precur-
sor protein and presenilin-1 mutations.

The aim of this work is to perform a lipidomic study in 
plasma samples from female wild-type (WT) and APP-
swe/PS1dE9 transgenic (TG) mice, identifying the main 
plasma lipids altered in females due to early AD, evalu-
ating the relationship between plasma and brain altered 
lipids from the same mice and studying differences in 
lipids due to the estrous cycle.

Materials and methods
Animals
APPswe/PS1dE9 transgenic and wild-type (WT) female 
mice with C57BL6 x C3H hybrid background (line 85) 
from the same colony and littermates were used in this 
study, as both mutations are associated with early AD. 
This mouse model is useful in the study of amyloid 
plaque formation and ageing. Specifically, in this model 
the Aβ aggregation appears at 6  months [29, 30], so an 
age of 5 months and 10 days (± 4 days) was selected, as 
this age corresponds to an early stage of AD. Mice were 
housed in groups (2–6 mice per cage) and maintained 
under standard housing conditions in a 12:12-h dark–
light cycle at 23 ± 1  °C and 60% relative humidity at the 
Animal Facilities Service from the University of Valencia 
(Spain). They fed with standard diets and had free access 
to water ad libitum.

All experimental procedures were approved by the Eth-
ics Committee for Experimentation and Animal Welfare 
at the University of Valencia (reference: A202203291754, 
date: 22–08-2022), and performed following relevant 
animal experimentation guidelines and regulations 
(RD53/2013 on the Protection of Animals used for exper-
imentation and other scientific purposes Ministry of the 
Presidency, Spain). Also, this study was carried out fol-
lowing the ARRIVE guidelines (https:// arriv eguid elines. 
org.

https://arriveguidelines.org
https://arriveguidelines.org


Page 3 of 14Ferré‑González et al. Alzheimer’s Research & Therapy          (2024) 16:183  

Genotyping and cytology testing
Following weaning, the QIAamp Fast DNA Tissue Kit 
(QIAGEN, Germany) was used for PCR genotyping by 
taking tissue samples from the ear or tail of mice. APP-
swe/PS1dE9 (TG) mice were identified by the presence of 
two bands.

The estrous cycle phase was confirmed by vaginal 
cytology. After the animal was anaesthetised, the tech-
nique consisted in a previous washing of the vaginal 
canal with a saline solution at room temperature with an 
isotonic concentration of 0.9% sodium chloride (NaCl). 
A few drops of the same solution were deposited at the 
entrance of the vaginal canal using a Pasteur pipette, and 
the contents were released and suctioned three times to 
collect vaginal cells. A drop of this content was placed on 
a glass slide and left to dry at room temperature. Follow-
ing the methodology described in the article by McLean 
et al. [31] the staining was performed with crystal violet 
staining (0.1%, w/v). Finally, the smear was examined 
under the light of the Leica DMD 108 microscope (Wet-
zlar, Germany) to determine the cell type present. In a 
previous article published [32], mainly cornified squa-
mous epithelial cells were observed in the estrus phase, 
and mainly leukocytes in the diestrus phase.

Plasma samples collection
Five-month-old mice were anaesthetised with isoflurane 
(4 – 5%) and sacrificed by cervical dislocation. Blood 
samples were taken by decapitation. To prevent clot-
ting, heparin was added to the tubes before sampling. 
To obtain plasma, blood samples of approximately 1 mL 
were centrifuged in an EDTA microtainer tube (Aqui-
sel, Barcelona, Spain) for 15 min at 1500 × g. Thereafter, 
nearly 400 μL of the supernatant plasma were collected 
and stored at –80 °C until the analysis.

Plasma samples treatment
Lipid extraction was performed by adding 150 μL of iso-
propanol to 50 μL of the plasma previously thawed, vor-
texed and left to stand for 20 min at -20 °C. Later, it was 
centrifuged at maximum power (13,000 g) for 10 min at 
4⁰C and the supernatant was collected. Then, 300 μL 
of isopropanol were added to 50 μL of the extract, from 
which 90 μL were transferred to a 96-well injection plate. 
After that, 10 μL of the internal standard (IS) mix solution 
((MG(17:0), LPC(17:0), Cer(d18:1/17:0), DG(17:0/17:0), 
PE(17:0/17:0), PC(17:0/17:0), TG(17:0/17:0/17:0) CE(17:0) 
for the positive pole, and LPC(17:0), Cer(d18:1/17:0), 
PE(17:0/17:0), PC(17:0/17:0), PS(17:0/17:0) for the nega-
tive pole) (3  µg   mL−1, each compound) were added to 
each sample. The IS mix is used as quality control to mon-
itor its response along the sequence, as well as to correct 

potential injection or chromatographic errors. For this, 
each individual lipid is corrected with the IS correspond-
ing to the same lipid class (lipid signal/IS signal).

