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Abstract 

Several (inter)national longitudinal dementia observational datasets encompassing demographic information, neu-
roimaging, biomarkers, neuropsychological evaluations, and muti-omics data, have ushered in a new era of potential 
for integrating machine learning (ML) into dementia research and clinical practice. ML, with its proficiency in handling 
multi-modal and high-dimensional data, has emerged as an innovative technique to facilitate early diagnosis, differ-
ential diagnosis, and to predict onset and progression of mild cognitive impairment and dementia. In this review, we 
evaluate current and potential applications of ML, including its history in dementia research, how it compares to tra-
ditional statistics, the types of datasets it uses and the general workflow. Moreover, we identify the technical barriers 
and challenges of ML implementations in clinical practice. Overall, this review provides a comprehensive understand-
ing of ML with non-technical explanations for broader accessibility to biomedical scientists and clinicians.

Keywords Alzheimer’s dementia, Alzheimer’s disease, Dementia subtyping, Diagnosis, Disease progression, Machine 
learning

Introduction
Alzheimer’s disease (AD), the major cause of dementia, is 
a progressive neurodegenerative disorder that predomi-
nantly affects older people [1]. The accumulation of amy-
loid-beta (Aβ) and formation of neurofibrillary tangles 

marked by tau phosphorylation in the brain are the key 
hallmarks of AD [1]. Clinically, the disease can be divided 
into three stages: 1) preclinical AD i.e., cognitive unim-
paired (CU) people with amyloid accumulation in the 
brain, 2) prodromal or mild cognitive impairment (MCI) 
and 3) Alzheimer’s dementia (ADem) [1]. This disease 
trajectory can vary between individuals, and preclinical 
AD can occur 15–20 years prior to ADem [1].

Observational longitudinal dementia datasets have 
been collected in diverse age groups across several (inter)
national dementia cohorts (Table 1), providing rich infor-
mation that enhances the granularity and scope of data 
science research. These datasets encompass a broad spec-
trum of information including biomarkers, genetics, neu-
ropsychological evaluations, neuroimaging, omics, etc. 
(Table 2). Traditional statistical methods, constrained by 
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Table 2 Types of data commonly used in ML-dementia

Abbreviations: Aβ amyloid-beta, ADAS-Cog Alzheimer’s Disease Assessment Scale—Cognitive Subscale, APOE apolipoprotein E, APP amyloid precursor protein, CDR 
Clinical Dementia Rating, CSF cerebrospinal fluid, CT computed tomography, DTI diffusion tensor image, ECG electrocardiogram, ECOG Everyday Cognition Scale, EEG 
electroencephalogram, EHR electronic health records, FAQ Functional Activities Questionnaire, FDG-PET fluorodeoxyglucose positron emission tomography, GDF15 
growth differentiation factor 15, GFAP glial fibrillary acidic protein, HMRS high-resolution mass spectrometry, LTBP2 latent transforming growth factor beta binding 
protein 2, MMSE Mini-Mental State Examination, MRI magnetic resonance imaging, PSEN1 presenilin 1, PSEN2 presenilin 2, PET positron emission tomography
a prices were obtained from Australia Medicare Benefits Schedule website in June 2024 [39]
b refer to Table 1 for dataset number

Input data Categories Assessments/
Techniques

Cost Invasiveness Targets Datasetsb

Biopsy Brain tissue biopsy AU$1,601.8a High Amyloid plaques, neu-
rofibrillary tangles, etc

-

Blood/CSF biomarker Lumbar puncture AU $109a High CSF-Aβ & CSF-tau [23], 
neurofilament light 
chain, etc

2, 3, 4, 5, 6, 7, 8, 9, 11, 17

Blood testing (e.g., 
HRMS [24])

US$200—$500 [25] Minimum Neurofilament light 
chain; plasma Aβ42/
Aβ40 [26], p-tau 181, 
p-tau231, and p-tau217 
[27], etc

2, 3, 5, 8, 9,15, 16

Omics (blood/serum, 
urine, saliva)

Genomics US$990 for Alzhei-
mer’s disease, familial, 
plus APOE panel [28]

None/minimum APP, APOE, PSEN1, 
PSEN2, etc

1, 2, 3, 4, 5,7, 10, 15

Metabolomics US$100—US$500 [29] None/minimum Amino acids, carbohy-
drates, fatty acids, etc

2, 4, 7,8, 10, 15

Proteomics $132 [30] None/minimum GFAP [31] and LTBP2 
[32] etc

2, 4, 8, 15

Transcriptomics AU$200 [33] None/minimum MicroRNAs, mRNA 
levels, etc

2, 5, 10, 15

Cognitive assessments Neuropsychological 
evaluation

Vary by healthcare 
system

None ADAS-Cog, CDR, MMSE, 
etc

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
13, 14, 15, 17

Questionnaire Labor cost None ECOG and FAQ, etc

Demographics or clinical 
data from EHR

Census, observational 
cohort study, clinical 
history

Labor cost None Age, economic status, 
education, gender, 
lifestyle, medical history, 
race, etc

1, 2, 3, 4, 5, 6,7, 8, 9, 10, 11, 
12, 13, 14, 15, 16, 17

Imaging DTI US$97 [34] None White matter integrity, 
brain network connec-
tivity, etc.

