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Abstract
Background  Alzheimer’s disease (AD) is a progressive neurodegenerative disorder where pathophysiological 
changes begin decades before the onset of clinical symptoms. Analysis of brain atrophy patterns using structural MRI 
and multivariate data analysis are an effective tool in identifying patients with subjective cognitive decline (SCD) at 
higher risk of progression to AD dementia. Atrophy patterns obtained from models trained to classify advanced AD 
versus normal subjects, may not be optimal for subjects at an early stage, like SCD. In this study, we compared the 
accuracy of the SCD progression prediction using the ‘severity index’ generated using a standard classification model 
trained on patients with AD dementia versus a new model trained on β-amyloid (Aβ) positive patients with amnestic 
mild cognitive impairment (aMCI).

Methods  We used structural MRI data of 504 patients from the Swedish BioFINDER-1 study cohort (cognitively 
normal (CN), Aβ-negative = 220; SCD, Aβ positive and negative = 139; aMCI, Aβ-positive = 106; AD dementia = 39). 
We applied multivariate data analysis to create two predictive models trained to discriminate CN individuals from 
either individuals with Aβ positive aMCI or AD dementia. Models were applied to individuals with SCD to classify 
their atrophy patterns as either high-risk “disease-like” or low-risk “CN-like”. Clinical trajectory and model accuracy were 
evaluated using 8 years of longitudinal data.

Results  In predicting progression from SCD to MCI or dementia, the standard, dementia-based model, reached 
100% specificity but only 10.6% sensitivity, while the new, aMCI-based model, reached 72.3% sensitivity and 60.9% 
specificity. The aMCI-based model was superior in predicting progression from SCD to MCI or dementia, reaching a 
higher receiver operating characteristic area under curve (AUC = 0.72; P = 0.037) in comparison with the dementia-
based model (AUC = 0.57).
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Background
Alzheimer’s disease (AD) is a progressive neurogenera-
tive disease and the most common cause of dementia, 
with an increasing prevalence worldwide [1]. The patho-
physiological changes in AD begin years or even decades 
before the onset of clinical symptoms [2, 3]. The failure 
of many recent drug trials suggests that future effective 
therapeutic strategies may require timely intervention in 
a preclinical stage [4–6]. To help with identification of 
individuals with increased risk of AD, the concept of sub-
jective cognitive decline (SCD) has been proposed [7]. 
Subjective complaints of cognitive decline are a stand-
alone risk factor for the development of mild cognitive 
impairment (MCI) and dementia with up to twofold risk 
increase when compared to healthy individuals without 
complaints [8, 9]. Identification of individuals suffering 
from SCD due to ongoing neurodegenerative processes 
such as AD, as opposed to SCD due to other etiology, is a 
task of substantial clinical importance, because individu-
als before onset of clinical symptoms are the most likely 
to benefit from treatment when available [4–6].

Although the current clinical diagnostic algorithm 
doesn’t recommend routine evaluation of pathophysi-
ological biomarkers in cognitively unimpaired individu-
als [10], for research purposes, the framework separately 
evaluating individual biomarkers regardless of clinical 
syndrome, the “ATN framework”, has been established. In 
this framework, the “A” stands for a β-amyloid biomarker 
(e.g. cerebrospinal fluid [CSF] β-amyloid [Aβ] 42 peptide 
levels, Aβ42/40 ratio, amyloid positron emission tomog-
raphy [PET]), “T” for a tau biomarker (e.g. CSF P-tau lev-
els, tau PET), and “N” for a neurodegeneration biomarker 
(e.g. structural MRI, 18 F-fluorodeoxyglucose PET) [11]. 
In clinical practice, full evaluation of individuals with 
SCD may prove challenging due to limited availability of 
biomarkers, ethical and economic considerations. Struc-
tural MRI, however, is a widely available, non-invasive, 
and safe method to assess neuronal damage.

Early stages of AD are typically characterized by a pat-
tern of atrophy with predominant involvement of the 
medial temporal lobe [12]. A similar atrophy pattern 
has been observed in SCD individuals [13–18]. Analyz-
ing a specific pattern of atrophy rather than individual 
structures has been shown to yield high predictive value 
[12]. We have previously used Orthogonal Projection 
to Latent Structures (OPLS) [19], a multivariate data 
analysis method, to discriminate both MCI and patients 
with AD from controls [12]. We used OPLS to create a 

“disease severity index”, using multiple structural MRI 
measures as input, allowing us to predict progression 
from MCI to dementia [20, 21] and from SCD to MCI or 
dementia [22].

When the task is to predict progression from MCI to 
dementia, majority of published studies utilize models 
based on sets of healthy individuals and patients with 
AD dementia [23]. However, this approach may have 
limitations in predicting progression from SCD to MCI. 
Though some SCD individuals show modest brain atro-
phy [24], hence they are much closer to healthy indi-
viduals than to patients with AD dementia. Such models 
are therefore more likely to treat SCD individuals with 
very mild levels of atrophy incorrectly as healthy. To 
the best of our knowledge, accuracy of prediction using 
datasets trained on individuals at different stages of the 
disease (e.g., MCI, AD dementia) has never been com-
pared. We hypothesized, that it may be possible to fur-
ther improve the prediction accuracy of SCD models, by 
training the models on individuals with the same pattern 
but milder levels of atrophy, such as MCI due to AD [25], 
as opposed to patients with AD dementia. Hence, (1) 
we used multivariate data analysis and structural MRI 
data to examine atrophy patterns of β-amyloid positive 
amnestic MCI patients or patients with AD dementia and 
β-amyloid negative cognitively normal (CN) individu-
als, and applied the resulting models to SCD individuals 
to classify them as CN-like or disease-like; (2) we used 
the resulting classification as a basis for prediction of 
progression from SCD to MCI using longitudinal clini-
cal data; and (3) compared the accuracy of prediction of 
“MCI-based” models with prediction based on equally 
constructed models based on AD patients with dementia.

