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Abstract 

Background There is good evidence that elevated amyloid-β (Aβ) positron emission tomography (PET) sig-
nal is associated with cognitive decline in clinically normal (CN) individuals. However, it is less well established 
whether there is an association between the Aβ burden and decline in daily living activities in this population. Moreo-
ver, Aβ-PET Centiloids (CL) thresholds that can optimally predict functional decline have not yet been established.

Methods Cross-sectional and longitudinal analyses over a mean three-year timeframe were performed on the Euro-
pean amyloid-PET imaging AMYPAD-PNHS dataset that phenotypes 1260 individuals, including 1032 CN individuals 
and 228 participants with questionable functional impairment. Amyloid-PET was assessed continuously on the Cen-
tiloid (CL) scale and using Aβ groups (CL < 12 = Aβ-, 12 ≤ CL ≤ 50 = Aβ-intermediate/Aβ± , CL > 50 = Aβ+). Functional 
abilities were longitudinally assessed using the Clinical Dementia Rating (Global-CDR, CDR-SOB) and the Amsterdam 
Instrumental Activities of Daily Living Questionnaire (A-IADL-Q). The Global-CDR was available for the 1260 partici-
pants at baseline, while baseline CDR-SOB and A-IADL-Q scores and longitudinal functional data were available for dif-
ferent subsamples that had similar characteristics to those of the entire sample.

Results Participants included 765 Aβ- (61%, Mdnage = 66.0, IQRage = 61.0–71.0; 59% women), 301 Aβ± (24%; 
Mdnage = 69.0, IQRage = 64.0–75.0; 53% women) and 194 Aβ+ individuals (15%, Mdnage = 73.0, IQRage = 68.0–78.0; 53% 
women). Cross-sectionally, CL values were associated with CDR outcomes. Longitudinally, baseline CL values pre-
dicted prospective changes in the CDR-SOB (bCL*Time = 0.001/CL/year, 95% CI [0.0005,0.0024], p = .003) and A-IADL-Q 
(bCL*Time = -0.010/CL/year, 95% CI [-0.016,-0.004], p = .002) scores in initially CN participants. Increased clinical progres-
sion (Global-CDR > 0) was mainly observed in Aβ+ CN individuals (HRAβ+ vs Aβ- = 2.55, 95% CI [1.16,5.60], p = .020). 
Optimal thresholds for predicting decline were found at 41 CL using the CDR-SOB (bAβ+ vs Aβ- = 0.137/year, 95% CI 
[0.069,0.206], p < .001) and 28 CL using the A-IADL-Q (bAβ+ vs Aβ- = -0.693/year, 95% CI [-1.179,-0.208], p = .005).

Conclusions Amyloid-PET quantification supports the identification of CN individuals at risk of functional decline.

*Correspondence:
Lisa Quenon
lisa.quenon@uclouvain.be
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13195-024-01494-9&domain=pdf


Page 2 of 13Quenon et al. Alzheimer’s Research & Therapy          (2024) 16:130 

Trial registration The AMYPAD PNHS is registered at www. clini caltr ialsr egist er. eu with the EudraCT Number: 
2018-002277-22.
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Introduction
Alzheimer’s disease (AD) is assumed to begin with an 
abnormal accumulation of amyloid-beta (Aβ) proteins in 
the brain leading to neocortical tau accumulation, cogni-
tive impairment, and functional decline [1]. Functional 
decline refers to the progressive difficulties that patients 
experience in performing activities of daily living. Func-
tional impairment is a key defining feature of dementia 
[2]. However, accumulating evidence has indicated that 
subtle functional decline may be detectable in the pre-
clinical or asymptomatic stages of AD, when patients 
perform the instrumental activities of daily living 
(IADL), namely cognitively complex activities such as 
cooking, managing medication, or finances, with greater 
difficulties [3].

To prevent functional decline, disease-modifying 
therapies are now being tested in asymptomatic individ-
uals with an elevated Aβ load, considered to have pre-
clinical AD [4]. Aβ positron emission tomography (PET) 
represents the primary method for identifying patients 
with preclinical AD in many clinical trials [5]. However, 
the natural history of functional decline in asympto-
matic individuals has not yet been comprehensively 
elucidated. In previous studies, functional outcomes 
in clinically normal individuals were not consistently 
associated with the Aβ burden assessed using PET, due 
in part to methodological differences. The studies that 
demonstrated an association between Aβ deposition 
and functional measures generally included very large 
samples (e.g., > 4000; [6]), participants with subjec-
tive cognitive complaints, and/or a follow-up duration 
of at least 2.4 years [7–10]. In contrast, smaller studies 
(in either sample or duration) without complainers all 
failed to provide evidence of an association between Aβ 
load and functional outcomes [8, 11].

Furthermore, in previous studies, Aβ burden was 
treated as a binary variable based on specific cutoffs, 
which may omit critical information at subthreshold 
values for early detection of at-risk individuals [12], or 
quantified using the Standard Uptake Value ratio (SUVr), 
which limits direct result comparisons across studies 
and translation into clinical practice. The Centiloid (CL) 
scaling was developed to provide standardized amyloid-
PET data on a universal unbounded 0 (mean gray mat-
ter signal in healthy  young adults) to 100 (mean signal 
in patients with typical AD) scale, regardless of the radi-
otracer used [13]. To our knowledge, the CL scale has 