3, 6, 7, 11

Retinal imaging AU$55a None Network complexity, 
tortuosity, vessel calib-
ers, etc

14

CT AU$342.95a None Structural images 1

MRI AU$426.5a None Functional MRI: tracking 
alterations in blood flow 
linked to neural activity 
[35]
structural MRI: brain 
anatomy images [36]

3, 4, 6, 8, 11, 15, 17

PET AU$605.05a None/moderate Aβ-PET, FDG-PET, tau-
PET [37], etc

2, 6, 7, 8, 9, 11, 17

Physiological monitoring EEG AU$358.45a None Brain waves, electrical 
activity of the brain, etc

1, 17

ECG AU$167.55a None Electrical activity 
of the heart, etc

1, 2, 10, 17

Speech and language 
[38]

Microphones & record-
ing

- None Acoustic, prosodic, etc -
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rigid assumptions and a limited ability to handle complex 
interactions have shown limitations in processing these 
multi-modal datasets, prompting an exploration of more 
adaptive and comprehensive techniques such as machine 
learning (ML) [2]. ML is a class of algorithms that enable 
computers to analyze data and make decisions by identi-
fying patterns specific to tasks [3]. These techniques can 
detect subtle patterns and trends in large datasets, sig-
nificantly enhancing the effectiveness and productivity of 
data-driven research. In addition, ML has already proven 
successful in tracking  disease, including market-ready 
products (e.g., Vivid E80 [4]) and FDA-approved devices 
(e.g., Apple’s Atrial Fibrillation History Feature [5]).

The development of anti-Aβ monoclonal antibodies, 
such as donanemab [40] and lecanemab [41], has shown 
promising results in reducing cognitive decline in early 
treatment scenarios. This underscores the importance 
of timely intervention.  ML can enhance early detection 
accuracy and personalized stimulation by determining 
the  most effective timepoint to adminster antibodies in 
the right patients, thereby maximizing their therapeu-
tic benefits. However, it must be noted that while ML 
can aid in identifying individuals likely to benefit, our 
global health systems are not fully equipped to provide 
these early interventions. Monoclonal antibodies require 
costly monitoring for brain bleeds, which presents chal-
lenges not only in funding the necessary scans but also 
in accessing scanners within a reasonable distance for 
patients. A recent study showed that novel biomarkers 
including microRNAs, metabolites and proteins have 
been identified using ML approaches [42]. Furthermore, 
it has been demonstrated that patient-level simulations 
by ML can predict disease trajectories [43], estimate the 
likelihood of transitioning from MCI to ADem [44] or 
even successfully forecast the time-to-event outcomes 
survival probability for MCI participants [45].

Here we provide a comprehensive overview of ML 
application in dementia (ML-dementia) using non-tech-
nical terms to enhance accessibility to a broad readership. 
Specifically, we evaluate ML from a historical perspective 
and discuss typical workflows, successful applications 
within 5 years and challenges—highlighting the evolving 
utility of ML in biomedical research to enhance diagnosis 
and management of dementia.

Machine learning
Types of ML
ML includes a variety of algorithms designed to learn 
from data to meet a predefined goal, such as identifying 
patterns or making predictions about future states. The 
model updates its settings or ’(hyper-)parameters’ based 
on feedback from performance metrics known as ’loss 
functions’, which assesses the accuracy of the model’s 

predictions compared to actual outcomes. Once the 
model is optimally trained, it can use real-world data to 
achieve the predefined task [46]. ML techniques are pri-
marily divided into three categories: unsupervised learn-
ing, supervised learning, and reinforcement learning, 
with the first two being more commonly used in demen-
tia research. These categories are discussed in detail 
below and their advantages and limitations are summa-
rized in Table 3. 

Supervised learning
Supervised learning explores the relationship between 
input features and the corresponding target outputs, 
also known as labels. In dementia research, supervised 
learning can be further categorized based on the predic-
tive target, for instance, classification tasks dealing with 
categorical labels (e.g., ADem vs CU), regression tasks 
handling numerical labels (e.g., Clinical Dementia Rat-
ing—Sum of Boxes [CDR-SB]  and Mini-Mental State 
Examination [MMSE]). Once the model is trained, it can 
then make predictions on unlabelled data of the same 
input.

Unsupervised learning
Unsupervised learning operates on unlabelled data, 
which focuses on uncovering patterns or relationships 
without considering any predefined labels. This approach 
includes 1) clustering tasks such as identifying subtypes 
of dementia based on biological, neuropsychological, and 
demographic features and 2) data compression such as 
using principal component analysis to simplify and sum-
marize complex data.

Reinforcement learning
Reinforcement learning (RL) is used to learn and improve 
decision making by continuously receiving feedback 
through interaction with external conditions and observ-
ing the response. This approach is less commonly used 
than the supervised and unsupervised methods. RL 
can be classified as model-free and model-based types; 
model-free RL operates without a predefined model, 
while model-based RL is preferred for incorporating 
domain knowledge (i.e., existing clinical knowledge). RL 
could mainly be employed to simulate and predict cogni-
tive states, as well as to estimate the probability of transi-
tioning between cognitive states.

Statistical analysis versus ML approaches
Traditional statistical methods include a hypothesis-
driven approach and statical inference (i.e., generalizing 
findings from a subset of data to a large population). Such 
approach relies on strong assumptions about the data, 
e.g., the data follows a normal distribution to fit existing 
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theoretical models [50]. However, these traditional sta-
tistical methods often encounter practical challenges in 
complex real-world scenarios, as the assumptions made 
may not be satisfied in clinical practice [2]. In contrast, 
ML adopts a more data-driven approach with minimal 
assumptions, and it concentrates on prediction rather 
than inference [2]. However, statistical models and ML 
techniques sometimes overlap; e.g., both methods often 
employ linear and logistic regression models to meet 
statistical goals or to achieve simple linear predictions 
in ML contexts. It must be noted that ML possesses the 
capability to process and analyze extensive and complex 
datasets, such as omics data, effectively uncovering pat-
terns or capturing interactions that might be omitted 
or overlooked by the traditional statistical analysis [2]. 
Therefore, ML is often beneficial to clinical research, 
where data is inherently multidimensional with a diverse 
array of variables.