Liquid chromatography coupled to mass spectrometry 
analytical method
For the analysis, Ultra-Performance Liquid Chromatog-
raphy equipment (UPLC) coupled to a high-resolution 
mass spectrometer (MS) with Orbitrap UPLC-QExactive 
Plus detector (UPLC-TOF/MS-Orbitrap QExactive Plus 
MS) available at the Analytical Unit of the Instituto de 
Investigación Sanitaria La Fe (IISLaFe, Valencia, Spain) 
was used.

The chromatographic and mass spectrometric con-
ditions were the same as those used in the previous 
work [32]. Concisely, Acquity UPLC CSH C18 column 
(100 × 2.1  mm, 1.7  μm) from Waters. As for the mobile 
phase in the positive ionization mode, it was acetonitrile/
water (60:40, v/v) with ammonium formate (10  mM) 
(A) and isopropyl alcohol/acetonitrile (90:10, v/v) with 
ammonium formate (10  mM) (B); in the negative ioni-
sation mode, it was acetonitrile/water (60:40, v/v) with 
ammonium acetate (10 mM) (A) and isopropyl alcohol/
acetonitrile (90:10, v/v) with ammonium acetate (10 mM) 
(B). The flow rate was 400 μL min-1, the column temper-
ature was 65 °C, and the injection volume was 5 µL.

To ensure the quality and reproducibility of the analy-
sis, as well as to avoid intra-batch variability, an injection 
in random order, an analysis of at least 5 quality controls 
 (QCcond) to condition the column and equipment, a QC 
analysis in MS mode (Full MS) every 8 samples and a QC 
analysis in DIA (Data Independent Fragmentation) and 
DDA (Data Dependent Fragmentation) modes were per-
formed at the beginning, middle and end of the sequence. 
Finally, the lipid species annotations with the LipidMSv3 
annotation package were carried out [33].

Processing of lipidomic data
Data processing, peak picking, retention time align-
ment and peak integration were carried out with the 
LipidMSv3 R package. Once the data were processed, 
they were then filtered and normalised using a filtering 
and normalisation script developed in the Analytical 
Unit of the Instituto de Investigación Sanitaria de La Fe 
(Valencia, Spain). Briefly, the data were normalised by 
applying the Median Fold Change method with R pack-
age. Then, those variables whose coefficients of variation 
(CV%) in the QCs were > 30% and those variables that 
had more than 60% of zeros were eliminated; also, out-
liers (deviated more than zscore x mean) were replaced 
by the value of the mean ± zscore within each group [34]. 
Finally, the data were analysed by grouping lipid species 
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and summing the analytical responses for each class. 
Subsequently, based on the adduct of each variable, they 
were classified into positive and negative adducts. One 
database was created for species with positive adducts 
and another for negative adducts. Those analytical 
responses of duplicate species with the same retention 
time and the same or similar mass-to-charge ratio were 
added together. A new database was made to join the 
species with positive and negative adducts, and the dupli-
cate species were checked and removed. For the species 
with both positive and negative adducts, the highest 
responses were screened and adducts with the lowest 
response were eliminated.

Brain lipidomic data
The relationship between lipids in plasma and in different 
brain areas (cerebellum, amygdala, hippocampus, cortex) 
was carried out in the same mouse specimens. For this, 
the raw data obtained in the previous published work 
were used [32]. These data were processed in the same 
way as explained previously “Processing of lipidomic 
data” section. Then, the same lipids previously identified 
in plasma were searched in brain samples.

Statistical analysis
IBM Statistical Package for the Social Sciences software 
version 23.0 (SPSS, Inc., Chicago, IL, USA) was used to 
perform the univariant statistical analysis. Categorical 
variables were expressed as frequencies and percent-
ages (%), and numeric variables were expressed as medi-
ans and interquartile ranges (IQR). Differences between 
medians were analysed by using the non-parametric 
test (Mann–Whitney U test). Furthermore, the p-val-
ues ≤ 0.05 were considered statistically significant. Vol-
cano plot, their values and the heatmap were created 
using MetaboAnalyst version 4.0 platform. In order to 
identify a wider range of possible changes that may occur 
in lipids, the significance level was set at p < 0.10 in the 
volcano plot analysis.

The multivariate analysis was performed using R (ver-
sion 4.3.1.), R packages MDA tools (version 0.14.1), and 
cut point (version 1.1.2) with IDE R-Studio (version 
2023.06.0). For the multivariant analysis, a partial least-
squares discriminant analysis (PLS-DA) was carried out 
using all the plasma lipids, as predictor variables; and 
the mice group WT (-1) and TG (+ 1) as response vari-
able. The predictor variables were standardized to obtain 
the model standardized coefficients, which offer a scaled 
measure of how each predictor variable influences the 
response variable, adjusted for the latent structure of the 
model, integrating information from both weights and 
loadings. The PLS-DA was built to describe the poten-
tial different lipid profile associated to AD, and to carry 
out inferences about the most important variables (VIP 
scores). The variables with VIP score > 2 were selected, 
in order to reduce dimensionality, and another PLS-DA 
model was developed from these selected variables.

