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Abstract
Background  Sporadic cerebral amyloid angiopathy (sCAA) is a disease characterised by the progressive deposition 
of the amyloid beta (Aβ) in the cerebral vasculature, capable of causing a variety of symptoms, from (mild) cognitive 
impairment, to micro- and major haemorrhagic lesions. Modern diagnosis of sCAA relies on radiological detection of 
late-stage hallmarks of disease, complicating early diagnosis and potential interventions in disease progression. Our 
goal in this study was to identify and validate novel biomarkers for sCAA.

Methods  We performed a proximity extension assay (PEA) on cerebrospinal fluid (CSF) samples of sCAA/control 
participants (n = 34/51). Additionally, we attempted to validate the top candidate biomarker in CSF and serum 
samples (n = 38/26) in a largely overlapping validation cohort, through analysis with a targeted immunoassay.

Results  Thirteen proteins were differentially expressed through PEA, with top candidate NFL significantly increased 
in CSF of sCAA patients (p < 0.0001). Validation analyses using immunoassays revealed increased CSF and serum NFL 
levels in sCAA patients (both p < 0.0001) with good discrimination between sCAA and controls (AUC: 0.85; AUC: 0.79 
respectively). Additionally, the CSF: serum NFL ratio was significantly elevated in sCAA (p = 0.002).

Discussion  Large-scale targeted proteomics screening of CSF of sCAA patients and controls identified thirteen 
biomarker candidates for sCAA. Orthogonal validation of NFL identified NFL in CSF and serum as biomarker, capable 
of differentiating between sCAA patients and controls.
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Background
Cerebral amyloid angiopathy (CAA) is an age-related, 
progressive cerebrovascular disorder characterized by the 
accumulation of amyloid-beta (Aβ) peptides in the walls 
of cerebral blood vessels [1]. This pathological deposition 
of Aβ, derived from the proteolytic cleavage of the amy-
loid precursor protein (APP), disrupts the architecture 
of the vessel walls. These deposits primarily affect small 
to medium-sized arteries, arterioles, and capillaries in 
the brain. The presence of Aβ deposits in the vessel walls 
renders them more susceptible to rupture, which may 
result in spontaneous intracerebral haemorrhage as well 
as other haemorrhagic manifestations [2]. In addition to 
the risk of haemorrhage, CAA has been associated with 
cognitive impairment and dementia. CAA is known to 
coincide with other neurodegenerative diseases, includ-
ing Alzheimer’s disease (AD), which may complicate the 
clinical picture [3].

The clinical diagnosis of CAA can be challenging due 
to its overlapping features with other (neurodegenera-
tive) diseases, such as AD and deep perforating vascu-
lopathy. Definitive diagnosis can only be made based 
on pathological analysis of brain tissue, which compli-
cates sCAA diagnosis in life. Neuroimaging techniques 
(including magnetic resonance imaging (MRI) and com-
puted tomography) are able to diagnose sCAA with 
relatively high probability by visualizing characteristic 
features associated with sCAA, such as lobar cerebral 
microbleeds, cortical superficial siderosis, and convexity 
subarachnoid haemorrhages [4]. However, these imag-
ing modalities are only capable of diagnosing sCAA in 
a late stage of disease, necessitating the development 
of more specific diagnostic tools to diagnose disease in 
earlier stages of disease [5, 6]. To address this challenge, 
biomarkers for CAA may be found in cerebrospinal fluid 
(CSF) [7]. Untargeted and unbiased approaches, such as 
untargeted mass spectrometry-based proteomics and 
larger multiplex protein arrays, have revolutionized the 
large-scale screening of protein biomarker candidates for 
all kinds of (neurodegenerative) diseases [8].

In this study, we have applied a targeted, multiplex 
proximity extension assay (PEA) to CSF of sporadic cere-
bral amyloid angiopathy (sCAA) patients and control 
subjects. PEA enables simultaneous measurement of a 
vast set of protein biomarkers in CSF. Additionally, we 
have attempted to validate these findings using targeted 
immunoassays for the most prominent biomarker candi-
date, neurofilament light chain (NFL).