rarely been used in previous work on the association 
between Aβ burden and functional decline. By stratifying 
534 asymptomatic individuals from the Australian Imag-
ing Biomarkers and Lifestyle study into five groups (< 15 
CL = negative, 15–25 CL = uncertain, 26-50 CL = moder-
ate, 51–100 CL = high, > 100 CL = very high), one study 
showed that progression to Mild Cognitive Impairment 
(MCI) or dementia at 4.5 years and decline in the Clini-
cal Dementia Rating-Sum of boxes score (CDR-SOB; [14, 
15]) were only observable in the CL > 50 groups. While 
these findings need replication, the authors suggested 
that the CDR outcome might serve as a relevant end-
point in clinical trials including asymptomatic candidates 
with a baseline CL > 50 who will be followed for at least 
4.5  years, while the therapeutic benefit might be better 
captured by other metrics in individuals with CL < 50 or 
a shorter follow-up timeframe [9]. The specific scales that 
are used for assessing functional abilities properly also 
represent an important methodological aspect to con-
sider. More nuanced functional scales than the CDR cov-
ering a broader range of IADL could help better detect 
and monitor the subtle functional impairment that may 
occur early in the Aβ accumulation process.

Therefore, the primary aim of this study was to assess 
the natural history of functional decline, quantified using 
both the CDR and a more nuanced IADL scale, and relate 
it to individuals’ baseline Aβ burden expressed in CL 
using the Amyloid imaging to prevent Alzheimer’s dis-
ease (AMYPAD) Prognostic and Natural History Study 
(PNHS) database, a large European amyloid-PET data-
set phenotyping longitudinally individuals at risk of AD 
progression [16]. We assumed that the baseline amyloid 
burden predicts subsequent functional decline in ini-
tially clinically normal individuals. More specifically, we 
expected functional decline in asymptomatic individuals 
with CL > 50, while we did not exclude the possibility of 
observing a subtle decline on a nuanced functional scale 
(i.e., A-IADL-Q) in a group with intermediate baseline 
CL values (12 ≤ CL ≤ 50). As a secondary objective, we 
derived CL thresholds optimized to predict functional 
decline through a data-driven approach.

Methods
The Prognostic and Natural History Study (PNHS)
The data used in this article were obtained from the 
PNHS cohort of the Amyloid imaging to prevent Alz-
heimer’s disease (AMYPAD) initiative, which aims to 

http://www.clinicaltrialsregister.eu
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evaluate the value of quantitative amyloid-PET meas-
ures for predicting progression to AD (for a comprehen-
sive description of the study, see Lopes Alves et al. [17], 
Bader et al. [18], and the AMYPAD website [19]; dataset 
version: v202306 [20]). Ten parent cohorts (PCs) contrib-
uted to this prospective longitudinal research initiative, 
across 17 sites spread over seven European countries. All 
PCs enrolled non-demented older adults at risk of AD-
related progression due to their age (i.e., > 50  years). All 
participants underwent cognitive and functional assess-
ment, an amyloid-PET scan, a 3D T1-weighted magnetic 
resonance imaging (MRI) and traditional risk factor eval-
uation (including Apolipoprotein E genotyping, APOE). 
The PNHS recruited 1321 participants between Octo-
ber 2016 and June 2022 [18]. The dataset is accessible 
upon request on the Alzheimer’s Disease Data Initiative 
(ADDI) platform [21].

Standard protocol approvals, registrations, and patient 
consents
The AMYPAD project was reviewed and approved by 
the Medical Ethical Committee of the University Medi-
cal Center Amsterdam, location VUmc and all local sites. 
The AMYPAD PNHS is registered on the EU Clinical 
Trials Register [22] with the EudraCT Number: 2018-
002277-22. The study was conducted following the Pro-
tocol and the Declaration of Helsinki and Good Clinical 
Practice. All participants provided written informed con-
sent to participate in this study.

Participants
Participants were selected from the PNHS cohort if they 
had the following data available: quantified amyloid-PET 
at baseline and (a) functional measures within six months 
from the baseline amyloid-PET for cross-sectional analy-
ses, and (b) longitudinal functional data for prospective 
analyses.

Functional measures
The Clinical Dementia Rating
The Clinical Dementia Rating (CDR; [14, 15]) assesses 
six functional domains (i.e., memory, orientation, judg-
ment and problem-solving, community affairs, home 
and hobbies, and personal care), using five-point scales 
ranging from 0 to 3 (i.e., 0 = no cognitive impairment, 
0.5 = questionable or very mild impairment, 1/2/3 = mild/
moderate/severe impairment). The total score, called 
the CDR-sum of boxes score (CDR-SOB), ranges from 
0 to 18, with higher scores indicating greater functional 
impairment. The global score (Global-CDR) is calcu-
lated using an algorithm and is used to characterize clini-
cal progression along the AD spectrum (i.e., 0 = normal, 
0.5 = questionable or very mild dementia, 1/2/3 = mild/

moderate/severe dementia). Participants with a baseline 
Global-CDR = 0 were thereafter referred to as being ini-
tially clinically normal (CN).

The Amsterdam IADL questionnaire
The IADL data that were available in the PHNS database 
were collected using the Amsterdam Instrumental Activ-
ity of Daily Living Questionnaire (A-IADL-Q; [23–25]), 
an adaptive and informant-based tool covering seven 
IADL categories (i.e., household activities, household 
appliances, finances, work, computer use, appliances, 
leisure activities). Each item is scored on a five-point 
scale ranging from ’no difficulty in performing the task’ 
to ’no longer able to perform the task’. The total score 
(T-score) represents the latent trait of ‘daily functioning’ 
and is normally distributed (M = 50, SD = 10), with higher 
scores indicating better IADL functioning.