The permutation test (10,000 permutations) was 
applied to the proposed PLS-DA model, recording both 
the calibration R2 and cross-validation R2 for each case. 
The predicted values obtained by leave-one-out cross val-
idation were employed in the performance model evalua-
tion. The corresponding Area under the ROC Curve was 
calculated and the cut-off was established in zero.

SPSS software was also used to assess the relationship 
between plasma and brain by Pearson correlations, and 
to study the relationship between plasma lipids and the 
estrous cycle of mice applying the Mann–Whitney U-test 
for differences between medians, with p-value ≤ 0.05 
being considered statistically significant.

Results
Animal model description
As can be seen in Table  1, there were no differences 
between WT and TG in terms of age (p-value 0.58), 
weight (p-value 0.08) and the mouse estrous cycle 
(p-value 0.37).

Table 1 Variables for the mouse model description

IQR inter‑quartile range

Variable WT
(n = 10)

TG
(n = 10)

p-value
(Mann 
Whitney U 
Test)

Age (days, median (IQR)) 164 (161 – 164) 162 (161 – 164) 0.58

Age (months, median (IQR)) 5.39 (5.29–5.39) 5.32 (5.29–5.39) 0.58

Weight (grams, median (IQR)) 42.25 (37.98 – 44.35) 37 (27.35 – 41.73) 0.08

Estrous Cycle
(n, (%))

Estrus 4 (40%) 6 (60%) 0.37

Diestrus 6 (60%) 4 (40%)
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Univariate lipid analysis
The results obtained from the lipid saturation degree are 
summarized in Table 2. As can be seen, the major group 
corresponded to the polyunsaturated lipids (PUs), fol-
lowed by monounsaturated lipids (MUs), and saturated 

lipids (SATs). It should be noted that there were no statis-
tically significant differences between WT and TG in this 
classification.

Regarding the classification of lipid families, the higher 
presence corresponded to glycerophospholipids (GP), 
followed by glycerolipids (GL), fatty acids (FA), sterol 
lipids (ST) and sphingolipids (SP). As shown in Table 3, it 
should be noted that a non-significant increase in FA, GL 
and ST levels was observed in TG mice.

As can be seen in Fig.  1, a total of 5 lipid fami-
lies, including 330 lipid species were detected by the 
LipidMSv3 R package. Specifically, they were grouped 
into FA (n = 12), GL (n = 100; 6 monoacylglycerols 
(MAG), 6 diacylglycerols (DAG), 88 triacylglycerols 
(TAG)), GP (n = 179; 78 phosphatidylcholines (PC), 14 
phosphatidylethanolamines (PE), 9 phosphatidylinositols 
(PI), 20 lysophosphatidylcholines (LPC), 3 lysophosphati-
dylethanolamines (LPE), 2 lysophosphoinositols (LPI), 32 
ether-linked phosphatidylcholines (PCo), 25 ether-linked 
phosphatidylethanolamines (PEo)), SP (n = 28; 8 cera-
mides (Cer), 20 sphingomyelins (SM)), and ST (7 choles-
teryl esters, CE).

The results from the univariate analysis showed 
that the levels of 18 lipids were significantly different 
between WT and TG mice, 10 were increased and 8 
were decreased in APP/PS1 mice (see Table 4). All lipids 
belonging to the GL (5 TAG) and ST (1 CE) families 

Table 2 Percentage (mean) of lipids grouped by saturation 
degree in plasma and group of mice

SAT saturated lipid, MU monounsaturated lipid, PU polyunsaturated lipid

Saturation degree WT TG p-value

SATs (%) 10.16 10.12 0.684

MUs (%) 16.26 15.07 0.280

PUs (%) 73.58 74.81 0.912

Table 3 Percentage (mean) of lipid family in plasma and group 
of mice

FA fatty acid, GL glycerolipid, GP glycerophospholipid, SP sphingolipid, ST sterol 
lipid

Lipid family WT TG p-value

FA (%) 4.06 4.88 0.143

GL (%) 20.81 22.46 0.684

GP (%) 69.79 66.65 0.315

SP (%) 1.84 1.79 0.853

ST (%) 3.50 4.22 0.247

Fig. 1 Percentages of lipid subfamilies detected by the LipidMSv3 R package grouped by lipid family
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increased in AD plasma. Regarding the GP family, 5 PCs 
and 1 PE decreased in AD, except 1 PC. On the other 
hand, 1 LPC and 2 PCos increased in AD. Finally, the only 
significant SP belonging to the Cer subfamily decreased 
in AD.