The history and typical workflow of ML techniques 
in dementia research and clinical applications
Prior to the year 2000, research primarily focused on 
clarifying the genetic and biochemical foundations of 
AD, with significant emphasis on the roles of Aβ and 
familial genetic mutations [51]. In the subsequent dec-
ade (2000–2010), scholarly attention shifted towards 
differentiating AD from CU mostly using ML model 
such as support vector machines alongside brain imag-
ing techniques [52]. In the following five years or so, 
researchers focused on predicting clinical progress in 

MCI patients using multi-kernel support vector machine 
(SVM, a ML model) with longitudinal data from mag-
netic resonance imaging (MRI) and positron emission 
tomography (PET) [53].

Since then, ML or deep learning, a subset of ML that 
uses neural network to simulate the learning process of 
human [54], has been used to classify disease subtypes 
and stages. Similar to how the human brain employs 
interconnected neurons for information processing, neu-
ral networks in ML use nodes (artificial neurons) and 
their interconnections to mimic the brain’s structure and 
functionality. This design facilitates pattern recognition 
and decision-making. For instance, Ramzan et  al. [55] 
utilizes resting-state function MRI with Residual Net-
work architecture to classify AD  into: CU, significant 
memory concern, early-MCI, MCI, late-MCI, and ADem. 
In more recent years, the adoption of advanced deep 
learning architectures, such as time-series models has 
expanded. For example, hybrid deep learning frameworks 
based on Bidirectional Long Short-Term Memory models 
leverage multimodal data (i.e., MRI, PET, and neuropsy-
chological evaluation) to enhance the classification of CU 
and early MCI [56]. A timeline summarizing the use of 
ML in dementia research is presented in Fig. 1.

The general workflow to build and apply the ML-
dementia model is summarized in Fig.  2, which can 
be separated into six key steps, including 1) Intended 
application, 2) Data selection, 3) Data pre-processing, 
4) Model Construction, 5) Model evaluation, and 6) 

Fig. 1 Timelines of ML in dementia research. Aβ = amyloid-beta; AD = Alzheimer’s dementia; CNN = convolutional neural network; 
CSF = cerebrospinal fluid; DTI = diffusion tensor image; EEG = electroencephalogram; fMRI = functional magnetic resonance imaging; 
MRI = magnetic resonance imaging; NLP = natural language processing; PET = positron emission tomography; RNN = recurrent neural network; 
SPECT = single-photon emission computed tomography; SVM = support vector machine. This figure is created using Canva (www. canva. com)

https://www.canva.com
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Maintenance. We have provided a detailed description 
for each step in Supplementary Material – ML workflow.

Data used in ML-dementia studies
Several observational dementia datasets have been used 
for ML model construction and validation  (Table  1), 
such as the Australian Imaging, Biomarker and Lifestyle 
(AIBL) study [57] and the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) study [13]. These datasets are 
often longitudinal, involving thousands of participants, 
spanning several decades with regular follow-ups, and 
some are still actively recruiting. These datasets feature 
a diverse range of participant demographics, typically 
focusing on middle-aged adults from various racial, eth-
nic  and educational backgrounds. Each dataset has a 
distinct focus. For instance, Open Access Series of Imag-
ing Studies [OASIS] [16] concentrate on brain imaging, 
while the Religious Orders Study and Rush Memory and 
Aging Project [ROSMAP] [9] aim to understand aging 
processes. Data collection and testing within the same 
dataset can vary depending on the project’s phases or 
aims. For example, ADNI adapts its data collection strat-
egies across five phases, and OASIS divides its datasets 

to address specific research goals. While most datasets 
listed in Table 1 primarily address AD, others such as the 
UK Biobank [15] and the Framingham Heart Study [6], 
provide a broader insight across various health outcomes 
within larger cohorts.

A variety of data/sample collection methods have 
been employed in these studies, which can be cat-
egorized as per their level of invasiveness (Table  2). 
Invasive methods, such as cerebrospinal fluid collec-
tion through lumbar puncture, are commonly used to 
obtain biomarkers (Aβ  and tau) and markers of neu-
rodegeneration [1]. The AT(N) 2018 framework [58], 
categorizes the progression of AD into different stages 
based on specific combinations of these biomarkers 
(Table 4). Compared to lumbar puncture, venous blood 
collection is considered less-invasive, and often used 
for biomarker research and omics (genomics, tran-
scriptomics, proteomics, and metabolomics) analysis 
[59]. Non-invasive methods such as MRI and PET are 
employed to study brain structure and Aβ levels [1]. 
Neuropsychological evaluation (Table  5) are also non-
invasive, which are quantitative measures of cognitive 

Fig. 2 General machine learning model workflows in clinical settings. AUC = area under the curve; MSE = mean squared error. This figure is created 
using Canva (www. canva. com)

https://www.canva.com
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functions across various disease stages (Table  6) [60]. 
Demographic  information, lifestyle data and  medical 
history are often self-reported or collected using ques-
tionnaires and are used as baseline predictors in the 
majority of studies [61].