Methods
Human subjects
sCAA patients (n = 44) were included at the Radboud 
University Medical Center (RUMC) in Nijmegen, the 
Netherlands. Most of the sCAA patients (n = 42) were 

enrolled through cross-sectional cohort studies (Cerebral 
Amyloid Angiopathy Vascular Imaging and fluid mark-
ers of Amyloid deposition (CAVIA), BIOmarkers for 
cogNitive Impairment due to Cerebral amyloid angiopa-
thy (BIONIC), aimed at identifying new CSF biomark-
ers for sCAA at the RUMC (Website: www.radboudumc.
nl/BCS) [9–13]. The two remaining sCAA patients were 
identified through routine diagnostic workflow at the 
hospital. Participants were included after receiving a 
diagnosis of probable CAA based on the modified Boston 
Criteria [14]. All sCAA participants included in this study 
were diagnosed with probable sCAA and subsequently 
underwent a comprehensive assessment that included 
clinical and neuropsychological tests (including the Mon-
treal Cognitive Assessment or MoCA), venipunctures 
and lumbar punctures, and 3.0 Tesla brain MRI. Further 
details on MRI are described in [13].

Patients were assessed on the following (small ves-
sel) disease markers: presence of ICH, number and dis-
tribution of cerebral microbleeds (CMBs), presence and 
extent of cortical superficial siderosis (CSS; 0 = no CSS, 
1 = focal CSS, 2 = disseminated CSS), presence and extent 
of enlarged perivascular spaces (EPVS) in the centrum 
semi-ovale (CSO; using a dichotomized classification: 
high (≥ 21 EPVS) or low (≤ 20 EPVS)) and white matter 
hyperintensities (WMH) according to the Fazekas Scale 
(ranging from 0 to 3). Using these four parameters, we 
calculated a summary score of SVD markers in sCAA, 
referred to as CAA-related SVD burden score, ranging 
from 0 to 6 points [29].

We included 52 control participants in this study. 
Among them, 27 were enrolled through the CAFE study 
and underwent exactly the same investigations as the 
sCAA patients in these studies [13]. Inclusion criteria 
were age ≥ 55 years, a MoCA score > 28 or a modified 
Telephone Interview of Cognitive Status (mTICS) score 
of ≥ 35. Additional exclusion criteria for the controls 
included self-reported cognitive decline, and a history of 
major brain pathology such as spontaneous parenchymal 
intracerebral haemorrhage, ischemic stroke, neurodegen-
erative disease, brain tumours, brain infection or inflam-
mation. The remaining 25 controls underwent lumbar 
punctures as part of diagnostic workup of suspected neu-
rologic symptoms or to rule out central nervous system 
involvement in systemic diseases. None of these 25 par-
ticipants suffered from the suspected neurological dis-
ease, known cognitive impairment, recent stroke (within 
the last 6 months), sepsis, or central nervous system 
malignancies.

CSF was collected through means of a lumbar punc-
ture. CSF was collected in polypropylene tubes, centri-
fuged, aliquoted, and stored in polypropylene tubes at 
-80  °C. Serum was collected through venipuncture, and 
collected in polypropylene tubes, centrifuged, aliquoted 
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and stored at -80 °C. This study was performed in accor-
dance with the 1964 Declaration of Helsinki and later 
amendments and was approved by the Medical Ethics 
Committee Arnhem-Nijmegen (2014 − 1401, 2017–3810 
and 2017–3605 respectively).

Subject selection for PEA analysis
For the PEA analysis, 34 sCAA patients (n = 28 BIONIC, 
n = 4 CAVIA, n = 2 through routine diagnostics) and 50 
controls (n = 25 CAFE, n = 25 through routine diagnos-
tics) were analysed. Subjects were age- and sex matched 
(p = 0.84 and p = 0.79). Subject characteristics of the 
exploration study are described in Table 1. CSF biomark-
ers showed a typical sCAA profile, with decreased lev-
els of Aβ40 and Aβ42 levels in sCAA (both p < 0.001), 
and minor, but significant increases in levels of total tau 

(t-tau) and tau phosphorylated at threonine-181 (p-tau) 
(p = 0.02 and p = 0.01 respectively).