Amyloid‑PET imaging
The amyloid-PET acquisition protocols were the same 
across sites and the scanners were qualified by IXICO 
before the study started at each site, except for the PCs 
that entered the PNHS with historical scans. In that case, 
the historical protocol was maintained to ensure longitu-
dinal consistency. The amyloid-PET imaging procedures 
used are fully described in Lopes et  al. [17] and Col-
lij et  al. [16]. Two radiotracers were used in the PNHS, 
namely  [18F]florbetaben (NeuraCeq®) and  [18F]flutemet-
amol (Vizamyl®), which were supplied by Life Molecu-
lar Imaging (LMI) and GE Healthcare (GE), respectively 
[16].

Image acquisition
Amyloid-PET scans were acquired according to the 
standard protocol for each radiotracer, starting at 90 min 
post-injection of 300  MBq (± 20%) for  [18F]florbetaben 
and 185 MBq (± 10%) for  [18F]flutemetamol. Images were 
collected in 4 frames of 5 min each (90 to 110 min post-
injection [26, 27]).

Image analysis
Amyloid quantification was performed using the fully 
automated workflow of IXICO, which uses a subject-
specific multi-atlas structural MRI segmentation method 
(i.e., LEAP; [28]) to maximize the accuracy of the Aβ 
burden quantification at the individual level. PET frames 
were co-registered, averaged, and aligned to the closest 
corresponding 3D T1-weighted MRI available from the 
PCs. The MRI scans were parcellated using the multi-
atlas LEAP methodology.

As amyloid-PET data were acquired using different 
scanners at multiple sites, a standard operational proce-
dure (SOP) was developed in collaboration with EARL 
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(https:// earl. eanm. org/), the initiative of the European 
Association of Nuclear Medicine (EANM) to ensure opti-
mal data harmonization. This SOP was defined based on 
a preliminary work in the AMYPAD imaging network 
consisting in the acquisition of Hoffman phantom scans 
to account for inter-scanner differences [29]. This work 
identified several indicators of image quality and the 
necessity of smoothing kernels to achieve an effective 
resolution of 8 mm.

The global cortical amyloid burden was calculated 
using the Centiloid (CL) method [30, 31]. Standard 
Uptake Value ratio images were first created using LEAP 
parcellation masks with the whole cerebellum as refer-
ence region in native space. Subsequently, the global cor-
tical CL values were computed by applying the standard 
GAAIN target region to pool amyloid-PET data.

These CL values were treated both continuously and 
categorically in the analyses. For the categorical aspect, 
we classified participants into three groups according to 
their baseline CL value: negative group for CL < 12 (Aβ-), 
“intermediate” group for 12 ≤ CL ≤ 50 (Aβ±), and positive 
group for CL > 50 (Aβ+). The lower and upper bounds 
for the intermediate group closely matched the thresh-
olds that were found to exclude the presence of neuritic 
plaques and best confirmed neuropathological evidence 
of AD, respectively [31, 32].

Statistical analyses
All the statistical analyses were conducted using R ver-
sion 4.2.2.

The closest CDR/A-IADL-Q measurements within six 
months from the baseline amyloid-PET were considered 
for baseline functional outcomes.

Group comparisons were computed using χ2 or Fisher 
exact tests for categorical variables, and Mann–Whitney 
or Kruskall-Wallis tests for continuous variables. Adjust-
ments for multiple comparisons were implemented using 
the Bonferroni method.

The cross-sectional association between the baseline 
continuous CL value or CL group and functional out-
comes was assessed through generalized linear models 
(GLMs) including age, sex and APOE ε4 carriership as 
covariates.

Progression on the Global-CDR was analyzed sepa-
rately for participants with a Global-CDR = 0 (CN) 
and a Global-CDR = 0.5. Progression from the CN 
state to the MCI stage was defined by the attainment 
of a consistent Global-CDR = 0.5 score at the two last 
visits. Progression to dementia was defined as having 
a Global-CDR ≥ 1 by the end of the follow-up (FU). 
Clinically stable participants and converters were then 
compared using χ2 tests and Mann–Whitney tests for 
demographics and CL measures. Cox proportional 

hazards analyses were conducted (using the R pack-
age “survival”) to evaluate the effect of the baseline CL 
group and other variables on the clinical progression. 
Survival corresponded to the time between baseline 
and progression or the time of the last available visit. 
The other variables that were introduced in addition to 
the baseline CL group as predictors corresponded to 
the demographic and/or global cognitive measures that 
differed between converters and non-converters.

Moreover, linear mixed-effects (LME) models with 
random slopes and intercepts were performed (using 
the “nlme” R package) to assess the longitudinal asso-
ciation between the baseline CL value and subsequent 
decline in the CDR-SOB and A-IADL-Q scores, includ-
ing age, sex, education, APOE ε4 carriership and fol-
low-up duration in years as covariates.

Finally, inspired by the methodology used in Farrell 
et al. [5] to derive thresholds for predicting future cog-
nitive decline and Aβ accumulation, we conducted iter-
ative LME models using a range of cut-offs to classify 
individuals as Aβ+ (i.e., thresholds from 12 to 50 CL by 
order of 1) to identify the data-driven derived CL value 
that could optimally detect subsequent decline in the 
CDR-SOB and A-IADL-Q scores in Aβ+ individuals in 
comparison to Aβ- participants (CL < 12). The Akaike 
information criterion (AIC) was used to compare 
model fits and select the optimal cutoff values. Condi-
tional AICs [33] were also computed but, as they led to 
the exact same cutoff selection, they are not reported.