From the volcano plot analysis, 9 lipid species were 
selected showing statistically significant differences between 
genotypes, being the species CE(16:0), TAG(20:4/20:4/20:4), 
PCo(20:0/22:6)|PCp(42:5), Cer(d18:1/22:0), Cer(d18:1/16:0), 
FA(20:0) significantly higher in the TG group; and PE(40:6), 
PCo(34:2)|PCp(34:1), TAG(42:1) significantly lower in the 
TG group (see Figure S1 at supporting information). More-
over, Table 5 shows the lipids identified by volcano, with fold 
changes (FC) from 0.29 to 3.81, and p-values from 0.001 
to 0.096. From these lipids, a heatmap analysis was carried 
out with clustering, revealing that most of the TG mice 
showed higher levels for CE(16:0), TAG(20:4/20:4/20:4), 
PCo(20:0/22:6)|PCp(42:5), Cer(d18:1/22:0), Cer(d18:1/16:0), 
and FA(20:0) (Fig. 2).

Multivariate lipid analysis
For exploratory data analysis, PLS-DA was applied to 
distinguish the WT and TG groups according to the 
identified lipid profiling dataset. The PLS-DA score 

plot results displayed a separation between the WT 
and TG groups, with a principal component explain-
ing 57.6% of the total variance. From this PLS-DA 
model, 7 lipid variables (6 GPs and 1 GL) with a VIP 
score > 2 were selected to develop a second PLS-DA. 
The p-value obtained for the permutation test on the 
calibration results was 0.0012. The p-value obtained 

Table 4 Statistically significant lipid variables that increased and decreased in the AD mouse model

Abbreviations: CE cholesteryl ester, Cer ceramide, IQR Inter‑quartile range, LPC lysophosphatidylcholine, PC phosphatidylcholine, PCo/PCp ether‑linked 
phosphatidylcholine, PE phosphatidylethanolamine, PEo/PEp ether‑linked phosphatidylethanolamine, TAG  triacylglycerol

Lipid WT 
(n = 10) 
(median (IQR))
 × 10^7

TG 
(n = 10) 
(median (IQR))
 × 10^7

p-value
(Mann Whitney test)

In AD

TAG(58:2) 11.3 (9.4 – 20.4) 20.2 (12.2 – 31.1) 0.035 ↑
TAG(60:2) 4.8 (4.2 – 8.4) 9.0 (5.3 – 13.9) 0.015 ↑
TAG(62:2) 1.6 (1.4 – 2.4) 2.8 (1.7 – 4.5) 0.023 ↑
TAG(62:3) 1.9 (1.1 – 3.8) 4.3 (2.2 – 6.3) 0.029 ↑
TAG(64:1) 0.6 (0.4 – 0.9) 1.1 (0.7 – 2.0) 0.019 ↑
PC(18:1/18:0) 3472.1 (3159.5 – 4242.9) 2477.3 (1904.0 – 3466.3) 0.043 ↓
PC(35:1) 1.7 (1.5 – 2.0) 2.3 (1.9 – 2.8) 0.005 ↑
PC(36:1) 126.8 (117.4 – 136.9) 112.5 (104.0 – 121.5) 0.043 ↓
PC(40:4) 5.6 (5.1 – 5.9) 4.6 (4.1 – 5.4) 0.023 ↓
PC(40:7) 110.8 (97.7 – 148.8) 79.6 (64.8 – 116.9) 0.043 ↓
PC(44:12) 0.3 (0.3 – 0.4) 0.2 (0.1 – 0.3) 0.010 ↓
PE(18:0/22:6) 9.2 (5.3 – 11.4) 5.1 (3.6 – 7.9) 0.023 ↓
LPC(15:0) 1.6 (1.4 – 1.9) 2.0 (1.8 – 2.0) 0.023 ↑
PCo(32:0) 1.6 (1.4 – 2.0) 2.2 (1.9 – 2.8) 0.007 ↑
PCo(34:2)|
PCp(34:1)

0.8 (0.7 – 0.9) 1.0 (0.9 – 1.2) 0.035 ↑

PEo(18:2/20:4)|
PEp(18:1/20:4)

6.0 (5.5 – 6.9) 5.1 (4.2 – 5.5) 0.029 ↓

Cer(d18:1/16:0) 11.4 (10.6 – 14.7) 9.0 (8. – 11.2) 0.035 ↓
CE(16:0) 20.8 (14.8 – 30.8) 36.6 (27.0 – 43.5) 0.035 ↑

Table 5 Important features identified by volcano plot ordered in 
ascending order of p-value