Subject selection for ELLA NFL analysis
For validation purposes, NFL was analysed in CSF and 
serum of 38 sCAA patients (all BIONIC, including 10 
samples that were not subjected to PEA analysis) and 
26 controls (all CAFE, including 1 sample that was not 
subjected to PEA analysis). The resulting groups were 
matched for age (p = 0.99) and sex (p = 0.92). Characteris-
tics of the participants in the validation group are shown 
in Table 2.

CSF and serum analysis of amyloid β, tau and albumin
CSF was analysed for AD CSF biomarkers Aβ40, Aβ42, 
t-tau, and p-tau, all measured using a Lumipulse chemi-
luminescent assay (Fujirebio, Belgium). CSF (5x diluted) 
and serum albumin (400x diluted) were determined using 
an Atellica NEPH 630 nephelometric assay (Siemens 
Healthineers, Erlangen, Germany).

Proximity extension assay
A multiplex PEA was performed using the Olink® Explore 
384 Neurology panel (Olink, Uppsala, Sweden). This 
assay consists of 367 neurology-associated proteins (full 
list can be retrieved from https://olink.com/products-
services/explore/). Data was expressed as normalised 
protein expression (NPX) values. NPX values are relative 
expression values which have been log2 transformed to 
normalize data and to minimize intra- and inter-assay 
variation. Analytes were included for further analysis if 
signals exceeded the limit of detection (LoD) for ≥ 70% 
of samples of the sCAA and/or control groups. Fold-
changes of expression levels were examined by 2(ΔNPX), in 
which ΔNPX is defined as median NPXsCAA – NPXCON 
values.

Table 1  Demographics and CSF biomarker profiles of sCAA 
patients and control subjects in the PEA exploration study

CON sCAA p-value
# patients (n) 50 34 -
Age (y) 71.8 (68.5–74.9) 73.4 (68.2–77.2) p = 0.84 (ns)a

Sex M/F (%M) 25/25 (50%) 18/16 (53%) p = 0.79 (ns)c

MoCAd 28 (26.5–29) 24 (21–26) p < 0.0001 
(****)b

CSF biomarkers
Aβ40 (pg/mL) 11760 

(8961–14736)
7592 
(6337–9037)

p < 0.0001 
(****)a

Aβ42 (pg/mL) 914 (565–1238) 353 (289–425) p < 0.0001 
(****)b

t-tau (pg/mL) 327 (233–485) 412 (280–632) p = 0.02 (*)b

p-tau (pg/mL) 39.7 (30.1–55.5) 55.4 (35.9–76.3) p = 0.01 (*)b

Data is presented as median (interquartile range). a Student’s t-test, b Mann-
Whitney U test, c Chi-square, d scoring available for respectively 25 (controls) 
and 28 (sCAA) participants. MoCA = Montreal Cognitive Assessment, 
t-tau = total tau, p-tau = tau phosphorylated at threonine 181, **** p 0.0001, * 
p ≤ 0.05, ns = non-significant

Table 2  Demographics and CSF/serum biomarker levels of sCAA patients and control subjects in the validation study
CON sCAA p-value

# patients (n) 26 38 -
Age (y) 71.4 (69.2–74.9) 72.9 (67.3–75.8) p = 0.99 (ns)a

Sex M/F (%M) 14/12 (54%) 19/18 (51%) p = 0.92 (ns)c

MoCA 28 (27–29) 24.5 (21–27) p = 0.0002 (***)b

CSF/serum biomarker levels
CSF Aβ40 (pg/mL) 12,713 (10,782–15,387) 7901 (6553–9427) p < 0.0001 (****)a

CSF Aβ42 (pg/mL) 1116 (828–1348) 367 (288–457) p < 0.0001 (****)b

CSF t-tau (pg/mL) 356 (277–485) 428 (284–572) p = 0.10 (ns)
CSF p-tau (pg/mL) 41.3 (33.3–59.5) 55.9 (35.9–71.6) p = 0.08 (ns)
CSF ELLA NFL (pg/mL) 1306 (806–1482) 2284 (1526–3464) p < 0.0001 (****)b