Results
Participants’ characteristics
In total, 1260 participants, including 1032 CN (baseline 
Global-CDR = 0) and 228 individuals with a baseline 
Global-CDR = 0.5, had available quantified amyloid-
PET at baseline and functional outcomes (Table  1). 
Among these participants, 765 were Aβ- (CL < 12; 
61%), 301 were Aβ± (12 ≤ CL ≤ 50; 24%) and 194 were 
Aβ+ (CL > 50; 15%). Aβ+ participants were older 
(H[2] = 113.45, p-values < 0.001) and more frequently 
APOE ε4 carriers (χ2[2] = 108.59, p-values < 0.001). 
The Aβ± individuals were also older and more likely 
APOE ε4 carriers than the Aβ- group (p-values < 0.001). 
Aβ+ individuals had lower baseline Mini-Mental State 
Examination (MMSE) scores (H[2] = 51.79, p-val-
ues < 0.001). The 1260 participants had an available 
Global-CDR data at baseline while baseline CDR-SOB 
and A-IADL-Q scores and longitudinal outcomes were 
available in different subsamples. The characteris-
tics of these subsamples are reported in Supplemental 
Tables 1 and 2 and are similar to the characteristics of 
the entire sample.

https://earl.eanm.org/
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Baseline association between amyloid burden 
and functional outcomes
Global‑CDR
The Aβ+ group included more individuals with a 
Global-CDR = 0.5 at baseline (41%) than the two other 
groups (χ2[2] = 82.94, p-values < 0.001), which included 
similar proportions of Global-CDR = 0.5 partici-
pants (13% in the Aβ- group vs. 18% in the Aβ± group, 
p = 0.117; Table  1, last row). Moreover, the CL val-
ues were associated with the Global-CDR in a logis-
tic regression additionally including age, sex and the 
APOE ε4 carriership (bCL = 0.014, 95% CI [0.009, 0.019], 
p < 0.001). Older age and male sex also contributed to 
the baseline Global-CDR (bage = 0.035, 95% CI [0.017, 
0.053], p < 0.001; bmale sex = 0.489, 95% CI [0.186, 0.793], 
p = 0.002; bAPOEε4 = 0.244, 95% CI [-0.093, 0.579], 
p = 0.154).

CDR-SOB A total of 823 participants had available 
CDR-SOB and CL data at baseline, including 483 Aβ- 
(59%), 226 Aβ± (27%), and 114 Aβ+ individuals (14%; 
Supplemental Table 1).

The Aβ+ group included more individuals with a 
CDR-SOB > 0 (34%) compared to the Aβ- (14%) and 
Aβ± (15%) groups (χ2[2] = 26.71, p-values < 0.001), 
which included comparable proportions of participants 
with a CDR-SOB > 0 (p = 1.0).

CL was associated with the CDR-SOB in a GLM 
additionally including age, sex and APOE ε4 sta-
tus as covariates (bCL = 0.007, 95% CI [0.0040, 0.010], 
p < 0.001). Age and sex were also associated with the 
CDR-SOB (bage = 0.019, 95% CI [0.009, 0.029], p < 0.001; 
bmale sex = 0.179, 95% CI [0.043, 0.316], p = 0.010; 
bAPOEε4 = 0.080, 95% CI [-0.068, 0.227], p = 0.290). The 
same model using the CL group instead of continuous 
CL indicated that the effect was driven by the Aβ+ group 
(bAβ+ vs Aβ- = 0.547, 95% CI [0.325, 0.769], p < 0.001; bAβ± vs 

Aβ- = -0.062, 95% CI [-0.045, 0.248], p = 0.449).

A-IADL-Q A-IADL-Q coupled to CL data at baseline 
were available for 560 individuals: 331 Aβ- (59%), 162 
Aβ± (29%), and 67 Aβ+ (12%; Supplemental Table 1).

Aβ+ individuals (Mdn = 68.80, IQR = 59.30–72.84; 
H[2] = 7.62, p = 0.022) had lower A-IADL-Q scores 
than Aβ- (Mdn = 69.69, IQR = 68.32–72.94, p = 0.016) 
and Aβ± individuals (Mdn = 70.12, IQR = 67.95–72.74, 
p = 0.082), while Aβ± and Aβ- groups did not differ (p = 
1.0).

In a GLM additionally including age, sex and APOE ε4 
carriership as covariates, the CL value (or CL group) was 
not associated with the A-IADL-Q score (bCL = -0.012, 
95% CI [-0.029, 0.004], p = 0.148). The only predictor of 
A-IADL-Q was age (bage = -0.284, 95% CI [-0.334, -0.235], 
p < 0.001).

Baseline CL predicts functional decline over time
Progression to MCI/dementia among the CN participants
Among the 852 CN participants at baseline with longi-
tudinal Global-CDR data (FU duration: 3.4 ± 1.8  years), 
37 individuals (4.3%) converted to MCI after a mean 
of 3.6 ± 1.6  years (FU duration: 4.5 ± 1.5  years), 9 par-
ticipants (1.1%) converted to dementia after a mean 
of 3.8 ± 2.3  years (FU duration: 4.0 ± 2.5  years), and 
806 (94.2%) remained clinically stable during their FU 
(3.4 ± 1.7  years). The 46 converters (5.4%) were older 
at baseline (p < 0.001) and had longer FU durations 
(p < 0.001) than stable individuals (Table  2). Progressors 
had higher baseline CL values (p = 0.007) and accordingly 
included more Aβ+ individuals than stable individuals 
(p = 0.006; Table  2). The conversion rates were 12.8% in 
Aβ+ , 6.1% in Aβ± and 4.0% in Aβ- individuals. The Cox 
proportional hazards analysis including age as a covari-
ate showed that Aβ positivity (CL > 50) and older age 
were associated with increased risk of progression to 
MCI or dementia (HRAβ+ vs Aβ- = 2.55, 95% CI [1.16, 5.60], 
p = 0.020; HRage = 1.09, 95% CI [1.06, 1.13], p < 0.001). 