Methods
Participants
Participants were recruited from the prospective longitu-
dinal Swedish BioFINDER-1 study (NCT01208675) (see 
http://www.biofinder.se for more information) [26, 27]. A 
total of 504 individuals were included.

The group of CN participants consisted of 220 
β-amyloid negative elderly individuals from the Bio-
FINDER study, which were initially recruited from the 
population-based Malmö Diet Cancer Study [28]. The 
inclusion criteria for the CN group were as follows: 
(1) Age ≥ 60 years; (2) Mini Mental State Examination 
(MMSE) score in range of 28–30 points [29]; (3) No cog-
nitive symptoms as assessed by a physician with expertise 
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in cognitive disorders; (4) Participant did not fulfill the 
criteria for either MCI [30] or dementia [31]; (5) was able 
to speak and understand Swedish in sufficient level not 
to require an interpreter during the examination; and 
(6) had normal CSF levels of Aβ42 (> 530pg/ml) [32] at 
baseline. Exclusion criteria were: (1) Relevant unstable 
systemic illness or organ failure making it difficult to par-
ticipate in the study (i.e. terminal cancer, etc.); (2) Rele-
vant neurological or psychiatric illness (major depressive 
disorder, Parkinson’s disease, stroke, etc.); (3) Current 
significant alcohol or substance abuse; and (4) Refusal 
to undergo either MRI or lumbar puncture procedures. 
Collection of the data took place between 2010 and 2014. 
In further assessment, we used subgroups of β-amyloid 
negative CN individuals who were one-to-one age- and 
sex-matched to the diagnostic group analyzed (i.e. MCI 
or AD dementia). We used exact matching for sex and 
loose matching for age, with minimal age difference as a 
selection criterion.

The group of β-amyloid positive amnestic mild cogni-
tive impairment (aMCI) patients was recruited from the 
cohort with mild cognitive symptoms of the BioFINDER 
study and consisted of 106 individuals from the memory 
clinics at Skåne University Hospital and Ängelholm’s 
Hospital in Sweden, between 2010 and 2015. All patients 
had been referred to the memory clinics due to cognitive 
symptoms experienced by patient or informant, as a part 
of routine clinical practice. All patients fulfilled the cri-
teria of amnestic MCI - their normative z-score for epi-
sodic memory domain in neuropsychological assessment 
(see next section) was ≤ 1.5. Additional inclusion criteria 
for the aMCI group were defined as follows: (1) Referral 
to the memory clinic due to cognitive symptoms (includ-
ing non-memory complaints); (2) Age between 60 and 
80 years; (3) MMSE score of 24–30 points at baseline; (4) 
Participant did not fulfill the criteria for dementia [31]; 
(5) Ability to speak and understand Swedish in sufficient 
level not to require an interpreter during the examina-
tion; and (6) abnormal CSF levels of Aβ42 (≤ 530pg/ml) 
[32] at baseline. MCI patients were classified as amnes-
tic single or multiple domains, based on the results of 
neuropsychological assessment (see next section) at the 
baseline. Exclusion criteria for MCI patients were: (1) 
Relevant unstable systemic illness or organ failure mak-
ing it difficult to participate; (2) Current significant alco-
hol or substance abuse; (3) Refusal to undergo either 
lumbar puncture or neuropsychological assessment; 
and (4) Cognitive symptoms at baseline explainable by 
another condition (normal pressure hydrocephalus, brain 
tumor, major stroke, epilepsy, schizophrenia, past sig-
nificant alcohol abuse and ongoing medication such as 
benzodiazepines).

The group of patients with SCD was recruited from the 
cohort with mild cognitive symptoms of the BioFINDER 

study and consisted of 139 individuals included between 
2010 and 2015 from the memory clinics at Skåne Uni-
versity Hospital and Ängelholm’s Hospital in Sweden. As 
in the MCI group, all patients had been referred to the 
memory clinics due to cognitive symptoms experienced 
by patient or informant, as a part of routine clinical prac-
tice. No further specific questionnaires to ascertain SCD 
were administered. Inclusion criteria were similar to 
the MCI group criteria 1–5. However, SCD individuals 
showed no objective impairment in neuropsychological 
testing based on established normative data. Exclusion 
criteria were equal to those of the MCI group.

The group of patients with dementia was recruited 
from the dementia cohort of the BioFINDER study and 
consisted of 39 individuals included between 2010 and 
2015. Patients were diagnosed with dementia after thor-
ough clinical investigation at the memory clinic from the 
Skåne University Hospital. All patients fulfilled the crite-
ria of probable dementia due to AD [33], fulfilling at min-
imum the core clinical criteria. Most AD patients, though 
not all (n = 32; 82.05%), underwent lumbar puncture and 
had CSF evidence of abnormal levels of Aβ42 (≤ 530pg/
ml). The exclusion criteria were defined as (1) significant 
unstable systemic illness or organ failure such as terminal 
cancer, making it difficult to participate in the study; or 
(2) current significant alcohol or substance misuse.

Neuropsychological assessment
All participants underwent neuropsychological evalu-
ation, which consisted of tests assessing verbal, visuo-
spatial and construction skills, episodic memory, and 
executive functions. Individual test batteries var-
ied between groups. Tests administered to all groups 
included measures of global cognition – MMSE and 
AD Assessment Scale-Cognitive subscale (ADAS-
cog) [34]. Global deterioration scale [35] was used as 
an outcome measure in further analyses. For further 
details, please see http://biofinder.se/data-biomarkers/
clinical-evaluation/.

CSF sampling
The CSF analysis was performed in all participants in 
accordance with the Alzheimer’s Association Flow Chart 
for CSF biomarkers [36]. The samples were collected at 
baseline and stored in 1mL polypropylene tubes at tem-
perature of -80  °C. The CSF levels of Aβ42 were ana-
lyzed simultaneously in a single laboratory with the 
INNOTEST ELISA set (Fujirebio Europe, Ghent, Bel-
gium) [37].