Existing ML‑dementia models using non/
less‑invasive data
The following section reviews ML models using input 
data collected via non-/moderately invasive approaches. 
These data include demographics (age, gender, ethnic-
ity, family history), medical history, neuropsychological 

Table 4 2018 NIA-AA research framework [58] for biological definition of Alzheimer’s disease

A: amyloid-beta levels detected by  PET or cerebrospinal fluid analysis

T: tau pathology evidenced by tangles and PET or cerebrospinal fluid biomarkers

N: neurodegeneration indicated by MRI atrophy, 18F-Fluorodeoxyglucose—PET hypometabolism, or high cerebrospinal fluid tau

A T N CU
(Cognitively unimpaired)

MCI
(Mild Cognitive Impairment)

Dementia

- - - Cognitively unimpaired MCI not caused by Alzheimer’s disease Dementia not caused by Alzheimer’s disease

 + 

 + -

 + 

 + - - Preclinical Alzheimer’s disease Prodromal Alzheimer’s disease Alzheimer’s dementia

 + 

 + - Alzheimer’s pathologic change with MCI Alzheimer’s pathologic change with dementia

 + MCI suspects not caused by Alzheimer’s disease Dementia suspects not caused by Alzheimer’s disease

Table 5 Examples of neuropsychological tests for dementia research or clinical diagnosis

Method Domain Name of assessments

Questionnaire Global functioning and behavior Everyday Cognition (ECOG), Functional Assessment Questionnaire (FAQ), etc

Psychiatrics Geriatric Depression Scale (GDS), Neuropsychiatric Inventory (NPI), etc

Neuropsychologi-
cal evaluation

Global functioning and behavior Clinical Dementia Rating-Sum of Boxes (CDR), Mini Mental State Examination (MMSE), 
Montreal Cognitive Assessment (MoCA), etc

Test battery Alzheimer’s Disease Assessment Scale (ADAS), Cogstate Brief Battery (CBB), etc

Language Boston Naming Test (BNT), Rey Auditory Verbal Learning Test (RAVLT), etc

Memory Rey Auditory Verbal Learning test (RAVLT); Logical memory IIA Delayed (LOGIMEM), etc

Visuospatial ability Clock Drawing Test, Hooper Visual Organization Test, etc

Recognition and processing speed Face Recognition Tests, Benton Visual Retention Test, etc

Executive functioning Wisconsin Card Sorting Test, Stroop Test, Trail Making Test (Part B), etc

Emotional and personality assessment Minnesota Multiphasic Personality Inventory, Beck Depression Inventory, etc

Table 6 CDR-SB and MMSE scores for cognitive health classification

CDR-SB Clinical Dementia Rating-Sum of Boxes, MMSE Mini-Mental State Examination

Cognitive health Substage CDR-SB Score (0–18) [62] MMSE 
Score 
(0–30) [63]

CU
(cognitive unimpairment)

- 0 30

MCI
(mild cognitive impairment)

Questionable impairment 0.5–2.5 26–29

Very mild dementia 3.0–4.0

Alzheimer’s dementia Mild dementia 4.5–9.0 21–25

Moderate dementia 9.5–15.5 11–20

Severe dementia 16.0–18.0 0–10
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evaluation, blood (omics, biomarkers), and brain imag-
ing. Studies published between 2019 and 2024 were 
selected based on uniqueness in methodology, which is 
summarized in Table 7 and Fig. 3.

Dementia subtyping
AD is the major cause of dementia, followed by vascu-
lar dementia, frontotemporal dementia, and dementia 
with Lewy bodies [90]. Accurate differential diagnosis is 
important for clinicians to offer the most suitable care 
options to the patients [91]. Recent studies utilizing ML 
and deep learning models have shown relative high accu-
racy in differential diagnoses by incorporating metabo-
lomics [67] and neuroimaging [64–66] (Table  7A). For 
instance, Qiang et  al. [67] established the associations 
between 249 metabolites and type of dementia (all-
cause dementia, ADem, and vascular dementia) using 
UK Biobank data. The study employed Cox proportional 
hazard models and light gradient boosting machine algo-
rithms to generate a metabolic risk score. This score 
when combined with demographic and neuropsychologi-
cal test scores achieved an AUC of 0.85 (AUC approach-
ing 1 indicates excellence in discrimination) for the 
classification of different types of dementia. By employ-
ing neuroimaging data, Castellazzi et  al. [92] used the 
adaptive neuro-fuzzy inference systems to distinguish 
between ADem and vascular dementia. This achieved 
over 84% accuracy using a combination of features from 
resting-state functional MRI and diffusion tensor imag-
ing. Moreover, another independent research group [65] 
achieved ~ 80% accuracy in differentiating dementia with 
Lewy bodies from ADem using structural MRI data and a 
residual neural network. Finally, Nguyen et al. [66] intro-
duced an innovative approach, by integrating 3D U-Nets 
with a multi-layer perceptron classifier to discern ADem 
from frontotemporal dementia through structural MRI 
images, attaining an AUC of 0.94.

Although these studies achieved high diagnostic accu-
racies (~ 80%), only Nguyen et  al. [66] validated their 
model using an external dataset. This raises concerns 
about the generalizability of these findings and suggests 
that potential cohort bias cannot be ruled out. It is crucial 
to further validate these models prior to clinical trial and 
implementation. Moreover, these studies appear to focus 
on the differential diagnosis between vascular dementia 
and ADem (Qiang et al. [67] and Catellazzi et al. [92]) and 
between frontotemporal dementia and ADem (Nguyen 
et al. [66]). Future research could explore the possibility 
of differentiating multiple subtypes of dementia using 
a single model. Furthermore, all these studies, except 
Qiang et al. [67], leveraged advanced imaging techniques 
to capture intricate details of the brain. The reliance on 
high-resolution imaging data necessitates substantial 

resources, making it challenging to implement the new 
technology in clinics.