Abbreviations: CE cholesteryl ester, Cer ceramide, FA fatty acid, FC fold change, 
LPC lysophosphatidylcholine, PC phosphatidylcholine, PCo/PCp ether‑linked 
phosphatidylcholine, PE phosphatidylethanolamine, TAG  triacylglycerol

Lipid FC p-value

CE(16:0) 2.5883  < 0.001

TAG(20:4/20:4/20:4) 3.8134 0.001

PE(40:6) 0.2921 0.013

PCo(20:0/22:6)|PCp(42:5) 3.4204 0.030

PCo(34:2)|PCp(34:1) 0.4940 0.035

Cer(d18:1/22:0) 2.4626 0.061

Cer(d18:1/16:0) 2.4139 0.067

TAG(42:1) 0.4279 0.085

FA(20:0) 2.3435 0.096
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for the permutation test on the cross-validation results 
was 0.0003. Therefore, significant p-values in the per-
mutation test (PLS-DA) implies that the model’s per-
formance is unlikely due to random chance, indicating 
that the model is not overfitted and has genuine predic-
tive power.

As can be seen in Fig.  3, a clear separation between 
groups (WT and TG) was obtained. The corresponding 
standardized coefficients for this model are shown in 
Table 6, noting that the positive coefficients indicate that 
the higher levels in plasma, the greater AD risk; while 
the negative coefficients indicate that the lower levels in 
plasma, the greater AD risk. This validated model (n = 20) 
showed an AUC-ROC of 0.9, sensitivity of 70% (CI 95%: 
39.7 – 89.2%), specificity of 90% (CI 95%: 59.6 – 98.2%), 
positive predictive value of 87.5% (CI 95%: 52.9 – 97.8%), 
negative predictive value of 75% (CI 95%: 46.8 – 91.1%) 
and accuracy of 80% (IC 95%: 58.4 – 91.9%). For the cali-
brated model (n = 20) the AUC-ROC was 0.93, and the 
other indexes were the same as in the validated model.

Assessment of plasma and brain lipids relationship
In a previous lipidomic study in different mouse brain 
areas (cerebellum, amygdala, hippocampus, cortex) [32] 
of the same specimens, 319 lipid species were detected, 
of which 114 matched with the lipids found in the present 
plasma study (see Fig. 4). In order to see which lipids cor-
relate in the pathology between plasma and brain, only the 
lipids that were detected simultaneously in plasma and 
brain samples were evaluated, observing that some lipids 
correlated positively or negatively between plasma and 
different brain areas. Specifically, 2 total lipid subfamilies 
and 17 lipids correlated positively and 8 lipids correlated 
negatively between plasma and 4 brain areas (see Table 7). 
Of these, the species PC(40:5) and PC(40:7) correlated 
between plasma and two different brain areas simultane-
ously. In addition, 6 lipids showed statistically significant 
differences in brain between WT and TG (see Table  7) 
[32]. Specifically, DAG(18:1/18:2) and PEo(36:4)|PEp(36:3) 
in the cerebellum, MAG(22:3) and Cer(d18:1/16:0) in the 
amygdala, and PC(40:7) and PE(18:0/18:2) in the cortex.

Fig. 2 Heatmap of the 9 most important lipids responsible for classification based on the volcano plot analysis. Positive Z-score values are shown 
in red, while negative Z-score values are shown in blue

Fig. 3 PLS-DA score plot show the separation between groups (TG 
in red and WT in green) from the 7 selected lipid variables

Table 6 PLS-DA model standardized coefficients obtained for 
the lipid variables selected

Abbreviations: PC phosphatidylcholine, PCo/PCp ether‑linked 
phosphatidylcholine, PI phosphatidylinositol, TAG  triacylglycerol

Lipid Model coefficients

TAG(64:1) 0.1311

PC(35:1) 0.1473

PC(40:4) -0.1328

PC(44:12) -0.1534

PI(38:4) -0.1296

Total PI -0.1322

PCo(32:0) 0.1475
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Study of the relationship between lipidomics and estrous 
cycle
From the vaginal cytology test, it was found that all the 
female mice (n = 20) were at the longest estrous cycle 
stages, these are, estrus (12–48 h, n = 10) and diestrus 
(48–72 h, n = 10) [35]. Comparing plasma lipids levels 
between both groups (estrus, diestrus), significant dif-
ferences were observed for 5 lipids belonging to the 
subfamilies LPC, PCo, PEo and SM (see Table  S1 at 
supporting information). Specifically, LPC(24:1) and 
SM(d18:1/15:0) showed higher levels in estrus phase, 
and PCo(36:3)|PCp(36:2), PEo(18:1/18:2) and PEo(38:1) 
showed higher levels in diestrus phase.