MRI acquisition
All participants underwent magnetic resonance imag-
ing (MRI) scanning using a 3T Siemens Trio Tim scan-
ner (Munich, Germany) at Skåne University Hospital, 
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Sweden. The imaging protocol included a high resolu-
tion T1-weighted scan acquired with a magnetization-
prepared rapid acquisition gradient echo sequence (176 
slices; repetition time = 1950–2000 ms; echo time = 3.37 
ms; inversion time = 900 ms; flip angle = 9°; voxel 
size = 0.97 * 0.97 * 1.2mm3).

MRI analysis
The acquired T1 images were analyzed using the Free-
Surfer 6.0 imaging suite (https://surfer.nmr.mgh.harvard.
edu/) with the in-house database system theHiveDB [38]. 
For each individual, the thickness of 34 cortical regions 
[39] and the volumes of 23 subcortical structures [40] 
were obtained from FreeSurfer. All segmentations were 
visually checked prior to further processing, only the 
subjects that passed the visual inspection were included 
in subsequent analyses. The summary measures of CSF, 
white and grey matter volumes were not included in the 
model to avoid redundancy, as well as volume of brain-
stem and cerebellum, as these regions undergo minimal 
levels of atrophy in the early stages of the disease [41]. 
Left and right-sided measures were averaged prior to 
analysis. We performed principal component analysis 
on these 34 + 17 measures within each study group (CN, 
aMCI, AD dementia), to detect possible outliers. We 
found no individuals with scores larger than 4 SD in first 
or second component within their respective group, indi-
cating that this dataset did not have any outliers.

Statistical methods
Participants
We used the R software (R Foundation for Statistical 
Computing, Vienna, Austria; www.r-project.org) to per-
form the statistical analyses. We used analysis of vari-
ance (ANOVA) to assess group differences in age and 
analysis of covariance (ANCOVA) using age and sex as 
covariates to assess differences in education, neuropsy-
chological test results, MRI and CSF measurements. The 
Kruskal-Wallis test was used to assess the differences in 
sex and APOE ε4 distributions. For groups characteriza-
tion, to reduce the number of reported volumetric mea-
surements, we reported volumes or thickness of selected 
regions known to be affected in the earliest stages of AD 
(i.e. hippocampus, entorhinal cortex) according to Braak 
and Braak [42]. We performed 2 separate ANOVA and 
ANCOVA analyses: First, for groups associated with AD 
dementia (SCD, AD dementia, matched β-amyloid nega-
tive CN), second, for groups associated with aMCI (SCD, 
β-amyloid positive aMCI, matched β-amyloid negative 
CN).

Training of the OPLS model
To calculate the “severity index” [22] that assesses the 
pattern of atrophy characteristic of patients with AD 

dementia (or aMCI) versus controls, we employed the 
OPLS [19] algorithm using the “ropls” package imple-
mented within the R-programming environment (https://
bioconductor.org/packages/release/bioc/html/ropls.
html). The implementation used original non-linear 
iterative partial least squares (NIPALS) [43] algorithms 
[19, 44]. The OPLS has been previously extensively used 
in CN vs. AD classification and SCD to MCI progres-
sion prediction [20, 22, 45–50] and its performance has 
been shown be similar to that of other commonly used 
multivariate analysis algorithms [50]. The procedure for 
the actual index has been described in detail previously 
[20, 45]. In brief, the data is preprocessed using standard 
steps, applying unit variance scaling and mean centering 
to the data. The OPLS algorithm then splits the systemic 
variation into two parts - predictive and orthogonal. The 
first, predictive component, contains information rele-
vant for the classification between CN and aMCI/demen-
tia groups. The second, orthogonal component, contains 
information that is not related to the classification prob-
lem. The ability to predict and the reliability of the model 
are evaluated through the ‘goodness of fit’ or explained 
variance (R2) and the ‘goodness of prediction’ or pre-
dicted variance (Q2) parameters. Q2 represents a perfor-
mance of the model outside of the training dataset and 
is therefore regarded as a more relevant metric. A value 
of Q2 > 0.05 is regarded as significant, and a value > 0.5 
represents a good model [51]. We used a 10-fold cross-
validation [52] for training of the model.

We used a total of 51 variables from the baseline 
MRI FreeSurfer assessment as the input data, includ-
ing the 34 cortical and 17 subcortical regions explained 
above (Fig.  1A, B). Prior to the analysis, all subcorti-
cal volumes were adjusted for the differences in head 
size by regressing out the estimated total intracranial 
volume (eTIV) [53, 54]. In addition, we applied a linear 
detrending algorithm based on age-related changes in 
the β-amyloid negative CN group to the data, assum-
ing that thickness/volumetric changes in the CN group 
are mostly associated with aging, while changes in the 
aMCI and AD dementia groups may also be influenced 
by disease-related factors. This approach has shown to 
have a positive effect on the classification performance of 
OPLS models [49]. For training of the OPLS model, par-
ticipants from the CN group were assigned a value of 0, 
while aMCI and AD dementia individuals were assigned 
a value of 1 during training of their respective models.