Serum ELLA NFL (pg/mL) 28.8 (24.9–33.7) 43.3 (31.7–66.8) p < 0.0001 (****)b

QNFL (CSF NFL/serum NFL) 39.1 (30.5–49.3) 51.3 (42.2–74.2) p = 0.002 (**)b

QALB (CSF albumin / serum albumin *10E-3) 6.6 (5.5–7.8) 6.2 (5.3–8.2) p = 0.88 (ns)
a Student’s t-test, b Mann-Whitney U test, c Chi-square. MoCA = Montreal Cognitive Assessment, Aβ = amyloid beta, t-tau = total tau, p-tau = tau phosphorylated at 
threonine 181, NFL = neurofilament light chain, ALB = albumin **** p < 0.0001, *** p < 0.001, ** p ≤ 0.01, ns = non-significant
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ELLA NFL assay
An ELLA automated immunoassay system (Biotechne, 
Minneapolis, MN, USA), was used to analyse human 
CSF and serum NFL levels. In this assay, 25 µL of CSF 
or serum was diluted twofold with reagent diluent to a 
total volume of 50 µL prior to pipetting the solution in 
the analysis cartridge. The assay ran automated analyses 
in technical triplicate.

Data analysis
Statistical analysis was performed using Graphpad Prism 
9.5.0 (Graphpad Software, USA) and RStudio v.2022.02.1. 
Statistical significant differences were defined at p ≤ 0.05 
(*), p ≤ 0.01 (**), p ≤ 0.001 (***), and p < 0.0001 (****). 
(Non-)parametric data were assessed using Student’s 
t-tests and Mann-Whitney U tests respectively. Spearman 
correlation analyses were performed to assess associa-
tions between variables. Logarithmic regression analysis 
was performed to assess the relationship between CSF 
and serum NFL levels in subjects. The ratios of CSF to 
serum NFL were computed as QNFL levels. This method 
was also applied to calculate the QALB (ratio of CSF and 
serum albumin levels*10E-3). Receiver operating char-
acteristic (ROC) curves were constructed to determine 
the ability of biomarkers to differentiate between sCAA 
patients and controls. ROC curves were compared using 
DeLong’s test [15].

Results
Of the 367 proteins included in the PEA exploration 
panel, 263 (72%) presented expression levels greater than 
respective LoD in > 70% of either sCAA and/or control 
groups. Of these 263, 13 proteins presented differential 
expression levels between sCAA patients and control sub-
jects Table 3; Fig. 1. In descending order of significance: 
neurofilament light chain (NFL; p < 0.0001) Fig.  2A, a 
disintegrin with metalloproteinase domain-containing 

protein 8 (ADAM8; p = 0.001), apoptosis regulator BAX 
(BAX; p = 0.009), matrix metalloproteinase-8 (MMP8; 
p = 0.01), chymotrypsinogen B1 (CTRB1; p = 0.01), Ras 
homolog gene family, member C (RHOC; p = 0.02), che-
mokine (C-X-C motif ) ligand 13 (CXCL13; p = 0.03), car-
boxypeptidase A2 (CPA2; p = 0.03), milk fat globule-EGF 
factor 8 (MFGE8; p = 0.03), coiled-coil and C2 domain-
containing protein A1 (CC2D1A; p = 0.03), UL16-bind-
ing protein 2 (ULBP2; p = 0.04), macrophage scavenger 
receptor 1 (MSR; p = 0.05), and urokinase plasminogen 
activator (uPA; p = 0.05). For two of these proteins, BAX 
and CXCL13, respectively 19% and 14% of the data points 
collected were lower than the LoD.

Correlation analyses between the 13 differentially 
expressed proteins, and clinical and imaging sCAA mea-
sures (age of participants, score on the MOCA, pres-
ence of ICH, number of CMB, presence/extent of cSS, 
CAA SVD) revealed significant associations (Figure S1). 
Eight proteins significantly correlated with age (NFL, 
MMP8, RHOC, CXCL13, CPA2, CC2D1A, MSR1, uPA). 
MoCA scores significantly correlated with ULBP2 (rsp 
= 0.39; p = 0.004), and NFL (rsp = -0.37; p = 0.006). Posi-
tive correlations with the number of CMBs existed for 
NFL (rsp = 0.44; p = 0.001), ADAM8 (rsp = 0.40; p = 0.005), 
and MMP8 (rsp = 0.38; p = 0.007), whereas MFGE8 dis-
played a negative correlation (rsp = -0.46; p = 0.0008). The 
degree of cSS correlated positively with NFL (rsp = 0.35; 
p = 0.002). Lastly, NFL (rsp = 0.54; p < 0.0001) and MFGE8 
(rsp = -0.45; p = 0.001) correlated significantly with the 
CAA SVD-burden score.