Comparing lipid levels in each brain area (cerebellum, 
amygdala, hippocampus, cortex) between both groups 
(estrus and diestrus), numerous significant differences 

were observed for lipids belonging to different subfami-
lies (see Table  S2-S5 at supporting information). Spe-
cifically, lipids of the LPC, LPE, LPI and LPS subfamilies 
showed higher levels in cerebellum, amygdala and hip-
pocampus in estrus phase, as well as SM in hippocampus 
and cortex; while some lipids of the PCo and PEo sub-
families showed higher levels in amygdala, cerebellum 
and cortex in diestrus phase.

Discussion
Due to the strong need to identify early-stage changes 
in AD, this study was conducted in 5-month-old WT 
and TG mice from the same litter. In addition, due to 
the underrepresentation of studies in the female sex, 
this work was based on a female mice model, observing 

Fig. 4 Lipid families detected from plasma samples and brain samples, showing the matching lipids between both biological sample types
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that the estrous cycle phases did not show differences 
between WT and TG groups. Moreover, plasma lipid lev-
els in the early stages of AD and their correlations with 
previous results in brain levels [32], were evaluated in 
the same mice. In this sense, some plasma lipid variables, 
closely related to brain, were identified as potential and 
minimally invasive AD biomarkers. To our knowledge, 
this is the first lipidomics study for plasma and brain rela-
tionship, monitoring the estrous cycle.

Regarding lipidomics, some brain and blood studies 
can be found in literature [36–40]. In the present study, 
some lipid species showed statistically significant differ-
ences in plasma levels. According to the different lipid 
families, FAs showed some discrepancies. In fact, dietary 
supplementation containing specific FAs could help to 

improve cognitive function in patients with very mild 
AD [41], because these levels might be decreased in AD 
(serum, plasma, brain) [39, 42, 43]. However, another 
study in patients reported that high levels of these cir-
culating compounds are associated with Aβ-mediated 
neurotoxicity [44]. Similarly, in the present study, we 
found an increase in the FA(20:0) lipid in the TG group. 
With respect to GLs, the present work showed a gener-
alised increase in TAG levels in the TG mice compared 
to the WT mice. Similarly, it was observed in other 
studies performed on serum and plasma from the same 
female mouse model, with other analytical techniques 
and at the same age [45]; also, at 9-month-old [46], and 
even in females in the ApoE4-TR mouse model at an 
older age [37]. Concerning GPs, PCs and PEs, they are 

Table 7 Statistically significant correlations between lipids levels found in plasma and different brain areas (cerebellum, amygdala, 
hippocampus, cortex)

r Pearson coefficient correlation

Abbreviations: DAG diacylglycerol, FA fatty acid, LPC lysophosphatidylcholine, MAG monoacylglycerol, PC phosphatidylcholine, PE phosphatidylethanolamine, PEo/PEp 
ether‑linked phosphatidylethanolamine, SM sphingomyelin, TAG  triacylglycerol
a lipids showing significant differences between WT and TG mouse brains

Lipid subfamily Lipid species Plasma vs cerebellum
r (p-value)

Plasma vs amygdala
r (p value)

Plasma vs hippocampus
r (p value)

Plasma vs cortex
r (p value)

FA FA(16:0) - - 0.457 (0.043) -

FA(18:0) - - 0.561 (0.010) -

FA(18:2) - - 0.480 (0.032) -

FA(20:0) - - 0.532 (0.016) -

Total FA - - 0.517 (0.020) -

MAG MAG(20:2) - - 0.479 (0.032) -

MAG(22:3)a - 0.471 (0.042) - -

DAG DAG(18:1/18:2)a -0.486 (0.030) - - -

DAG(18:2/18:2) - - 0.467 (0.038) -

TAG TAG(49:1) -0.507 (0.023) - - -

TAG(52:0) - - 0.597 (0.005) -

TAG(59:2) - -0.505 (0.027) - -

PC PC(18:0/20:4) - - - 0.449 (0.047)

PC(18:0/22:4) -0.578 (0.008) - - -

PC(18:0_20:3) -0.524 (0.018) - - -

PC(36:5) - - 0.508 (0.022) -

PC(40:5) 0.572 (0.008) - - 0.722 (< 0.001)

PC(40:7)a - - -0.507 (0.022) -0.472 (0.036)

PE PE(16:0/20:4) - - 0.470 (0.036) -

PE(18:0/18:2)a - - - 0.465 (0.039)