Disease staging
Predicting disease stages using either a binary classifi-
cation (CU vs ADem, CU vs MCI + ADem, CU vs MCI, 
MCI vs ADem) or CU/MCI/ADem classification is com-
monly used in ML-dementia. These typically employ 
omics data [69, 74], neuropsychological evaluation [70], 
and neuroimaging [68, 70, 71] (Table  7B). Mahendran 
et  al. [74] demonstrated that deep belief network-based 
approach (accuracy 82%) outperformed SVM (accuracy 
78%) and Naïve Bayes (accuracy 76%) in binary classifica-
tion of CU and ADem using their multi-omics data. In 
another study, Wang et  al. [69] utilized six differentially 
expressed metabolites, three metabolic pathways and a 
random forest model to differentiate the MCI + ADem 
group from CU, and they achieved an AUC of 0.77. MRI 
data have also been employed to facilitate disease classi-
fication. For instance, Naz et  al. utilized only structural 
MRI data [71], and achieved a classification accuracy of 
99.27, 98.89 and 97.06% for MCI/ADem, ADem/CU, and 
MCI/CU, respectively. To generate more complex mod-
els, multimodal data (e.g., demographic, medical history, 
brain volume, neuropsychological evaluation and genet-
ics) have been integrated, such as convolutional neural 
network model for disease stage classification. For exam-
ple, using multimodality, Venugopalan et al. [70] achieved 
a classification accuracy of 83% for CU, 74% for MCI and 
85% for ADem.

We noted that model development in most of these 
studies were challenged by an imbalanced dataset, with 
AD and MCI often being underrepresented compared 
to CU individuals due to disease prevalence. Interest-
ingly, Naz et  al. [71] manually balanced the dataset by 
eliminating some of the CU participant data (CU = 95, 
MCI = 146, ADem = 95). However, this approach reduces 
the overall dataset size, possibly leading to the model 
not capturing all critical features for accurate classifica-
tion [93]. Model overfitting is also expected from using 
such a small dataset [94]. Future studies could focus on 
enriching AD and MCI participant data; however, this is 
currently less practical due to a lack of harmonized data-
sets that allows data pooling. An alternative approach is 
to intentionally recruit MCI and ADem participants, as 
done by Kwak et al. [77]; however, these data may be less 
suitable for studying the onset and progression of AD. 
Another major issue is that the classification accuracy is 
usually less satisfactory for differentiating MCI from AD, 
as has been reported by Wang et al. [69] and Naz et al. 
[71]. Using multimodal data could be a potential solution 
[70], nonetheless, future studies are required to confirm 
whether their observations are dataset dependent.
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Disease progression/trajectory prediction
The prediction of future disease states or neuropsycho-
logical outcomes can be achieved using classification 
and regression models, as well as simulating disease 
trajectories using more complex deep learning mod-
els (Table  7C). Most classification models categorize 
MCI-to-dementia progressors and non-progressors. 
For example, Rye et.al. [72] achieved a 75% of accu-
racy in predicting whether MCI participants progress 
to dementia using a random forest model, where neu-
ropsychological evaluation, hippocampal volume and 
Apolipoprotein E (APOE) genotype were used as input 
features. An ensemble model was employed by Mof-
rad et al. [79] for such prediction, where MRI and neu-
ropsychological evaluation were used to achieve a 77% 
accuracy. Regression models often employ neuropsy-
chological evaluation, such as CDR-SB, ADAS-Cog, 
and MMSE [77, 78, 82], to estimate disease severity 
over time. For example, Lian et al. [78] employed a mul-
titask weakly-supervised Attention Network, which is a 
regression model that built on structural MRI data col-
lected from CU, MCI progressor, MCI non-progressor, 
and ADem participants to predict 3-year future CDR-
SB, ADAS-Cog, and MMSE scores. This model has 

achieved promising results, with a root-mean-squared 
error of 1.5, 5.7, and 2.2 for each score, respectively.

For disease trajectory simulation, Bucholc et  al. [82] 
has combined unsupervised and supervised learning 
techniques, where participants were categorized by their 
cognitive score trajectories (stable vs deterioration over 
2–3  years). The trajectories of each category were then 
analyzed using random forest, support vector machine, 
and linear regression (supervised). This approach 
achieved a ~ 90% accuracy in predicting seven different 
neuropsychological test scores over 1-year and 2-year 
intervals, from the correspondent baseline scores. A 
more complex model, Long Short-Term Memory Recur-
rent Neural Networks, was used by Mukherji et al. [81] to 
simulate the trajectory for five neuropsychological tests. 
This model achieved a prediction accuracy of 85 and 83% 
for 2-year and 4-year, respectively. Recent work has also 
focused on dynamically predicting the risk of demen-
tia onset. This is typically achieved using a Cox model, 
combined with functional data analysis to model longi-
tudinal neuropsychological outcomes. For example, Jiang 
et  al. [76] utilized the functional ensemble random sur-
vival forest to characterize the joint effects of neuropsy-
chological evaluation in predicting disease progression, 

Fig. 3 Types of data used in ML models. A Counts of various data types used in four major ML-dementia applications; B Donut chart showing 
the distribution of data types used in the selected studies (Table 7); C Venn diagram illustrating the overlap of data types used in the selected 
studies shown in Table 7. This figure is created using Canva (www. canva. com)

https://www.canva.com


Page 15 of 21Wang et al. Alzheimer’s Research & Therapy          (2024) 16:175  

specifically to predict the time to AD conversion in 
individuals with MCI and to provide personalized 
dynamic predictions. This approach achieved an AUC 
of approximately 0.90 over an average follow-up period 
of 31 months. Similarly, Zou et al. [83] proposed a mul-
tivariate functional mixed model framework to simulta-
neously model multiple longitudinal neuropsychological 
outcomes and the time to dementia onset, achieving an 
integrated AUC of over 0.80, with the mean time to visit 
being 1.12 years.