ELLA analyses revealed significant elevations of CSF 
NFL levels in sCAA (median 2284 pg/mL) as compared 
to controls (median: 1306 pg/mL) (p < 0.0001) (Table  2; 
Fig.  2B). Similarly, serum NFL levels were significantly 
elevated in sCAA (median: 43.3 pg/mL) vs. controls (28.8 
pg/mL; p < 0.0001) (Table 2; Fig. 2C). Correlation analyses 
of the PEA NPX.

Table 3  Overview of proteins which were significantly different between sCAA patients and control subjects
Protein Gene CON NPX sCAA NPX FC sCAA/CON P-value
Neurofilament light chain Nfel 5.77 (5.19 : 6.32) 6.66 (5.91 : 7.57) 1.85 p < 0.0001 (****)a

ADAM metallopeptidase domain 8. Adam8 -2.72 (-3.48 : -2.25) -2.43 (-2.87 : -1.69) 1.23 p = 0.001 (***)a

Apoptosis regulator BAX Bax -3.44 (-3.96 : -2.90) -3.09 (-3.42 : -2.72) 1.28 p = 0.009 (**)a

Matrix metalloproteinase-8 Mmp8 -4.31 (-4.58 : -3.76) -3.67 (-4.42 : -3.01) 1.55 p = 0.01 (*)b

Chymotrypsinogen B1 Ctrb1 -2.85 (-3.30 : -2.60) -2.64 (-2.96 : -2.35) 1.16 p = 0.01 (*)b

Ras homolog gene family, member C Rhoc -2.96 (-3.26 : -2.49) -2.70 (-2.94 : -2.70) 1.19 p = 0.02 (*)b

Chemokine (C-X-C motif ) ligand 13 Cxcl13 -2.81 (-3.03 : -2.45) -2.58 (-2.82 : -2.11) 1.17 p = 0.03 (*)b

Carboxypeptidase A2 Cpa2 -2.53 (-2.80 : -2.05) -2.23 (-2.50 : -1.89) 1.23 p = 0.03 (*)a

Milk fat globule-EGF factor 8 protein Mfge8 3.97 (3.44 : 4.29) 3.66 (3.32 : 3.90) 0.81 p = 0.03 (*)a

Coiled-coil and C2 domain-containing protein 1 A Cc2d1a -1.87 (-2.04 : -1.50) -1.62 (-1.80 : -1.39) 1.19 p = 0.03 (*)b

UL16-binding protein 2 Ulbp2 2.11 (1.40 : 2.42) 1.61 (1.29 : 2.14) 0.71 p = 0.04 (*)b

Macrophage scavenger receptor 1 Msr1 0.49 (0.24 : 0.96) 0.79 (0.51 : 1.06) 1.23 p = 0.05 (*)b

Urokinase plasminogen activator Plau 0.49 (0.15 : 0.70) 0.60 (0.42 : 0.95) 1.08 p = 0.05 (*)b

Relative NPX values of sCAA patients and controls (CON) are displayed as median with interquartile range (IQR). Fold-change (FC) was calculated using the formular 
FC = 2ΔNPX. a Student’s t-test, b Mann-Whitney U test. **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05
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NFL values and log-transformed ELLA CSF NFL 
results showed a strong degree of correlation (rsp= 0.96, 
p < 0.0001) (Fig. 2D).

Whereas at lower CSF NFL levels there appeared to 
be a directly proportional relationship between CSF and 
serum NFL levels, this was not the case at higher CSF 
NFL levels. An apparent logarithmic relationship existed 
between CSF NFL and serum NFL concentrations over 
the full concentration range, with an R2 of 0.70. (Figure 
3).