PE(34:2) 0.599 (0.005) - - -

LPC LPC(18:1) - 0.510 (0.026) - -

PEo/PEp PEo(36:4)|PEp(36:3)a -0.623 (0.003) - - -

Cer Cer(d18:1/16:0)a - 0.484 (0.036) - -

Cer(d18:1/22:0) -0.477 (0.033) - - -

Total Cer 0.545 (0.013) - - -

SM SM(d38:1) 0.586 (0.007) - - -



Page 10 of 14Ferré‑González et al. Alzheimer’s Research & Therapy          (2024) 16:183 

the main form of phospholipids in cell membranes and 
play essential roles involved in neuronal membrane 
formation, signal transduction, autophagy, and main-
tenance of mitochondrial morphology [47, 48]. In lipi-
domic studies performed in brain and plasma from 
different mouse models and sex, decreased levels of PC 
and PE were found in early and late stages of AD [36, 
49–53]. Specifically, in the present study decreased levels 
of PC(36:1) and PC(40:4) in AD plasma were observed. 
Also, decreased levels of PCs and PEs were detected 
in lipidomic studies performed in multiple regions of 
human brains with mild cognitive impairment (MCI) 
and AD, mainly in the two regions most affected by the 
disease, hippocampus and cortex [54, 55]. About LPLs, 
as in previous studies carried out in plasma and serum 
of mice and human, the present study found increased 
levels in the AD group [56–58]. With respect to SPs, it 
is known that their metabolism may contribute to the 
pathogenesis of diverse neurodegenerative diseases. In 
particular, ceramides are thought to be associated with 
pro-apoptotic cellular processes that promote neurode-
generation and neuroinflammation [59], being related to 
oxidative stress and Aβ accumulation [60]. In the present 
work, we found a significant reduction in Cer(d18:1/16:0) 
in plasma in the AD group; and in the previous brain 
study with the same mice, an increase of this ceramide 
was observed in AD. Nevertheless, the reason why only 
this Cer shows correlation is not clear from the lipidom-
ics data obtained in the present work, and further studies 
are required. However, in the work carried out by Zhant 
et  al. performed in brain from the same female mouse 
model, a decrease of Cer(d18:1_18:1) levels was observed 
at 2—3 months of age, but an increase at 7 months [39]. 
Probably it could be explained by the increase from a 
certain disease stage. On the other hand, in the study 
reported by Mielke et  al., it was observed that elevated 
levels of serum ceramide in older women, especially 
Cer(d18:1/16:0) and Cer(d18:1/24:0), were associated 
with the risk of developing late-onset sporadic AD [61]. 
Also, plasma levels increase has been associated with 
MCI in middle-aged men [62]. Other studies observed 
increased levels of ceramides in plasma and increased 
expression of Cer(d18:1/16:0) synthase enzyme in astro-
cytes from patients with late-onset AD, frontotemporal 
lobar dementia and amyloid angiopathy [40]. This might 
suggest that Cer, specifically Cer(d18:1/16:0) could be a 
good early biomarker of AD, as a decrease is observed in 
brain and plasma from early AD mouse specimens and 
an increase in blood from late AD patients. Among the 
sterol family, in the present study it was observed a sig-
nificant increase in the levels of the lipid species CE(16:0) 
in AD mice, matching an increase of two CE (CE(20:5), 
CE(16:1)) in the previously mentioned study using the 

same mouse model at 7  months of age [39]. However, 
some small differences were observed within the same 
group, which may be due to their weight, stage of the 
estrous cycle or litters.

Considering a multivariate approach, most of the lipi-
domics studies found in literature to develop predic-
tive models of AD are based on humans. In the present 
work, the regression model selected lipids belonging to 
the TAG, PC and PI subfamilies providing satisfactory 
diagnosis indexes (70% of sensitivity, 90% of specificity 
and an 80% of accuracy). In a previous study carried out 
in human plasma samples, following omics integration 
between microRNAs and lipids and using a regression 
model, the lipids selected were from the same subfami-
lies, and specifically FA showed the higher loadings [63]. 
Other recent studies carried out in patients have selected 
certain lipids in blood and cerebrospinal fluid for the pre-
diction of the risk of clinical progression, showing pre-
diction efficiencies with AUC values between 0.72 – 0.88 
[28, 64–67]. In the present study, the lipids selected by 
the PLS-DA model are species belonging to the TAG, PC, 
PI and PCo subfamilies; specifically, TAG(64:1), PC(35:1), 
PC(40:4), PC(44:12), PI(38:4), PCo(32:0). In general, the 
developed multivariate model could be a relevant tool to 
identify patients at risk of developing AD.