Mukherji et al. [81], Bucholc et al. [82] and Lian et al. 
[78] predict disease progression over a fixed interval, 
while Jiang et al. [76] and Zou et al. [83] simulate disease 
progression. It should be noted that simulation meth-
ods introduce higher variance and complexity compared 
to fixed interval models [95]; however, they can predict 
disease status at any time point, whereas fixed interval 
models can only predict disease status at the end of the 
interval. Different models may suit varying clinical needs 
or patient expectations, each balancing its own advan-
tages and limitations. In addition, these complex models 
are prone to overfitting [94], capturing noise that does 
not generalize to unseen data. This issue could be exacer-
bated in studies where the training datasets are relatively 
small, such as that for  Jiang et  al. [76] (165 MCI stable, 
137 MCI progressor). We have also noted that most of 
these models, except Lian et al. [78], involve various neu-
ropsychological tests, which often differ between stud-
ies. This makes it challenging for external validation and 
comparison between different models. Future studies 
should consider developing models based on neuropsy-
chological tests that are routinely used in clinics for eas-
ier evaluation, validation and potential implementation.

Predicting Aβ and tau levels in the brain
ML models have shown promise in predicting AD bio-
markers with reasonable accuracy (Table  7D). For pre-
dicting Aβ and p-tau levels in the brain, the problem is 
often simplified into a binary classification, e.g., nor-
mal vs high or negative vs positive. Langford et  al. [85] 
employed the extreme gradient boosting algorithm, a 
scalable tree boosting model to predict Aβ PET posi-
tivity (standardized uptake values ≥ 1.15) from demo-
graphics (age, education, gender and family history), four 
neuropsychological tests and APOE genotype., An AUC 
of 0.74 was achieved. Palmqvist et  al. [84] used plasma 
Aβ42/ Aβ40 ratios, APOE genotype, and neuropsycho-
logical tests for a logistic regression with a lasso penalty 
model, and achieved an AUC of 0.83. In contrast, Lew et. 
al. [88] employed a logistic regression model for binary 
prediction of PET results (high versus low Aβ or p-tau) 
using MRI and other data (e.g., demographic, APOE 
genotype, neuropsychological tests and hippocampal 

volumes etc.). This resulted in an AUC of 0.79 for Aβ and 
0.73 for p-tau. Using a seven-layer neural network, 3,635 
plasma proteins, age and APOE genotype for the same 
prediction, Zhang et al. [89] achieved a lower AUC score 
for Aβ (AUC = 0.78) and p-tau (AUC = 0.67). Their per-
formance is relatively lower than the other studies, which 
could possibly be due to high feature-to-sample ratio 
(3000 proteins in 800 participants), which can complicate 
model training and validation.

Notably, a universally accepted threshold to determine 
binary classification  is lacking. For example, Langford 
et al. [85] used a threshold of 1.15, while Palmqvist et al. 
[84] adopted a threshold of 0.738. Whether this would 
have impacted the prediction performance of the model 
is unclear. Future studies should consider standardizing 
this threshold to enable comparisons between models. 
Another issue with these studies is that the datasets used 
for model training are relatively small (e.g., 300 partici-
pants for Palmqvist et  al. [84]  and 800 participants for 
Zhang et al. [89]), possibly due to cost constraints associ-
ated with PET and MRI. Research funding bodies could 
play a role in encouraging (inter)national collaboration 
and data sharing, as well as endorsing standard data 
formats (especially for those high-cost experiments) to 
increase the size of datasets for more robust results.

Challenges and future directions
ML has been applied to clinical data analysis for more 
than two decades, and its widespread adoption in clinical 
research and healthcare has noticeably accelerated. This 
section will discuss the technical barriers, and the antici-
pated challenges and potential solutions to applying ML 
in clinical practice for dementia (summarized in Table 8).

Clinical data quality
Given the complex set up of longitudinal studies and 
heterogenous disease pathology, missing values, outli-
ers, data imbalance are inevitable. Missing data is often 
due to incomplete responses, data collection errors, 
technical issues and participant withdrawal [96]. Data 
scientists either disregard participants with missing data 
or use imputation techniques (e.g., mean imputation, 
multiple imputation by chained equations, etc. [97]). 
Outliers normally result from errors from record, meas-
urement or misclassification. Statistic techniques, such 
as z-scores and interquartile range or box plot are used 
to detect outliers. Once identified, common approaches 
involve removing outliers, adjusting into specific per-
centile, or applying transformations to reduce the skew-
ness of the data distribution [98]. Data imbalance is 
a commonly encountered issue for dementia dataset, 
as MCI and ADem occur in a smaller population com-
pared to CU. When MCI/ADem cases are significantly 
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underrepresented compared to CU, it can lead to a 
biased model performance, where ML models trained on 
imbalanced data may prioritize the majority and struggle 
to accurately predict the minority [99]. To address this 
issue, resampling techniques such as Synthetic Minority 
Over-sampling Technique [100] can be employed.

The quality of clinical data used to train ML models 
directly impacts the soundness of the model. The diagno-
ses are performed by clinicians and neuropsychologists 
[101, 102], which can sometimes introduce human errors 
into the dataset. This is because diagnosis is complicated 
by that 1) preclinical AD is difficult to detect [103], 2) 
MCI can be misclassified [104], and 3) vascular demen-
tia, Lewy body dementia, and frontotemporal dementia 
are sometimes misdiagnosed as ADem [105]. Moreover, 
some neuropsychological tests are influenced by practice 
effects [106] (repeated testing can artificially improve 
performance over time), and education background [107] 
(poor performance for individuals who are less educated), 
potentially skewing results. Furthermore, the trajectory 
of dementia varies significantly among individuals due 
to the complex interplays of age, genetics, sex, and other 
comorbidities [108]. Some individuals may experience a 
gradual decline in cognition over many years, while oth-
ers show rapid deterioration. Many longitudinal studies 
employ an "up-to-interval" method [75], classifying par-
ticipants into CU, MCI, ADem, and non-ADem within 
a specified follow-up period. However, this approach 
often falls short in capturing the disease trajectory of 
individuals experiencing gradual cognitive decline. In 
addition, older participants are more likely to withdraw 
from the study due to their dependency on others (e.g., 
reduced mobility discourage their participation), lead-
ing to their disease trajectory not fully captured. Cohort 

study designs can be enhanced to improve data quality. 
Longitudinal study designs should consider incorporat-
ing more objective diagnostic criteria, such as expanding 
the use of Aβ PET scans, and integration of blood-based 
biomarkers, tau, and neuroinflammation markers, to 
enhance the assessments accuracy. Additionally, devel-
oping strategies to prolong study follow-up duration is 
crucial for capturing the full progression of disease states 
over time. Research funding bodies could play a crucial 
role in driving this progress by prioritizing investment 
and providing support to longitudinal studies.