Table 1 Participants’ characteristics depending on the baseline CL group

CL Centiloid
* p-value for the difference between Aβ± and Aβ- participants = .097

Total N = 1260 Aβ- 
(CL < 12)
N = 765

Aβ±  
(12 ≤ CL ≤ 50)
N = 301

Aβ+  
(CL > 50)
N = 194

p Post‑Hoc

Median Q1 – Q3 Median Q1 – Q3 Median Q1 – Q3

Baseline age (years) 66.0 61.0 – 71.0 69.0 64.0 – 75.0 73.0 68.0 – 78.0  < .001 Aβ- < Aβ±  < Aβ+

Sex (% females/males) 59/41% 53/47% 53/47% .084 –

Education (years) 15.0 12.0 – 17.0 15.0 12.0 – 17.0 14.0 12.0 – 17.0 .194 –

APOE ε4 carriers (%Yes/No/Missing) 30/70/0% 46/53/1% 68/29/3%  < .001 Aβ- < Aβ±  < Aβ+

Baseline MMSE (/30) 29.0 29.0 – 30.0 29.0 28.0 – 30.0 28.0 27.0 – 30.0  < .001 Aβ+ < Aβ± ≈ Aβ-*

Baseline Global-CDR (% CDR = 0/CDR = 0.5) 87/13% 82/18% 59/41%  < .001 Aβ+ ≠ Aβ± ≈ Aβ-
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However, having intermediate Aβ burden (12 ≤ CL ≤ 50) 
was not associated with increased risk of clinical pro-
gression over a global mean FU period of 3.4 ± 1.8 years 
(HRAβ± vs Aβ- = 1.69, 95% CI [0.82, 3.47], p = 0.153).

Progression to dementia among the Global‑CDR = 0.5 
participants
Among the 118 participants with a Global-CDR = 0.5 
at baseline with follow-up data (FU duration: 
3.3 ± 2.2  years), 33 individuals (28%) evolved to demen-
tia (Global-CDR ≥ 1) after a mean of 3.9 ± 2.2  years. 
These participants were older (p = 0.044), included more 
APOE ε4 carriers (p = 0.026), had lower educational lev-
els (p = 0.006), longer FU durations (p = 0.042), and lower 
baseline MMSE score (p < 0.001) than non-demented 
individuals at FU (Table 2).

Participants who progressed to dementia at FU had 
higher baseline CL values and accordingly included 
more Aβ+ individuals than non-demented individuals 
at FU, p-values < 0.001. The Cox proportional hazards 

analysis including age, education, APOE ε4 carriership, 
baseline MMSE score as co-predictors evidenced that 
Aβ positivity (CL > 50), having intermediate Aβ load 
(12 ≤ CL ≤ 50), and a lower baseline MMSE score were 
associated with increased risk of progression to demen-
tia (HRAβ+ vs Aβ- = 9.91, 95% CI [2.27, 43.32], p = 0.002; 
HRAβ± vs Aβ- = 4.31, 95% CI [1.06, 17.57], p = 0.042; 
HRMMSE = 0.45, 95% CI [0.34, 0.61], p < 0.001).

CDR-SOB As the number of participants with a 
Global-CDR = 0.5 at baseline with longitudinal CDR-
SOB data was limited (N = 42) and the primary goal 
of this study was to investigate the natural history of 
functional impairment in CN individuals, we focused 
analyses on the 531 CN participants (Global-CDR = 0 
at baseline) with available longitudinal CDR-SOB (FU 
duration: 2.7 ± 1.2 years). This group included 330 Aβ- 
(62%), 149 Aβ± (28%), and 52 Aβ+ individuals (10%). The 
FU duration was six months shorter in Aβ+ individuals 

Table 2 Progression to a higher Global-CDR

Conversion to MCI was defined as having a consistent Global-CDR = 0.5 on the two last visits. Conversion to dementia was defined as having a Global-CDR ≥ 1 by the 
end of the FU

CL Centiloid, FU follow-up

Progression in CN participants
Total N = 852 Stable

N = 806
Converters

N = 46 p

Median Q1– Q3 Median Q1 – Q3

 Baseline age (years) 66.0 61.0 – 71.0 73.0 70.0 – 79.0  < .001

 Education (years) 13.0 10.0 – 18.0 15.0 12.0 – 18.0 .110

 Sex (% females/males) 57/43% 50/50% .314

 APOE ε4 carriers (%Yes/No/Missing) 37.8/61.8/0.4% 39/61/0% .992

 Baseline MMSE (/30) 29.0 29.0 – 30.0 29.0 28.0 – 30.0 .249

 FU duration (years) 3.0 2.0 – 4.4 4.9 3.2 – 5.2  < .001

 Number of visits 3.0 2.0 – 3.75 5.0 3.0 – 6.0  < .001

 Baseline CL 5.6 -1.1 – 16.3 12.9 2.5 – 42.1 .007
 Baseline CL group (Aβ-/Aβ± /Aβ+) 68/23/9% 50/26/24% .006
Progression in Global-CDR = 0.5 participants
Total N = 118 Non-demented at FU

N = 85
Demented at FU

N = 33
p

Median Q1– Q3 Median Q1 – Q3

 Baseline age (years) 72.0 67.0 – 76.0 76.0 68.0 – 79.0 .044

 Education (years) 15.0 13.0 – 17.0 13.0 12.0 – 16.3 .006

 Sex (% females/males) 44/56% 58/42% .244

 APOE ε4 carriers (%Yes/No/Missing) 43/55/2% 67/30/3% .026

 Baseline MMSE (/30) 29.0 27.0 – 30.0 26.0 25.0 – 27.0  < .001

 FU duration (years) 2.4 1.8 – 4.0 3.9 2.1 – 4.4 .042

 Number of visits 3.0 2.0 – 4.0 3.0 2.0 – 3.0 .064

 Baseline CL 9.80 -1.0 – 51.9 66.4 30.8 – 91.6  < .001
 Baseline CL group (Aβ-/Aβ± /Aβ+) 52/22/26% 15/21/64%  < .001
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(Mdn = 2.1 years in Aβ+ vs. Mdn = 2.7 years in Aβ± and 
Aβ-, H[2] = 5.85, p = 0.053; Supplemental Table 2).