In all MRI-based models, prediction accuracy of the 
model is limited by the heterogeneity of the underlying 
pathology. In AD, several different pathology phenotypes 
have been described [55], with correspondingly different 
atrophy patterns [56–58] including the minimal atrophy 
phenotype [58]. To minimize the impact of heterogeneity 
on prediction accuracy of our model, we removed aMCI 

https://surfer.nmr.mgh.harvard.edu/
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Fig. 1  Variable loadings. p1 = Contribution of individual variables to the predictive component in the model (A) trained on the Alzheimer’s disease de-
mentia patients (B) trained on the aMCI patients
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and demented individuals with the minimal atrophy phe-
notype [56, 58, 59] from their respective training dataset. 
Patients in this phenotype are known to have no or low 
levels of brain atrophy, which may introduce noise in our 
OPLS classification models. Since the OPLS approach is 
based on analyzing atrophy patterns, we hypothesized 
that removal of these individuals from the training data-
set would improve the accuracy of the resulting model 
further. To identify individuals with a minimal atrophy 
phenotype, we projected all patients from the aMCI and 
AD dementia group onto their respective models (CN vs. 
aMCI, and CN vs. AD dementia, respectively), assign-
ing them the predicted value of the “severity index” and 
classifying them as either CN-like or disease-like. For 
this classification we used the cutoff value obtained by 
identifying the point of maximum separation between 
the smoothed cumulative distribution function of the 
two groups (i.e., CN and aMCI or CN and AD demen-
tia) [60]. This way we identified 15 individuals from 
the aMCI group, classified as CN-like, showing mini-
mal atrophy. These individuals were removed from the 
training dataset. We found no individuals with mini-
mum atrophy in the AD dementia group. Hence, we 
then repeated the previously described procedures only 
for the aMCI group, and the model was retrained using 
an updated training set. The updated set for the aMCI-
based model without minimal atrophy patients included 
91 aMCI patients. The dementia-based model remained 
unchanged, including 39 AD dementia patients. For each 
model, we selected a subgroup of age- and sex-matched 
β-amyloid negative CN individuals. We used exact 
matching for sex and loose matching for age, with mini-
mal age difference as a selection criterion. We used the 
cross-validated model to estimate Q2 and R2 and report 
sensitivity and specificity values. For more details on how 
removal of minimal atrophy group affected model perfor-
mance, see the results.

In total, we built two models, (1) “dementia-based” 
model, trained using β-amyloid negative CN and AD 
dementia individuals; and (2) “aMCI-based” model, 
trained using β-amyloid negative CN and β-amyloid 
positive aMCI, excluding those with minimal atrophy 
phenotype. These two models did not differ in any other 
parameter.

Classification
We projected all participants from the SCD group 
(n = 139), regardless of their Aβ status, onto the models 
(1) and (2), and their values of Y or “severity index” for 
each model were estimated. The cutoff value for predict-
ing observations as either CN-like or disease-like was 
obtained by identifying the point of maximum separa-
tion between the smoothed cumulative distribution func-
tion of the two groups (i.e., CN and aMCI or CN and AD 

dementia), as described above. The final cutoff values 
used were 0.413 for the dementia-based model and 0.384 
for the aMCI-based model.

Longitudinal analysis
Next, we assessed the longitudinal clinical data of the 
SCD individuals over an 8-years follow-up period with 
regard to their clinical trajectory. We defined clinical tra-
jectory as the progression from SCD to MCI or demen-
tia using the Global deterioration scale. Participants who 
scored ≥ 3 during the yearly evaluation were treated as 
progressors. SCD participants were followed up until 
progression to MCI or dementia or censored on the last 
date observed. We did not have mortality data available. 
Longitudinal data were then used to assess sensitivity 
and specificity of the OPLS models to predict progres-
sion. We also used the calculated “severity index” value 
to compute receiver operating characteristic (ROC) and 
area under curves (AUC). Further, we evaluated the clini-
cal trajectory of CN-like and disease-like SCD groups, 
by performing survival analysis using Kaplan-Meier 
estimate and log rank test and estimated the risk of pro-
gression to MCI or dementia by applying data to the 
Cox models. Then, we made a comparison of the ROC 
curves of models (1) and (2) using the implementation of 
DeLong algorithm [61] within the pROC package [62].

Finally, we compared the models (1) “dementia-based” 
and (2) “aMCI-based”, regarding their sensitivity, specific-
ity, and ROC AUC, as well as in terms of characteristics 
of SCD groups identified as “disease-like” by each model. 
Simplified overview of the data processing steps is avail-
able in Fig. 2.

Results
Participant’s main demographical and clinical character-
istics are summarized in Table 1. The AD dementia asso-
ciated groups (SCD, AD dementia, matched β-amyloid 
negative CN) differed in cognitive performance, APOE 
ε4 allele frequency, volumetric measures, and CSF bio-
markers. The aMCI associated groups (SCD, β-amyloid 
positive aMCI, matched β-amyloid negative CN) differed 
in age, cognitive performance, APOE ε4 allele frequency, 
volumetric measures, and CSF biomarkers.

Classification results
Classification using Alzheimer’s disease dementia patients 
(standard approach)
The cross-validated “AD-dementia-based” model reached 
a cumulative R2 of 0.842 and a cumulative Q2 of 0.807. 
The model reached 100% sensitivity and 100% specific-
ity in discriminating patients with AD dementia from CN 
individuals. Detailed model characteristics are summa-
rized in Figs. 1A and 3A. Removal of patients with mini-
mal atrophy did not affect this model since no patients 
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were removed. When applied to the SCD data, the model 
labelled 96.4% of the SCD individuals as CN-like (n = 134; 
31.3% β-amyloid positive) and 3.6% of the SCD individu-
als as AD dementia-like (n = 5; 40.0% β-amyloid positive). 
The AD dementia-like SCD group was older and had 
lower hippocampal volume than the CN-like SCD group 
after correcting for age and sex (P < 0.05). It did not dif-
fer from the CN-like SCD group in other characteristics 
(Table 2).

Classification using aMCI patients (new approach)
The cross-validated “aMCI-based” model reached a 
cumulative R2 of 0.582 and a cumulative Q2 of 0.536. 
The model reached 96.7% sensitivity and 80.2% speci-
ficity in discriminating patients with aMCI from CN 
individuals. More detailed model information is summa-
rized in Figs. 1B and 3B. Initial model, without removal 
of patients with minimal atrophy phenotype, reached 
lower cross validated sensitivity (87.74%), while having 
only marginally higher specificity (82.08%). This model 
also showed worse performance when applied to exter-
nal dataset during cross validation (Q2 = 0.425) and was 
therefore considered loss robust.