Correlation analyses between ELLA CSF NPX levels 
and available clinical and imaging measures revealed 
identical patterns to the associations observed for PEA 
NFL levels (Figure S2): a negative significant correlation 
was found between CSF NFL levels and MOCA scores 
(rsp = -0.37; p = 0.003). Positive, significant correlations 
were discovered between CSF NFL levels and the number 
of CMBs (rsp = 0.48; p < 0.0001), the degree of cSS (rsp = 
0.42; p = 0.0006), and the CAA SVD-burden score (rsp = 

0.45; p = 0.0002) respectively. Contrasting with the explo-
ration study, no significant correlation between CSF NFL 
and age of participants was found in the validation study.

ROC curves revealed good separation between sCAA 
patients and control subjects using PEA CSF NFL 
(AUC = 0.78), ELLA CSF NFL (AUC = 0.85) and serum 
NFL levels (AUC = 0.79) (Fig. 4A). Combinations of PEA 
differentially expressed proteins did not provide better 
discrimination than NFL between sCAA and controls 
[data not shown]. Aβ40 demonstrated good discrimi-
nation ability between sCAA patients and controls 
(AUC = 0.89) (Fig.  4B). The combination of NFL with 
Aβ40 did not significantly improve discrimination ability 
compared to Aβ40, between sCAA patients and control 
subjects (AUC = 0.96, p = 1.00). The ROC curve for Aβ42 
showed good discrimination performance (AUC = 0.97), 
but this did not improve for Aβ42 + NFL (AUC = 0.99, 
p = 1.00) (Fig. 4C).

Fig. 1  Scatter plots of proximity extension assay (PEA) biomarker candidates in CSF of sCAA patients compared to controls. PEA analysis in CSF of sCAA 
patients and controls produced 13 significantly differential protein biomarkers. Statistical testing was performed using Student’s t-tests (parametric data) 
and Mann-Whitney U tests (non-parametric data). The LoD of each protein is indicated in the graphs and presented as dashed line (in case the LoD was 
within the plotted y-axis range)
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CSF: serum NFL ratios (QNFL) were significantly 
increased in sCAA patients compared to control subjects 
(p = 0.004) (Fig.  5A). QALB levels did not differ signifi-
cantly between sCAA patients (median: 6.6) and controls 
(median: 6.2, p = 0.88) (Fig. 5B). ROC analysis of the QNFL 
discriminated CAA patients from control subjects with 
an AUC of 0.72 (Fig. 5C).

Discussion
This multiplex biomarker discovery study identified mul-
tiple emerging CSF biomarker candidates for differen-
tiation of sCAA from controls. We were able to identify 
NFL as biomarker in CSF and serum of sCAA patients 
compared to controls employing two independent tech-
niques (PEA and ELLA).

NFL is one of the subunits of neurofilaments and plays 
a crucial role in maintaining the integrity of neuronal 
axons [16]. NFL has previously been reported to be ele-
vated in plasma and CSF of sCAA patients compared to 
controls [17, 18]. NFL is a well-known serum/plasma/
CSF biomarker of axonal damage in multiple forms of 
neurodegeneration (including multiple sclerosis, atypical 
parkinsonisms, frontotemporal dementia, amyotrophic 
lateral sclerosis, and prion diseases) [19–22]. NFL eleva-
tions are often associated with generalized neurodegen-
eration, rather than specifically with sCAA, which might 
limit its potential as a diagnostic biomarker for sCAA.

We found a large degree of correlation between mea-
surements using PEA and the (log-transformed) ELLA 
NFL assay concerning the CSF analyses, which reinforces 
trueness of measurements, and in turn, increased the 

Fig. 2  Dot and scatter plots of CSF and serum NFL measurements. (A) Dot plot of PEA CSF NFL measurement in controls and sCAA patients. (B) Dot plot 
of ELLA CSF NFL measurement in controls and sCAA patients. (C) Dot plot of ELLA serum NFL measurement in controls and sCAA patients. (D) Scatter plot 
of PEA CSF NFL measurements against log-transformed ELLA NFL measurements in CSF. RSP = Spearman correlation. **** p < 0.0001

 



Page 7 of 10Vervuurt et al. Alzheimer's Research & Therapy          (2024) 16:108 

robustness and reproducibility of results. Earlier studies 
already described a similar, very high degree of correla-
tion between NFL measurements on automated ELLA 
and Simoa assays [23].