The LME predicting the CDR-SOB score over time 
based on the baseline CL and age highlighted that the 
baseline CL value predicted prospective changes in the 
CDR-SOB (bCL*Time = 0.001/CL/year, 95% CI [0.0005, 
0.0024], p = 0.003), while age weakly predicted the CDR-
SOB evolution over time (bage = 0.002/year, 95% CI 
[-0.0003, 0.0041], p = 0.097). Models additionally includ-
ing sex, education, FU duration, or APOE ε4 carriership 
as covariates did not evidence relevant contributions 
of these variables to the CDR-SOB changes over time 
(p-values > 0.05). The LME with the CL group, rather 
than the continuous CL value, showed that the effect was 
driven by the Aβ+ group (bAβ+ vs Aβ- = 0.114/year, 95% CI 
[0.038, 0.190], p = 0.003, bAβ± vs Aβ- = 0.034/year, 95% CI 
[-0.014, 0.082], p = 0.160, Fig. 1).

As defined by an increase of 1 point/year [34], the 
decline on the CDR-SOB score was clinically meaning-
ful in 1.9% (1/52) of Aβ+ individuals, 1.3% (2/149) of 
Aβ± participants, and 0.3% (1/330) of Aβ- individuals.

A-IADL-Q A total of 355 CN participants had avail-
able CL data at baseline and longitudinal A-IADL-Q data 
(FU duration: 3.0 ± 1.0  years), including 213 Aβ- (60%), 
107 Aβ± (30%), and 35 Aβ+ (10%) individuals (no Global-
CDR = 0.5 participants at baseline had available longitudi-
nal A-IADL-Q scores). The FU duration differed between 
groups (H[2] = 7.24, p = 0.027), being globally five months 
shorter in Aβ+ individuals (Mdn = 2.4 years) than in the 
two other groups (Mdn = 2.9 years; Supplemental Table 2).

The LME predicting A-IADL-Q scores over time based 
on the baseline CL value and age evidenced that both 
variables predicted prospective changes on the A-IADL-
Q score (bCL*Time = -0.010/CL/year, 95% CI [-0.016, 
-0.004], p = 0.002; bage = -0.288, 95% CI [-0.329, -0.247], 
p < 0.001). Models additionally including sex, education, 
FU duration, or APOE ε4 status  as covariates did not 
highlight any relevant contributions of these variables 
to the changes in the A-IADL-Q score over time (p-val-
ues > 0.05). The LME with CL group, rather than the con-
tinuous CL value, as predictor revealed that the effect 
was driven by the Aβ+ group (bAβ+ vs Aβ- = -0.649/year, 
95% CI [-1.263, -0.035], p = 0.038; bAβ± vs Aβ- = -0.225/year, 
95% CI [-0.592, 0.141], p = 0.227; Fig. 1).

As defined by a loss of 2.2 points on the T-score/year 
[35], the decline on the A-IADL-Q was clinically mean-
ingful in 11.4% (4/35) of Aβ+ participants, 1.9% (2/107) 
of Aβ± individuals and 1.9% (4/213) of Aβ- participants.

Data-driven approach to derive CL thresholds optimally 
predicting functional decline
The AIC in the iterative LME models using the 15-50 CL 
range to classify individuals as Aβ+ highlighted that the 
41 CL was the lowest value that optimally detected sub-
sequent decline in the CDR-SOB in Aβ+ in comparison 
to Aβ- participants (Fig. 2A; bAβ+ vs Aβ- = 0.137/year, 95% 
CI [0.069, 0.206], p < 0.001). The difference between the 
slope of the Aβ+ group and the slope of the Aβ- group 
was maximized at this baseline CL value (Fig. 2B).

The same data-driven approach applied to the A-IADL-
Q evidenced that 28  CL optimally detected subsequent 

Fig. 1 CDR-SOB and A-IADL-Q trajectories over time in CN individuals depending on the baseline CL group. A CDR-SOB trajectories in each 
amyloid group. Higher scores indicate greater functional impairment. B A-IADL-Q trajectories in each amyloid group. Lower scores indicate greater 
functional impairment
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decline on this functional outcome in Aβ+ individu-
als in comparison to the Aβ- group (Fig.  2C, D; bAβ+ vs 

Aβ- = -0.693/year, 95% CI [-1.179, -0.208], p = 0.005).

Discussion
This study aimed to investigate the natural history of 
functional impairment in a non-demented population 
using a large European amyloid-PET dataset (AMY-
PAD; [16]). Cross-sectionally, CL values were associated 
with CDR outcomes. Longitudinally, baseline CL val-
ues predicted prospective changes in the CDR-SOB and 
A-IADL-Q scores in CN individuals. Over a mean three-
year period, increased progression to MCI/dementia and 
decline in the CDR-SOB and A-IADL-Q scores were only 
observed in Aβ+ CN individuals (CL > 50). Among par-
ticipants with a Global-CDR = 0.5 at baseline, progres-
sion to dementia over a similar timeframe was increased 
in both the Aβ+ and Aβ± (12 ≤ CL ≤ 50) groups. Finally, 
thresholds set at 41 CL and 28 CL optimally predicted a 
decline in the CDR-SOB score and the A-IADL-Q score, 
respectively.