Further, to evaluate the effect of training set size on 
model performance - since both models were trained 
using different number of patients (39 vs. 91) - we 
retrained the aMCI-based model, using a subset of 39 
randomly selected individuals from the aMCI data-
set, keeping all other parameters identical. The result-
ing aMCI model was significant (Q2 = 0.563), showing 

lower sensitivity (59.57% vs. 72.34%) but higher specific-
ity (73.91% vs. 60.87%) and similar ROC AUC (0.719 vs. 
0.72) when predicting progression from SCD to MCI 
and dementia (see next section), compared to the model 
trained on full number of participants. Comparing ROC 
curves, it didn’t perform differently from the full model 
(p = 0.998). In further analyses, we only evaluated model 
trained on full number of participants, excluding patients 
with minimal atrophy phenotype.

Applying the model to the SCD data, 49.6% of indi-
viduals (n = 69; 26.1% β-amyloid positive) were labelled 
as CN-like and 50.4% (n = 70; 37.1% β-amyloid positive) 
as aMCI-like. The aMCI-like SCD group had lower hip-
pocampal volume and thinner entorhinal cortex than 
the CN-like SCD group after correcting for sex and age 
(P < 0.05). The aMCI-like SCD group did not differ from 
the CN-like SCD group in other characteristics. (Table 2)

Longitudinal analysis
Next, we analyzed the longitudinal data of the 139 SCD 
participants collected within the 8 years period. Within 
this period, 47 patients (33.81%) progressed to MCI or 
dementia, while 92 (66.19%) remained in the SCD group. 
Most participants progressed within the first 1–2 years 
after baseline (n = 35, 74.4%), and no SCD individual pro-
gressed later than the 6th year. SCD progressors were 
older, had a higher percentage of APOE ε4 carriers and a 
higher percentage of Aβ42 positive individuals (P < 0.01). 
After correcting for sex and age, they scored higher 
in severity index, performed worse in ADAS 10 word 

Fig. 2  Simplified overview of data-processing steps. Processing preceding computation of the “disease severity index” and prediction of progression; 
aMCI = β-amyloid positive amnestic mild cognitive impairment; CN = β-amyloid negative cognitively normal participants; DEM = dementia due to Al-
zheimer’s disease; OPLS = Orthogonal Projection to Latent Structures; SCD = subjective cognitive decline; Individual steps are described in detail in the 
manuscript
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Fig. 3  Characteristics of the model. (A) trained on the Alzheimer’s disease dementia patients (B) trained on the aMCI patients ; R2 = explained variance; 
Q2 = predicted variance; (1) Permutation plot: Comparison of R2 and Q2 values of the model with other models, where random permutations of Y (diagnos-
tic information) have been performed while X-data (input data) stayed intact; (2) Q2 and R2 values of individual components: p1 = predictive component; 
o1 = first orthogonal component (3) Score plot: individual scores of participants used in training; t1 = predictive component score; to1 = first orthogonal 
component score; (4) Loading plot: loadings of individual variables; p1 = predictive component; o1 = first orthogonal component
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delayed recall but not MMSE at baseline and had lower 
baseline hippocampal volume (P < 0.05). SCD progressors 
also had lower CSF Tau (P = 0.026) but not Aβ42 or P-tau 
levels at baseline (Table 3).

Longitudinal analysis using the Alzheimer’s disease dementia 
model
100% of the SCD participants (n = 5) labelled as AD 
dementia-like using the “dementia-based” model 

progressed to MCI or dementia. This represented 10.6% 
of all progressors since 42 SCD participants classified 
as CN-like (31%) also progressed to MCI or demen-
tia. Therefore, the dementia-based model reached 100% 
specificity but only 10.6% sensitivity in predicting pro-
gression from SCD to MCI or dementia in our dataset, 
resulting in AUC of 0.57 (Fig.  4). In the survival analy-
sis using the Kaplan-Meier estimator and log rank test, 
we found that AD dementia-like SCD participants were 

Table 2  Classification of SCD individuals
AD dementia-based model aMCI-based model
CN-like AD-like P CN-like aMCI-like P

N 134 5 - 69 70 -
Female (%) 42.54% 60% 0.441a 44.93% 41.43% 0.678a

Age 69.85 (5.62) 75.54 (5.70) 0.028*b 69.16 (5.39) 70.93 (5.91) 0.068b

Education (years) 12.74 (3.40) 11.00 (4.18) 0.702c 13.20 (3.68) 12.16 (3.10) 0.415c

Severity index 0.09 (0.14) 0.47 (0.04) 0.003**c 0.16 (0.15) 0.62 (0.22) < 0.001***c

MMSE 28.77 (1.29) 28.60 (1.67) 0.616c 28.91 (1.05) 28.61 (1.50) 0.987c

ADAS 10 word delayed recall 2.74 (1.66) 5.60 (1.52) 0.076c 2.57 (1.58) 3.12 (1.86) 0.869c

APOE ε4 (%) 40.3% 80% 0.172a 40.58% 42.86% 0.563a

Mean hippocampal volume (mm3)+ 3597.84 (404.50) 2377.45 (672.87) 0.004**c 3822.68 (307.98) 3289.04 (456.93) < 0.001***c

Mean entorhinal cortex thickness (mm)+ 2.76 (0.41) 2.09 (0.50) 0.082c 2.93 (0.35) 2.54 (0.41) < 0.001***c

Total intracranial volume (cm3) 1559.60 (144.53) 1666.09 (116.29) 0.563c 1561.44 (131.97) 1565.38 (157.06) 0.818c

Aβ42 positivity (%) 31.34% 40% 0.684a 26.09% 37.14% 0.163a

Aβ42 level (pg/ml) 660.79 (214.67) 587.60 (198.77) 0.254c 668.42 (217.60) 648.04 (211.23) 0.805c