The relationship between CSF and serum NFL seemed 
to follow a non-linear pattern across the entire concen-
tration range: whereas at low levels CSF NFL appeared 
to proportionally correlate to serum NFL, higher levels 
of CSF NFL seemed not to be proportionally reflected in 
equally higher serum NFL levels in our study. This might 
be considered as negative implications for the potential 

use of serum NFL as a monitoring or prognostic bio-
marker. Such a potential non-linear relationship at high 
CSF NFL concentrations between CSF and serum NFL 
could also be noted in studies of other neurodegenerative 
diseases, such as Parkinson’s disease [22], but was absent 
in other studies [24].

Additionally, QNFL was increased in sCAA compared 
to controls. The elevated QNFL suggests that in sCAA 
patients, NFL was present in CSF in a relatively higher 
proportion, compared to controls. We did not observe 
similar differences in QALB between sCAA patients and 
controls. This could imply that the integrity of the blood-
CSF barrier (for which QALB is a proxy) remains unaltered 
and does not explain these observed differences in the 
QNFL. This would indicate that increased CSF NFL is not 
proportionally exchanged with serum, possibly through 
limited exchange of CSF NFL to blood in the arachnoid 
villi, or the possibility of dose-dependent degradation of 
NFL in the circulation.

CSF NFL levels were positively associated with neu-
rovascular damage in the form of numbers of CMBs 
and cSS. Additionally, higher CSF NFL levels negatively 
correlated with MOCA scores. This suggests that neu-
rovascular sCAA pathology incites and/or aggravates 
neurodegeneration, which in turn appears to have reper-
cussions for the clinical presentation of sCAA patients, in 
the form of increased degrees of cognitive impairment.

Among the significantly different biomarkers that we 
identified, two confirmed results previously obtained by 
our team in comparable CSF immunoassay studies: milk 
fat globule-EGF 8 (MFGE8) and urokinase plasminogen 
activator (uPA) [11, 25]. MFGE8 (also known as lacta-
dherin) is a secreted, extracellular matrix protein and 
is thought to contribute to a great variety of molecular 

Fig. 4  Receiver operating characteristic (ROC) curves on the discrimination ability between sCAA patients and controls. (A) ROC curves of PEA CSF, ELLA 
CSF and ELLA serum NFL levels of sCAA and controls. (B) ROC curves of CSF Aβ40 and CSF Aβ40 + ELLA NFL of sCAA and controls. Aβ40 + NFL did not 
show improved discrimination performance compared to Aβ40 (p = 1.00). (C) ROC curves of CSF Aβ42 and CSF Aβ42 + ELLA NFL of sCAA and controls. No 
improved performance was observed for Aβ42 + NFL compared to Aβ42 (p = 1.00). AUC = area under the curve. ns not significant

 

Fig. 3  Scatter plots on the relationship between CSF and serum ELLA NFL 
measurements. Scatter plots of CSF and serum NFL levels, in control sub-
jects and sCAA patients. The lower end of the graph shows a relatively lin-
ear relationship (irrespective of CAA pathology) between CSF and serum 
NFL levels. However, a non-linear relationship appears between CSF and 
serum NFL levels, with higher CSF NFL levels (y = -141.2 + 56.2*log(x)). 
Solid line displays logarithmic regression through all data points, dashed 
line is linear regression (constructed excluding outliers, which are indi-
cated as open dots)

 



Page 8 of 10Vervuurt et al. Alzheimer's Research & Therapy          (2024) 16:108 

and cellular interactions, including cellular adhesion and 
inhibition of coagulation [26]. Full length MFGE8 has 
also been investigated in the context of CAA pathology; 
it was found that it was overexpressed in CAA vessels, 
colocalizes with vascular Aβ deposits, and is decreased 
in CSF of CAA patients, compared to both AD and con-
trols [25]. A small, 50 amino acid polypeptide fragment 
of MFGE8 (medin) also co-localized with vascular Aβ, 
and higher vascular MGFE8 expression levels have been 
associated with an increased degree of cognitive decline 
in AD [27]. uPA has a major role in the activation of 
plasminogen into plasmin, an important process in the 
initiation of thrombolysis. uPA was overexpressed by vas-
cular smooth muscle cells under stimulation of APP [28]. 
Additionally, uPA was overexpressed in vascular tissue 
and CSF of transgenic APP rodent models for CAA and 
in sCAA patients [11]. Sidenote is that the sCAA popula-
tion in this study in small part (n = 9) overlapped with the 
results in our PEA study, which might have influenced 
results.