Data standardization
The existing longitudinal datasets exhibit a lack of uni-
formity and standardized approach in sample/data col-
lection and record format, making it difficult to validate 
and compare metrics like accuracy, sensitivity, and speci-
ficity between ML models that built on different datasets 
[109]. For example, although AIBL and ROSMAP col-
lected depression related data, yet different scales were 
used—AIBL adapted the Hospital Anxiety and Depres-
sion Scale while ROSMAP used the Center for Epidemio-
logical Studies Depression scale. The lack of uniformity 
in data collection could also be attributed to the intrin-
sic nature of the technology. For example, various plat-
forms, techniques, and environmental factors could 
introduce biases and variabilities into omics dataset 
[110]. In addition, omics data is often noisy and sparse, 
especially when detecting molecules of low abundance, 
and therefore more prone to batch effect. Furthermore, 
different annotation systems or reference databases used 
to identify proteins, metabolites, and genes can lead to 
mismatches and inconsistencies. Also, different omics 
dataset may lack of common features due to experiment 

Table 8 Challenges, solutions and future directions

Challenges Solutions/future directions

Missing data Utilize data imputation technique like mean imputation, multiple imputation by chained equations, etc

Data imbalance Utilize resampling techniques like Synthetic Minority Over-sampling Technique, etc

Diagnostics error Expand the use of subjective diagnostics criteria

Non-uniform longitudinal data Data harmonization

Lack of generalizability Develop global criteria that balance scientific rigor and practical feasibility

Exclusion of diverse populations Encourage global collaborative efforts among researchers, clinicians, and regulatory bodies, strategic recruit-
ment of people from culturally and linguistically diverse background

Computational burdens Utilize efficient algorithm design, high-performance computing resources, and distributed computing platforms

Patient acceptance Increase public awareness, ensure data transparency, security, and provide psychological support

Clinician acceptance Offer ML training to medical students and clinicians, develop explainable AI techniques, and involve clinicians 
in co-design of ML tools to enhance usability and trust

Lack of interpretation for ML-demen-
tia applications

Implement and promote explainable AI techniques like LIME and SHAP to make ML decision-making transpar-
ent

Ethical and regulatory considerations Advocate for local and international ethical guidelines and regulatory compliance, ensure continuous monitor-
ing post-deployment
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set up. All these make it less practical to standardize the 
omics data.

To enhance the performance of ML models in demen-
tia research, addressing variability in data collection 
methods is crucial. The Alzheimer’s Dementia Onset 
and Progression in International Cohorts initiative [111] 
exemplifies the successful application of data harmoni-
zation, integrating data from five international demen-
tia cohort studies, including the Adult Children Study, 
ADNI, AIBL, the Dominantly Inherited Alzheimer 
Network, and the National Alzheimer’s Coordinating 
Center. Similar initiatives should be encouraged, as they 
are crucial for enhancing statistical power, and enabling 
more robust ML applications in dementia, leveraging the 
existing longitudinal datasets. In addition, publication of 
sample collection protocols, along with raising awareness 
of the requirements and benefits of data pooling for ML 
among biomedical and clinician scientists, could pro-
mote consistent data collection practices and enhance 
collaborative research efforts globally. Of paramount 
importance, inconsistencies in data formats can under-
mine the effectiveness of ML models. Advanced tools like 
’dtool’ provide practical solutions for standardizing data 
formats and enhancing quality by encapsulating data and 
metadata into consistent, unified dataset structures with 
readily accessible metadata for both the collective data-
set and its individual files [112]. Data repositories could 
endorse guidelines that only accept datasets meeting 
standardized criteria.

Data generalizability
A longitudinal dataset may lack of generalizability. The 
study setting and enrolment criteria would exclude cer-
tain populations based on ethnicity, education level, 
socio-economic status, or comorbid conditions. For 
example, research studies might exclude participants 
with severe cardiovascular diseases or advanced diabe-
tes, arguing that these conditions could confound the 
cognitive assessments used to diagnose and track ADem 
progression [113]. Moreover, studies that require partici-
pants to be English-speaking exclude individuals from a 
culturally and linguistically diverse background (e.g., the 
indigenous population in Australia, who have a higher 
risk of ADem). These exclusions can result in datasets 
that fail to fully represent the diverse population affected 
by dementia. The clinical application of ML models built 
from biased data will consequently be limited. Collabo-
rative efforts between researchers, clinicians, and regula-
tory bodies are crucial in developing criteria that balance 
scientific rigor with practical feasibility. Furthermore, the 
major dementia longitudinal studies are often restricted 
to national boundaries, constraining their generalizability 
and the assessment of their performance in more border 

real-world scenarios. Researchers are encouraged to 
employ multiple datasets, where the model is trained on 
one dataset (e.g., ADNI) and validated on another dataset 
(e.g., AIBL) [114] to address this challenge.