Tau level (pg/ml) 320.65 (134.10) 361.80 (192.08) 0.685c 336.64 (144.19) 307.83 (126.53) 0.612c

P-tau level (pg/ml) 54.57 (23.86) 65.80 (32.68) 0.542c 57.96 (26.04) 52.03 (21.94) 0.609c

Values are expressed as: mean (standard deviation) unless indicated otherwise; *: P < 0.05; **: P < 0.01; ***: P < 0.001; +Selected volumetric measures based on their 
early involvement during Alzheimer’s disease onset according to Braak & Braak, 1991; aKruskal-Wallis test; bANOVA (analysis of variance); cANCOVA (analysis of 
covariance; covariates: sex, age); CN-like = individuals classified as cognitively-normal-like, AD-like = individuals classified as Alzheimer’s disease dementia-like; 
aMCI-like = individuals classified as amnestic mild cognitive impairment-like; MMSE = Mini-Mental State Examination, ADAS = Alzheimer’s Disease Assessment Scale; 
Aβ-42 positivity: Percentage of individuals with CSF level of β-amyloid 42 peptide lower then 530pg/ml ; Aβ-42 level: CSF levels of β-amyloid 42 peptide in pg/ml; 
Tau level: CSF levels of tau protein in pg/ml; P-tau level: CSF levels of phosphorylated tau protein in pg/ml;

Table 3  SCD progressors versus SCD non-progressors within the 8 years follow-up period
Progressors Non-progressors P

N 47 92 -
Female (%) 53.19% 38.04% 0.089a

Age 72.55 (5.10) 68.77 (5.60) < 0.001***b

Education (years) 11.68 (3.48) 13.18 (3.30) 0.090c

Severity index 0.54 (0.31) 0.32 (0.27) 0.048*c

MMSE 28.45 (1.47) 28.92 (1.18) 0.226c

ADAS 10 word delayed recall 3.80 (1.82) 2.36 (1.49) 0.036*c

APOE ε4 (%) 55.32% 34.78% 0.002**a

Mean hippocampal volume (mm3)+ 3328.02 (564.48) 3669.36 (370.18) 0.034*c

Mean entorhinal cortex thickness (mm)+ 2.60 (0.47) 2.81 (0.39) 0.175c

Total intracranial volume (cm3) 1571.20 (166.54) 1559.46 (132.88) 0.104c

Aβ42 positivity (%) 55.32% 19.57% < 0.001***a

Aβ42 level (pg/ml) 558.23 (226.20) 709.21 (188.98) 0.091c

Tau level (pg/ml) 392.94 (164.38) 285.96 (102.09) 0.026*c

P-tau level (pg/ml) 66.36 (29.42) 49.15 (18.62) 0.096c

Values are expressed as: mean (standard deviation) unless indicated otherwise; *: P < 0.05; **: P < 0.01; ***: P < 0.001; + Selected volumetric measures based on their 
early involvement during Alzheimer’s disease onset according to Braak & Braak, 1991; aKruskal-Wallis test; bANOVA (analysis of variance); cANCOVA (analysis of 
covariance; covariates: sex, age); MMSE = Mini-Mental State Examination, ADAS = Alzheimer’s Disease Assessment Scale; Aβ-42 positivity: Percentage of individuals 
with CSF level of β-amyloid 42 peptide lower then 530pg/ml ; Aβ-42 level: CSF levels of β-amyloid 42 peptide in pg/ml; Tau level: CSF levels of tau protein in pg/ml; 
P-tau level: CSF levels of phosphorylated tau protein in pg/ml;
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more likely to progress to MCI or dementia (P < 0.001) 
than CN-like SCD participants (Fig. 5A). Fitting the data 
into the Cox-model, we found that AD dementia-like 
SCD participants were 10.8 times more likely to progress 
to MCI or dementia than CN-like SCD participants (con-
fidence interval [CI]: 4.0–28.9; P < 0.001). β-amyloid posi-
tivity increased the risk of clinical progression to MCI or 
dementia 4.3 times (CI: 2.4–7.9; P < 0.001), while sex did 
not affect the risk of progression (P = 0.679).

Longitudinal analysis using the aMCI model
Out of the 70 SCD patients labelled as aMCI-like using 
the “aMCI-based” model, 48.6% (n = 34) progressed to 
MCI or dementia. The model thus identified correctly 
72.3% of all SCD progressors. Out of the CN-like group, 
only 18.8% (n = 13) progressed to MCI. Therefore, the 
aMCI model reached 72.3% sensitivity and 60.9% speci-
ficity in predicting progression from SCD to MCI and 
dementia. The AUC reached a value of 0.72 (Fig. 4). Per-
forming the survival analysis using the Kaplan-Meier 
estimator and log rank test, we found that aMCI-like 

SCD participants were more likely to progress to MCI 
or dementia (P < 0.001) than CN-like SCD participants 
(Fig. 5B). Fitting the data into the Cox-model, we found 
that aMCI-like SCD participants were 2.9 times more 
likely to progress to MCI or dementia than CN-like SCD 
participants (CI: 1.5–5.6; P = 0.001). β-Amyloid positiv-
ity increased the risk to progress to MCI or dementia 3.4 
times (CI: 1.8–6.4; P < 0.001). Sex did not affect the risk of 
progression (P = 0.406).

ROC comparison
Comparing the ROC curves, we found that the models 
performed differently between groups (P = 0.037) (Fig. 4). 
The AD dementia-based model identified a lower num-
ber of individuals (n = 5) at high risk of progression, most 
of which progressed by the first follow up visit, and all 
of whom progressed within first four years. The aMCI-
based model identified a larger group of individuals 
(n = 70) with moderate risk of progression, progressing 
in up to 6 years after the initial scan. The aMCI-based 

Fig. 4  Receiver operating characteristic curves. Curves of the ‘disease severity index’ generated using aMCI-based (green) and dementia-based (blue) 
models; AUC = area under curve
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model achieved higher ROC AUC than the dementia-
based model (0.72 vs. 0.57, respectively).