While cross-sectional associations between the CL 
value and CDR-SOB have rarely been described in previ-
ous studies, we did not find any association between the 
IADL measure and the baseline CL value. This finding 
contradicts the results of previous cross-sectional studies 
[6, 11, 36]. However, these studies used different IADL 
scales that, together with other methodological differ-
ences, may explain this discrepancy. These methodologi-
cal differences include the inclusion of more MCI than 
CN participants in Marshall et  al. [11], or the exclusive 
inclusion of cognitive complainers aged over 70 years old 
in Lilamand et al. [36]. The only predictor of the A-IADL-
Q outcome in our study was age, which is expected with 
the progressive reduction of functional abilities with 
aging [37].

Longitudinally, 5.4% of the CN individuals converted 
to MCI (4.3%) or dementia (1.1%) within 3.4 ± 1.8 years. 
The converters included more Aβ+ than stable par-
ticipants. The conversion rate was three times higher in 
case of amyloid positivity compared to amyloid nega-
tivity (12.8% vs. 4.0%). Previous studies reported higher 
conversion rates in Aβ+ CN participants, ranging from 
20-35% (e.g., 32% at 4 years in Donohue et al. [7]; conver-
sion rate of 25% to MCI or dementia over 3.5 ± 1.8 years 

in Ossenkoppele et  al. [38]; 20-32% at 3  years in Papp 
et al. [39]; 36% at 4.5 years in Sperling et al. [4]). However, 
these studies used various thresholds to define amyloid 
positivity and different methods to define progression to 
MCI (e.g., Petersen’s criteria [40], Global-CDR > 0 with-
out requiring consistent Global-CDR   =  0.5 on several 
visits for defining reliable progression to MCI). Impor-
tantly, in addition to older age and lower education, Aβ 
positivity (CL > 50) was shown to increase the relative 
risk of progression from a CN status to MCI or dementia, 
which is consistent with the previously reported obser-
vation that clinical progression in CN after 4.5 years was 
only observable in the CL > 50 groups [9]. An interme-
diate amyloid level (12 ≤ CL ≤ 50) was poorly associated 
with this risk of clinical progression over a global mean 
FU period of 3.4 ± 1.8  years but longer FU durations 
may be necessary to significantly increase this risk (e.g., 
5.3 ± 1.7  years in 26-50  CL individuals [9]). Moreover, 
recent studies demonstrated that, in addition to elevated 
amyloidosis, the regional extent of tau burden appears to 
accelerate clinical progression in CN [38, 41], suggesting 
that the coexistence of amyloidosis and regional tau dep-
osition may help in identifying the individuals at higher 
risk of short-term cognitive decline. Nevertheless, the 
amyloid levels were binarized in these studies, tagging as 
Aβ+ the individuals with a baseline CL > 20 [41], which 
may underestimate the ability of amyloid-PET measure-
ments to efficiently contribute to clinical risk stratifica-
tion. Head-to-head comparisons of fined-grained PET 
measurements or staging of both amyloid and tau pathol-
ogies need to be conducted to assess their respective 
value in the clinical risk stratification.

For participants with a Global-CDR = 0.5 at base-
line, having an elevated (CL > 50) or intermedi-
ate (12 ≤ CL ≤ 50) Aβ burden was associated with 
an increased risk of progression to dementia after a 
mean three-year period. The relative risk of progres-
sion to dementia was four-fold and nine-fold greater in 
the Aβ± and Aβ+ groups, respectively, than in the Aβ- 
group. A lower baseline MMSE score also increased this 
risk, which is consistent with the findings of previous 
studies showing that progression to dementia in indi-
viduals with MCI is partly conditioned by the extent of 
initial amyloidosis and cognitive impairment [42]. More-
over, as the risk of clinical progression was increased 

(See figure on next page.)
Fig. 2 Optimal data-driven thresholds for detecting functional decline on the CDR-SOB and the A-IADL-Q. A and C The Akaike information 
criterion (AIC) demonstrating the model fit depending on the tested cutoffs ranging from 15 to 50 CL for the CDR-SOB and the A-IADL-Q, 
respectively. B and D CDR-SOB and A-IADL-Q slopes, respectively, vs. Aβ- participants and their 95% CI for the Aβ+ and the Aβ± groups depending 
on the thresholds used for classifying participants as Aβ+ (participants were classified in the Aβ± group if their baseline CL value was between 12 CL 
and this cutoff )
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Fig. 2 (See legend on previous page.)
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by an intermediate Aβ burden (12 ≤ CL < 50) in Global-
CDR = 0.5 participants but not in CN individuals, it 
appears that a lower Aβ burden in the former is sufficient 
to increase the progression risk. This highlights the likely 
contributions of other factors to functional decline such 
as other neuropathological changes (e.g., tauopathy), 
neuroinflammation, cerebrovascular dysfunction, inter-
individual differences in terms of cognitive reserve, life-
style, or genetic risk factors.