In our study, we also uncovered significant differences 
in the expression of other biomarker candidates, such as 
ADAM8, MMP8, and MSR1 (all upregulated). ADAM8 
has been implied to function as an alpha-secretase, 
involved in non-pathological processing of APP [29, 30]. 
Our observation of increased expression of ADAM8 in 
CSF of sCAA patients could point to disruption of physi-
ologic processing of APP. MMP8 has to our knowledge 
not been studied in relation to CAA pathology [31]. 
However, in general, matrix metalloproteinases and their 
inhibitors appear to be involved in CAA pathology [10, 
32]. Lastly, MSR1 is known to facilitate microglial phago-
cytosis of Aβ aggregates [33, 34]. MSR1-knockout mice 
have shown increased vascular amyloid pathology and 
decreased clearance rates of vascular amyloid, compared 
to wild-type mice [35]. Additionally, another similar PEA 

study on CSF and plasma of AD patients revealed a nega-
tive correlation between CSF MSR1 levels and severity 
of AD pathology ranging from healthy controls to MCI 
and to AD [36]. Potential explanations for these contrast-
ing results could be found in different study designs, and 
differential activation and affinity patterns of microglia 
for either vascular or parenchymal amyloid pathology. 
Other proteins which were found to be significantly dif-
ferentially expressed in sCAA patients compared to con-
trol subjects (BAX, CC2D1A, CPA2, CTRB1, CXCL13, 
RHOC, ULBP2) have (to our knowledge) not previously 
been associated with CAA, AD or amyloidotic diseases in 
general, which warrants further research into their bio-
marker potential.

Strengths of our study include the use of cohorts of 
sCAA patients and control subjects which have been very 
well characterized clinically. Additionally, the replica-
tion of results using orthogonal analytical techniques for 
three biomarker candidates (NFL, MFGE8 [25] and uPA 
[11]) support the robustness of our findings. Lastly, the 
sizes of sCAA and control groups studied are relatively 
large, compared to most other CSF biomarker studies on 
sCAA in literature [10, 11, 26, 37, 38]. Weaknesses of this 
study include a partial overlap of patients with sCAA in 
study populations. Also, another weakness is the fact that 
in clinical practice, sCAA will often have to be differenti-
ated from other neurological diseases, instead of differen-
tiation between patients with sCAA and healthy controls. 
The absence of study populations with other neurological 
diseases (e.g. AD) in our study likely limited our assess-
ment of the diagnostic potential of NFL as a biomarker 
for sCAA. In addition, the diagnostic value of NFL is lim-
ited since increased levels of NFL are observed in many 
disorders associated with neurodegeneration. It would 
be interesting, though, to longitudinally study (CSF or 
serum) NFL to assess its potential as a possible biomarker 

Fig. 5  Dot and scatter plots on QNFLand QALB. (A) Dot plot of QNFL in controls and sCAA patients. (B) Dot plot of QALB in controls and sCAA patients. (C) 
ROC curve of QNFL in discriminating controls from sCAA patients. AUC = area under the curve, ** p ≤ 0.01, ns not significant
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of disease progression in CAA. Lastly, the lack of inde-
pendent validation of identified biomarker candidates 
other than NFL, MFGE8 and uPA is also a limitation 
of our study [39]. This predisposes results to the false-
positive identification of proteins as potential biomark-
ers and incentivises the need of validation of biomarker 
candidates in independent cohorts, or using independent 
analytical techniques. Therefore, further research will 
have to confirm or reject the biomarker potential of the 
remaining 10 CSF biomarker candidates.

In conclusion, our results show that screening PEA 
analyses are able to identify candidate biomarkers for 
CAA, which can be validated through use of orthogonal 
validation efforts. Additionally, NFL appears to be a very 
effective biomarker to distinguish sCAA patients from 
controls, but might have limited specificity for sCAA, 
due to its broader associations with more generalised 
neurodegeneration.
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