Discussion
In this study, we used multivariate data analysis and 
structural MRI to compare classification and prediction 
models for SCD. We assessed the frequency of disease-
like SCD individuals and their characteristics in com-
parison with CN-like SCD individuals and evaluated the 
accuracy of prediction of progression from SCD to MCI 
or dementia, using equally constructed models based on 

either β-amyloid positive aMCI or AD dementia patient 
data.

Comparing the dementia-based and the aMCI-based 
models, the dementia-based model achieved higher val-
ues of explained variance (R2) and goodness of prediction 
(Q2) metrics as well as better overall cross-validated sen-
sitivity and specificity (100% and 100%, respectively) than 
the aMCI-based model (96.7% and 80.2%, respectively). 
This was expected, since overall levels of atrophy in AD 
dementia are higher than in aMCI [63], supposedly mak-
ing classification of aMCI vs. CN individuals based on 
atrophy patterns more difficult than the classification of 
AD dementia vs. CN. This corresponds to our previous 
results on an external cohort [12], where the dementia-
based model also reached higher cross-validated sensitiv-
ity and specificity values than the MCI-based model (81% 
vs. 66% and 82% vs.73%, respectively). Other previous 
works using the OPLS [20–22] based their models on AD 
dementia patients only, reaching cross validated sensitiv-
ity between 84 and 87% and specificity between 90 and 
100%. Both our models therefore reached higher sensi-
tivity and specificity values than similarly built models 
in the previous studies [12, 20–22]. Part of this improve-
ment may be explained by factors such as smaller size 
of the AD dementia training dataset (n = 39) or overall 
homogeneity of our dataset (all participants come from 
a single center, MRI scans were performed using the 
same scanner) leading to a slight overfitting. However, 
we believe other factors to be of more importance. Unlike 
the previous studies, we used training datasets based on 
biomarker defined individuals – β-amyloid positive aMCI 
and AD dementia patients with age and sex matched 
β-amyloid negative CN individuals. We have also intro-
duced several methodological improvements into the 
model creation, most importantly removal of individu-
als with minimal atrophy phenotype from the training 
dataset, which has led to a notable improvement of the 
aMCI-based model. Further methodological improve-
ments included identification of optimal cutoff value and 
age detrending. This contributes to the novelty of the cur-
rent study, but also provided high sensitivity and specific-
ity values for the MCI vs. CN classification (96.7% and 
80.2%), which are usually around 75–85% in the literature 
[12, 64–66], though some authors report both sensitivity 
and specificity as high as 100%, using a combination of 
multiple MRI-based features [67].

Looking at the individual variable loadings, among the 
most important variables contributing to the dementia-
based model were thickness of inferior and middle tem-
poral gyrus, volumes of hippocampus, pallidum, corpus 
callosum and inferior lateral ventricle (Fig.  1A). In the 
aMCI-based model, some of the most important vari-
ables were volumes of hippocampus, amygdala and 
inferior lateral ventricle, thickness of entorhinal cortex, 

Fig. 5  Longitudinal progression of SCD groups. (A) using the model based 
on Alzheimer’s disease dementia patients (B) using the model based on 
aMCI patients; The survival event was defined by either progressing to MCI 
or dementia at the time of annual follow-up. The log rank test was used to 
test the difference between the curves
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inferior temporal gyrus and fusiform gyrus (Fig.  1B). 
The atrophy patterns in both groups were similar, but 
not identical, sharing 3 out of 6 variables with highest 
loading. Comparing our variable loadings with the pre-
vious study [12], which combined over 1000 individuals 
from two multicentric studies, AddNeuroMed [68] and 
Alzheimer’s Disease Neuroimaging Initiative (ADNI; 
.loni.usc.edu/), we found variable loadings in all utilized 
datasets (AddNeuroMed, ADNI, combined) to be similar 
to our current models, particularly to the aMCI-based 
model, which shared 5 out of 6 variables with highest 
loading. The most important variables in the combined 
dataset were volumes of hippocampus, amygdala, and 
interior lateral ventricle, and thickness of entorhinal cor-
tex, inferior and middle temporal gyrus. Although our 
current dataset comes from a single center in Sweden 
and is based on comparatively smaller number of partici-
pants (total 399 vs. 1074), similarity of the observed pat-
terns of atrophy suggests they are stable across multiple 
populations in Europe and North America. Our models 
may therefore be well applicable to the data based on 
other populations.

We found further differences between the models when 
we applied them to predict progression from SCD to MCI 
or dementia. The dementia-based model achieved 100% 
specificity, but sensitivity was extremely low (10.6%). This 
finding makes this model partially less useful for clini-
cal application unless the aim is to identify SCD patients 
with an extremely high risk of progression to MCI. In 
contrast, the aMCI-based model reached 72.3% sensitiv-
ity and moderate specificity of 60.9% in predicting pro-
gression from SCD to MCI. These finding suggests that 
the more advanced pattern of atrophy of patients used in 
training of dementia-based model identifies a small num-
ber of individuals at very high risk of clinical progression, 
while the milder yet developed atrophy pattern of aMCI 
patients results in superior sensitivity at the cost of spec-
ificity of the model. This suggests that models could be 
employed for different purposes. The AD dementia-based 
model could, for example, be utilized in identifying high-
risk individuals for purpose of drug trial, while the aMCI 
model would be better used as a non-invasive popula-
tion screening tool. However, comparing the ROC AUC 
directly between the models, the aMCI-based model was 
clearly superior to the AD dementia-based model, reach-
ing 0.72 vs. 0.56 AUC (P = 0.037).

Though there are multiple studies using supervised 
learning and multivariate analysis to predict progression 
from MCI to dementia using structural MRI data [12, 20, 
21, 69–72], there is limited number of studies attempting 
to predict progression from SCD to MCI [22, 73, 74].