Longitudinal analyses of the CDR-SOB and the 
A-IADL-Q were focused on CN individuals and revealed 
that the baseline CL value predicted subsequent changes 
on these metrics, which is consistent with results of pre-
vious studies in (partially) CN populations [4, 8–10, 43]. 
The effect of the CL value was driven by the Aβ+ group 
for both the CDR-SOB and the A-IADL-Q metrics. No 
significant decline was detected in the Aβ± group after a 
mean three-year period. Nevertheless, the iterative LME 
models using the 15-50  CL range to classify individuals 
as Aβ+ evidenced that the 41 CL and the 28 CL thresh-
olds optimally detected subsequent decline on the CDR-
SOB and the A-IADL-Q, respectively. This suggests that 
the Aβ± group originally defined as 12 ≤ CL ≤ 50 included 
some decliners, underscoring the additive value of data-
driven methods combined with fine-grained quantifica-
tion of the Aβ load to fully capture the clinical correlates 
of amyloidosis [12]. Moreover, while replication and 
power analyses are needed, these findings also suggest 
that the CDR-SOB and A-IADL-Q scores may serve as 
relevant endpoints in 3-year therapeutic trials in asymp-
tomatic individuals with CL values above the abovemen-
tioned thresholds.

The fact that the optimal threshold was lower for the 
A-IADL-Q than for the CDR-SOB may suggest that the 
former could detect functional decline earlier. This inter-
pretation is also supported by the observation that the 
decline in the CDR-SOB was subtle and rarely achieved 
clinically meaningfulness (1.9/1.3/0.3% of Aβ+ /Aβ± /Aβ- 
individuals). In contrast, a clinically meaningful decline 
in the A-IADL-Q score was detected in a non-negligible 
proportion of Aβ+ participants (11.4%) compared to the 
two other groups (1.9%). However, head-to-head com-
parisons between these scales should be conducted in 
larger samples with both outcomes available to address 
the potential superiority of the A-IADL-Q for monitor-
ing functional decline in a CN population.

The data-driven derived thresholds for the predic-
tion of the subsequent changes on the CDR-SOB and 
A-IADL-Q scores are higher than the optimal thresholds 
derived by Farrell et al. [5] for the prediction of cognitive 
decline in asymptomatic individuals from three differ-
ent cohorts with comparable FU time-windows (median 
FU time ranging from two-to-three years), which ranged 

from 15.0-18.5 CL. This appears consistent with the tem-
poral lag that is assumed between cognitive decline and 
functional decline [44]. The optimal thresholds derived 
here also make sense considering the finding that the 
26  CL best discriminated participants who would pro-
gress to dementia from individuals who would remain 
clinically stable six years after amyloid-PET in a mixed-
population sample of cognitively normal individuals and 
MCI patients in similar proportions [45]. Moreover, Doré 
et al. [46] showed that around the 40 CL, there is a steep 
increase in the prevalence of people with abnormal corti-
cal tau deposition. Clinical progression was found to be 
faster in individuals with both abnormal amyloid and tau 
levels (A+ T+) than in individuals with isolated amyloi-
dosis (A+ T-) [38, 41]. It is likely that, in our study, the 
classification according to the data-driven thresholds 
grouped individuals who were more likely to have neo-
cortical tau accumulation and therefore a higher risk of 
functional decline. Functional decline in AD-related dis-
eases is an inherently complex phenomenon that most 
likely depends on multiple underlying processes. Future 
studies should test the additive or synergistic contri-
butions of other neuropathological changes such as 
tauopathy, other proteinopathies, neurodegeneration, 
neuroinflammation, synaptic dysfunction, cerebrovascu-
lar dysfunction, and/or medical comorbidities over larger 
timescales. This may help better understand the deter-
minants and temporal course of functional decline and 
improve prognosis at the individual level.

Limitations
The strengths of this study include the use of a large amy-
loid-PET dataset with longitudinal clinical follow-up, the 
inclusion of several functional metrics, the fine-grained 
quantification of the Aβ load, and the multisite nature of 
the AMYPAD PNHS project, which, owing to its care-
fully performed harmonization, ensures the validity and 
reliability of our findings. However, the participants 
were predominantly white and highly educated, which 
limits the generalizability of our findings. Future work 
should recruit participants with more diverse ethnici-
ties and educational backgrounds. Moreover, this study 
investigated the natural history of functional impair-
ment depending on the initial amyloid load in the brain. 
Nevertheless, direct associations between amyloidosis 
and future functional decline cannot be drawn from the 
current study. One may assume that the effects of amy-
loid load on functional decline is most probably indirect, 
likely involving brain mechanisms that are known to 
impact cognition and on which amyloidosis has a down-
stream detrimental effect. Such mechanisms may include 
tau pathology accumulation, vascular dysfunction, syn-
aptic dysfunction, disrupted functional connectivity, 
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neurotoxicity, and/or inflammatory responses. These 
mechanisms are interrelated and probably contribute 
to functional decline sequentially and/or synergistically. 
Further investigating the contributions of other neuro-
pathological changes (e.g., TDP-43, alpha-synuclein), 
cognitive reserve, lifestyle, or genetic risk factors is also 
needed to better understand the complex phenomenon 
of functional decline.

Conclusions
While subtle, functional decline over a mean three-year 
timeframe was observed in CN individuals with elevated 
amyloid loads as defined by a predefined baseline CL 
value above 50. However, data-driven approaches sug-
gested that thresholds in the range of CL = 28–41 opti-
mally predicted subsequent functional decline. These 
findings highlight that the fine-grained quantification of 
amyloid burden may provide critical information for the 
prediction of future functional impairment. This may 
help clinicians to take better decisions for timely preven-
tive interventions (e.g., lifestyle interventions) to post-
pone functional decline, as long as possible. Moreover, 
these results support the inclusion of CN individuals 
with amyloid loads above CL = 28-41 in phase III preven-
tion trials using the A-IADL-Q or CDR-SOB as outcomes 
as they present an increased risk of short-term functional 
decline.
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