Computational and memory burden
Computational and memory burden is another technical 
challenge to ML-dementia, particularly as recent stud-
ies focus on high-dimensional longitudinal omics data. 
Advanced tools such as the versatile toolbox MEFISTO 
[115] and the PALMO platform [116] are now capa-
ble of modelling spatial and temporal omics data. These 
tools utilize high-performance computing resources and 
implement various optimization strategies to improve 
processing efficiency. However, the high computational 
and memory demands of these algorithms can limit their 
applicability in AD studies that involve large sample sizes. 
Furthermore, the high volume of data requires a robust 
data management solution. Distributed computing plat-
forms, like Apache Hadoop [117], can be employed to 
efficiently handle, store, and share the large-scale data, 
facilitating collaborative efforts across different research 
groups and locations. However, these platforms are not 
always affordable, creating a technical barrier.

From bench to clinic
Artificial intelligence (AI), such as ML, has already dem-
onstrated success in disease tracking, as evidenced by 
FDA-approved devices like Apple’s Atrial Fibrillation 
History Feature [5]. While ML applications have  yet to 
be implemented in dementia clinical practice, anticipated 
challenges must be considered for future implementation 
in dementia diagnosis and care.

Acceptance of ML tools by patients
The targeted population for ML-dementia tools is older 
adults, which raises questions about their readiness 
to accept these technological innovations [118]. Many 
older adults are not as technologically adept as younger 
generations, making it challenging for them to under-
stand ML and its potential in diagnosing and managing 
diseases. This lack of understanding can result in low 
trust in ML-generated results, leading to hesitation in 
their use for healthcare purposes. Moreover, some ML 
tools collect data using wearable devices, raising privacy 
concerns among older adults who may be unsure how 
their data will be used. Furthermore, not all older adults 
want to receive predictions about their disease progres-
sion or early detection due to psychological fears and 
anxieties [119].

To address these challenges and improve accept-
ance among older adults, several steps should be taken. 
Increasing public awareness of ML and its benefits in 
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healthcare is crucial, as many people may not realize 
that AI/ML are already being used. Ensuring transpar-
ency in data usage and robust data security measures can 
help build trust, while  offering a personalized approach 
where individuals can opt in or out of predictive analyses 
can promote autonomy [120]. Providing comprehensive 
psychological support can help individuals cope with the 
emotional impact of potential diagnoses and empower 
them to make informed decisions about their health and 
care plans. By addressing these concerns through patient 
education, demonstrating the reliability and benefits of 
ML tools, and ensuring robust data security measures, 
we can foster greater acceptance of ML-dementia tools 
among older adults.

Acceptance of ML tools by clinicians
Clinicians tend to prefer techniques that are transpar-
ent and interpretable, aligning with conventional clinical 
reasoning. One of the barriers for clinicians to trust and 
uptake the output of ML models is the opaque nature of 
these algorithms, often referred to as "black boxes." ML 
models can obscure the logic behind their complex deci-
sion-making processes, sometimes producing results that 
cannot be easily justified by existing biomedical knowl-
edge. The "black box" nature of ML potentially erodes 
clinicians’ trust, hindering the adoption of these mod-
els in clinical practice. In response to these challenges, 
there is an increasing focus on developing explainable AI 
techniques, such as Local Interpretable Model-agnostic 
Explanations (LIME) and SHapley Additive exPlana-
tions (SHAP) [121]. These methods aim to make the 
decision-making processes of ML models more transpar-
ent and understandable, thereby can potentially enhance 
trust among clinicians. Another significant challenge 
is that many clinicians have not received formal train-
ing in ML, which can hinder their ability to effectively 
use and explain these tools to patients [122]. Providing 
basic education about ML to clinicians and incorporat-
ing an AI/ML training component in medical school cur-
riculum can enhance their ability to use innovative tools 
and communicate the benefits to patients. Of paramount 
importance, involving clinicians in the co-design of ML-
dementia models can ensure AI/ML tools meet clinical 
needs and foster greater acceptance and integration into 
practice. Last but not least, some clinicians are hesitant 
to accept AI/ML tools due to concerns about job dis-
placement [122]. However, it is essential to understand 
that AI/ML tools are designed to augment, not replace, 
the work of clinicians, similar to other diagnostic tests. 
Clinicians should be assured that their clinical judgment 
cannot be replaced by AI/ML and that the role of AI/ML 
in clinical practice should be clearly defined in relevant 
guidelines.

Ethics and regulatory considerations
The integration of AI/ML in healthcare brings forth 
numerous ethical and regulatory concerns that could 
potentially impede their implementation. Recently, the 
World Health Organization issued new guidance on the 
ethics and governance of AI technology applications 
in healthcare [123], emphasizing the need for AI/ML 
developers to prioritize ethical principles. To facilitate 
the potential implementation of AI/ML tools in demen-
tia diagnosis and management, we also advocate for 
the development of local guidelines to fit the culture/
religious needs. On the regulatory front, compliance 
with healthcare regulations is indispensable. Regulatory 
bodies, such as FDA, the European Medicines Agency, 
and the Therapeutic Goods administration (Australia), 
should get prepared for processing more applications for 
AI/ML medical devices in the future. A clear approach 
must be established for post-deployment continuous 
monitoring and reporting, to maintain their safety and 
effectiveness in the clinic [122]. More importantly, it is 
crucial that regulations should clearly define the respon-
sibilities and accountabilities of AI/ML developers and 
healthcare providers for any errors generated by AI/ML 
tools. This includes specifying the extent of liability for 
developers in the event of AI/ML malfunction or incor-
rect predictions, as well as outlining the role of health-
care providers in interpretating AI/ML outputs before 
making clinical decisions. Regulations should also detail 
mechanisms for reporting and addressing errors, as well 
as protocols for updating and improving AI/ML tools 
from reported errors. An in-depth discussion on regu-
latory matters concerning ML/AI is outside the scope 
of this review. Regulatory bodies, clinicians, and pub-
lic health experts are encouraged to work on regulatory 
matters to prepare our healthcare systems for the imple-
mentation of AI/ML tools.
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