Previously [22], we used OPLS to predict progression 
from SCD to MCI using a model trained on healthy con-
trols and patients with probable AD dementia from the 

Australian Imaging Biomarkers and Lifestyle flagship 
study of ageing (AIBL). In line with our expectations, our 
aMCI-based model achieved lower specificity (60.9% vs. 
95.4%) but a superior sensitivity (72.3% vs. 38.1%) to the 
previous model. The ROC AUCs could not be directly 
compared, as it was not reported in the previous study. 
Our dementia-based model, on the other hand, was 
more accurate in predicting clinical progression (100% 
vs. 95.4% specificity). It was however less sensitive than 
the previous model (10.6% vs. 38.1%). This was despite 
similar overall cognitive performance (mean MMSE 20.2 
vs. 20.4) and APOE status (71.8% vs. 75.0% ε carriers) of 
AD dementia participants in both studies. Yet, the differ-
ent results could partially be explained by larger percent-
age of APOE ε4 carriers in CN group in the AIBL cohort 
(46.0 vs. 15.4%).

Another recent study used support vector machines 
and multimodal data, including structural MRI data from 
FreeSurfer, to predict progression from SCD to MCI over 
7 years period [73]. In comparison, MRI-based model in 
this study reached lower sensitivity (41.8%) and higher 
specificity (73.1%) than our aMCI-based model, while 
our dementia-based model was less sensitive and more 
specific. This study used a different approach, training 
the algorithm using longitudinal data of the evaluated 
SCD individuals.

Another study from the same group [74] used machine 
learning to create regression framework by combination 
of sparse coding and random forest to assess and predict 
cognitive performance in SCD and MCI individuals by 
predicting global cognition test scores change (i.e. MMSE 
and Montreal Cognitive Assessment) using structural 
MRI. Predicted values correlated with real scores with 
Pearson’s coefficients up to 0.35. These results are not 
directly comparable to our current results – global cogni-
tion scores are only roughly transferable to a clinical syn-
drome, and do not consider some important factors such 
as age and education of the patient.

Predicting progression from SCD to MCI or demen-
tia is a task of high clinical significance. With upcoming 
availability of new treatment options [75], predicting pro-
gression from SCD to MCI or dementia will be crucial to 
effectively screen individuals in earliest stages of the dis-
ease to commence the treatment as soon as possible to 
achieve a maximum effect [4–6]. While currently there is 
a number of highly specific diagnostic methods available 
(i.e. CSF sampling and PET imaging), these are largely 
unsuitable for screening purposes due to their cost and 
invasiveness. Emerging blood-based biomarkers [1, 76] 
are yet to be integrated into the routine clinical practice. 
Structural MRI in conjunction with pattern atrophy anal-
ysis could therefore be employed in selection of patients 
at high risk of clinical progression for further diagnos-
tic workup. We argue that for this purpose, the utilized 
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model should be optimized to be highly sensitive while 
maintaining moderate specificity. Based on our results, 
we argue that models based on aMCI patients would be 
better suited for this task than the current models based 
on AD dementia patients. Using a training dataset based 
on biomarker-defined aMCI and CN individuals and by 
optimizing the model creation we can train our model to 
detect patterns of ‘early AD-related atrophy’ rather than 
‘developed AD-related atrophy’.

One of principal strengths of this study was our dataset. 
For the model training we included β-amyloid positive 
aMCI, AD dementia and β-amyloid negative CN partici-
pants. Longitudinal data then consisted of SCD individu-
als with over 8 years of longitudinal monitoring. Further, 
we used a well-established method of multivariate data 
analysis – an OPLS generated “disease severity index”, 
that has been repeatedly proven an effective tool in pre-
dicting progression from SCD to MCI and from MCI to 
dementia [12, 20–22]. The processing of structural MRI 
data was performed using widely available automated 
software package (FreeSurfer 6.0), facilitating the applica-
tion of our model on external datasets, and minimizing 
the risk of bias or human error in data processing.

Limitations
This study also has limitations. Prediction models based 
on structural MRI, though achieving high specificity in 
predicting development of MCI and dementia, do not 
reflect the underlying pathology and therefore need to be 
used in combination with other methods that allow the 
assessment of amyloid or tau pathologies. While achiev-
ing moderate amounts of sensitivity and specificity, the 
current model still fails to identify significant portion of 
future progressors (~ 28%). Arguably, the model could be 
further improved by inclusion of segmentation of struc-
tures affected early in course of AD such as hippocampal 
subfields, transentorhinal and perirhinal cortex, antero-
lateral and posteromedial entorhinal cortex and basal 
forebrain nuclei [77], automated methods for segmenta-
tion of some [78, 79], but not all of these structures are 
publicly available. However, addition of further MRI pro-
cessing steps would take away one of the major advan-
tages of our current approach, that is a relative simplicity 
and reproducibility of MRI processing involved. Further, 
performance of our dementia-based model could be neg-
atively affected by the fact that CSF biomarkers were not 
available in part of AD dementia group (n = 7; 17.95%). 
Another concern might be the reproducibility of our 
results. Since our data come from homogenous popula-
tion from single center in Sweden, we cannot rule out the 
possibility that we are detecting a population specific pat-
tern, that would not apply to other datasets. However, as 
discussed above, atrophy patterns we observed are very 
similar to the atrophy patterns observed in previous large 

multicenter studies assessing individuals across multi-
ple populations across Europe and North America [12]. 
Therefore, we believe that the observed patterns are not 
specific to only our current population.

Conclusions
In this study, we found that the prediction models based 
on brain atrophy patterns of individuals with milder 
levels of atrophy (i.e. aMCI) offer higher sensitivity and 
moderate specificity compared to standard dementia-
based models for the prediction of clinical progression 
from SCD to MCI or dementia using structural MRI 
data. Thus, these models may offer superior clinical value 
and should be further refined and explored.
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