As regards the relationship between plasma and brain 
lipidomics in mice, potential biomarker similarities 
between brain and plasma could provide insight into 
individual metabolic status and support the identifica-
tion of potential early and minimally invasive disease 
biomarkers. Nevertheless, few studies have focused 
simultaneously on plasma and brain lipids from the same 
mouse specimens, and even less have looked at their rela-
tionship with different brain areas [68]. Since most pub-
lished lipidomic studies have homogenised the whole 
brain and therefore have not distinguished between areas 
[39] or have been performed specifically on one [69] or 
two brain areas [70]; but have not carried out correlations 
between these areas and plasma. In the present study, 
the significant changes in plasma lipid species and their 
relationship with the levels in different brain areas were 
evaluated, observing that 4 FAs and total FAs increased 
concomitantly in plasma and hippocampus of female 
5-month age AD vs WT mice. Also, MAGs increased 
simultaneously in plasma as well as hippocampus and 
amygdala, PEs increased in cerebellum, hippocampus 
and cortex; LPCs increased in the amygdala; and 1 SM 
increased in the cerebellum. In contrast, levels of a PEo 
decreased in plasma, while they increased in cerebellum. 
On the other hand, other subfamilies such as DAG, TAG, 
PC and Cer, showed some disparity, since some lipid spe-
cies increased or decreased within the same subfamily, 
as observed in previous studies [36, 38, 39, 53, 57, 71]. 
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However, regarding individual lipids in the present work, 
MAG(22:3), DAG(18:1/18:2), PC(40:7), PE(18:0/18:2), 
PEo(36:4)|PEp(36:3) and Cer(d18:1/16:0) showed statisti-
cally significant differences between TG and WT in both 
plasma and brain samples, suggesting that they would 
be promising minimally-invasive biomarkers related to 
amyloid accumulation, and other unspecific mechanisms 
such as inflammation or cognitive decline, which are 
closely related to AD development. On the other hand, 
both groups (WT, TG) did not show differences for the 
estrous cycle phases, so the effect of this variable on lipi-
domics was not relevant in the present study.

In literature, the estrous cycle has been evaluated 
in behavioural animal studies, showing some discrep-
ancy, as several studies found significant differences in 
the behaviour of female mice, while others did not [72, 
73]. A previous work reported some worsening of the 
network and cognitive dysfunction in the estrus phase, 
whereas the deficits are attenuated in the diestrus phase 
[74]. Other studies suggested that females showed more 
anxiety-like behaviours during the diestrus phase [75, 
76], and an increased reactivity [77], but others did not 
showed significant influence [78, 79]. In addition, mice 
in diestrus phase were found to have higher weight 
compared to those in metestrus and estrus [80]. In rats, 
it was observed a decrease in body weight and respira-
tory quotient, and increased energy expenditure in the 
days associated with estrus phase compared to diestrus 
phase [81]. In general, these previous results suggest that 
the cycle phase could also affect the metabolism, specifi-
cally lipid metabolism. In this sense, the present study 
showed significant differences in lipids levels in both 
plasma and brain, regardless of mouse genotype. To our 
knowledge, there are no studies in literature that have 
explored differences in lipid levels in female mice accord-
ing to the estrous cycle. However, some lipids levels are 
increased or decreased throughout the cycle. Specifically, 
in plasma, a few differences have been found between 
estrus and diestrus, while at brain level many differences 
have been found, highlighting the cerebellum, amygdala 
and hippocampus areas with the greatest significant dif-
ferences between mice groups (estrus, diestrus). Nev-
ertheless, further research including the estrous cycle 
as variable in female models is needed, especially if the 
study groups are not equally distributed according to the 
phase of the cycle.

Among the study limitations, this lipidomic study was 
performed on 5-month-old female mice, it would have 
been interesting to compare these present results with 
males of the same age and littermates; as well as to com-
pare with older specimens to see the progression of the 
disease. However, the work focused on female and early 
AD mouse model, which is widely underrepresent in 

literature. Furthermore, the results obtained in mice are 
not directly transferable to patients, as there are signifi-
cant differences in anatomy, metabolism and physiology; 
but given the similarity of results with other studies per-
formed in humans, it could suggest that these prelimi-
nary results could be validated in human samples.

Conclusions
This plasma lipidomic study carried out in the female 
APP/PS1 mouse model allowed to identify the main 
lipids altered in early AD, their relationship with brain 
lipidome, and the effect of the estrous cycle phase over 
lipid metabolism in the same specimens. Specifically, 
in plasma samples, lipids from TAG, PCo, LPC and CE 
subfamilies showed a significant increase in AD; while 
lipids from PC, PE, PEo and Cer subfamilies showed a 
significant decrease in AD. This suggests that lipid altera-
tions can be detected in plasma at the earliest stages of 
AD. Furthermore, significant correlations were found 
between plasma and brain lipid levels (FA, MAG, PE, 
PEo, PEo, LPC and SM subfamilies). In general, this 
study shows a few relationships between lipid metabo-
lism in plasma and brain areas, identifying six individual 
lipids (DAG(18:1/18:2), PEo(36:4)|PEp(36:3), MAG(22:3), 
Cer(d18:1/16:0), PC(40:7) and PE(18:0/18:2)) as poten-
tial early and minimally-invasive AD biomarkers closely 
related to brain pathology. Nevertheless, further work is 
required to validate these potential biomarkers in plasma 
human samples. In addition, it is important to highlight 
that the estrous cycle monitoring could be relevant in 
metabolism female studies.
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