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Abstract 

Background Neurofilament light chain (NFL) is a biomarker for neuroaxonal damage and glial fibrillary acidic protein 
(GFAP) for reactive astrocytosis. Both processes occur in cerebral amyloid angiopathy (CAA), but studies investigating 
the potential of NFL and GFAP as markers for CAA are lacking.

We aimed to investigate NFL and GFAP as biomarkers for neuroaxonal damage and astrocytosis in CAA.

Methods For this cross-sectional study serum and cerebrospinal fluid (CSF) samples were collected between 2010 
and 2020 from controls, (pre)symptomatic Dutch-type hereditary (D-CAA) mutation-carriers and participants 
with sporadic CAA (sCAA) from two prospective CAA studies at two University hospitals in the Netherlands. NFL 
and GFAP levels were measured with Simoa-assays. The association between NFL and GFAP levels and age, cognitive 
performance (MoCA), CAA-related MRI markers (CAA-CSVD-burden) and Aβ40 and Aβ42 levels in CSF were assessed 
with linear regression adjusted for confounders. The control group was divided in age < 55 and ≥55 years to match 
the specific groups.

Results We included 187 participants: 28 presymptomatic D-CAA mutation-carriers (mean age 40 years), 29 sympto-
matic D-CAA participants (mean age 58 years), 59 sCAA participants (mean age 72 years), 33 controls < 55 years (mean 
age 42 years) and 38 controls ≥ 55 years (mean age 65 years).

In presymptomatic D-CAA, only GFAP in CSF (7.7*103pg/mL vs. 4.4*103pg/mL in controls; P<.001) was increased 
compared to controls. In symptomatic D-CAA, both serum (NFL:26.2pg/mL vs. 12.5pg/mL; P=0.008, GFAP:130.8pg/
mL vs. 123.4pg/mL; P=0.027) and CSF (NFL:16.8*102pg/mL vs. 7.8*102pg/mL; P=0.01 and GFAP:11.4*103pg/mL vs. 
7.5*103pg/mL; P<.001) levels were higher than in controls and serum levels (NFL:26.2pg/mL vs. 6.7pg/mL; P=0.05 
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and GFAP:130.8pg/mL vs. 66.0pg/mL; P=0.004) were higher than in pre-symptomatic D-CAA. In sCAA, only NFL levels 
were increased compared to controls in both serum (25.6pg/mL vs. 12.5pg/mL; P=0.005) and CSF (20.0*102pg/mL 
vs 7.8*102pg/mL; P=0.008). All levels correlated with age. Serum NFL correlated with MoCA (P=0.008) and CAA-CSVD 
score (P<.001). NFL and GFAP in CSF correlated with Aβ42 levels (P=0.01/0.02).

Conclusions GFAP level in CSF is an early biomarker for CAA and is increased years before symptom onset. NFL 
and GFAP levels in serum and CSF are biomarkers for advanced CAA. 

Keywords Cerebral amyloid angiopathy, Neurofilament light chain (NFL), Glial fibrillary acidic protein (GFAP), CAA 
CSVD score, MoCA

Background
Cerebral amyloid angiopathy (CAA) is an important 
cause of lobar intracerebral hemorrhage (ICH) 
cognitive impairment in the elderly [1–4]. Sporadic 
amyloid β (Aβ)-type CAA pathology is caused by 
the accumulation of the  Aβ protein in cortical and 
leptomeningeal arteries and arterioles [5, 6]. In the 
light of upcoming new therapeutic opportunities there 
is an urgent need for biomarkers that are able to detect 
(early) manifestations of CAA and are suitable for 
monitoring disease progression and treatment response. 
Important MRI-based markers of CAA pathology, such 
as lobar cerebral microbleeds and cortical superficial 
siderosis mainly represent advanced and irreversible 
CAA-related pathology [7]. Cerebrospinal fluid (CSF) 
and blood biomarkers are gaining increasing interest 
as new options to detect neuropathological processes, 
even in the presymptomatic disease stage. Dutch-type 
hereditary CAA (D-CAA) is a rare autosomal dominant 
form of CAA with an approximately twenty years earlier 
onset and a more aggressive disease course. This disease 
caused by a mutation in the Aβ precursor gene (APP), 
offers the unique opportunity to study the potential of 
new biomarkers from the presymptomatic phase up to 
advanced symptomatic stages of CAA [5].

CAA is closely associated with Alzheimer’s disease 
(AD). Approximately 50% of patients with AD have co-
existing moderate-to-severe CAA pathology, although the 
cerebrovascular deposition of Aβ in CAA predominantly 
contains Aβ40 whereas in neuritic plaques in AD Aβ42 is 
the primary constituent [4, 8]. In AD, neurofilament light 
(NFL) levels and glial fibrillary acidic protein (GFAP) are 
promising serum and CSF biomarkers. These biomarkers 
are both non-disease specific, assumed to reflect neuroax-
onal damage, reactive astrogliosis and neuroinflammation 
in several neurological disorders including AD [9, 10]. 
High plasma NFL levels are found in patient with symp-
tomatic AD, compared with cognitively healthy controls 
[11]. Although NFL levels are known to increase with 
age, NFL serum levels are already increased in presymp-
tomatic mutation-carriers with hereditary AD, almost a 

decade before estimated symptom onset [12, 13]. Until 
now, only two studies investigated NFL as biomarker 
in sCAA [14, 15]. One small exploratory study found 
increased CSF NFL levels in a group of 10 participants 
with sCAA compared to AD and control participants [14]. 
Another study that included 68 CAA-ICH cases from a 
Chinese prospective cohort, showed that increased serum 
NFL levels were associated with ICH recurrence com-
pared to controls, independent of MRI SVD burden [15].

GFAP appears to be a sensitive biomarker for detecting 
and tracking astrogliosis even among individuals in the 
early stages of AD [16–18]. These findings suggest that 
astrocytic damage is already present in the presympto-
matic phase of AD [10]. Moreover, a correlation between 
plasma GFAP levels and cortical Aβ deposition was 
reported in symptomatic AD [19]. However, these results 
should be interpreted considering the possible influence 
of co-existing large and small cerebral vessel disease and 
the age-related increase of GFAP expression by astro-
cytes [10, 20]. Whether GFAP levels are increased in 
CAA is unknown, but given the vascular phenotype of 
CAA with prominent astrogliosis, that is to be expected.

We aimed to investigate whether NFL and GFAP levels 
in serum and CSF, as biomarkers for neuroaxonal damage 
and astrocytosis, are abnormal in CAA and we assessed 
their correlation with age, cognitive function, MRI markers 
of CAA and Aβ levels in CSF.

Methods
Study population
We included (pre)symptomatic D-CAA mutation-
carriers and participants with sCAA who participated 
between 2018 and 2020 in our ongoing prospective 
studies on disease progression and biomarkers in CAA 
(AURORA, FOCAS, BIONIC) and the completed CAVIA 
study (2010–2016). From these studies, we included all 
participants in whom a venous puncture and/or a lumbar 
puncture was performed.

Participants with D-CAA were recruited via the 
(outpatient) clinic of the Leiden University Medical  
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Center (LUMC). Inclusion criteria were age ≥ 18 years  
and a DNA proven APP mutation, or a medical history 
of ≥ 1 lobar ICH(s) and ≥ 1 first-degree relative(s) with 
D-CAA. Symptomatic D-CAA was defined as a history  
of at least one symptomatic ICH (sICH). Participants 
with sCAA visited the (outpatient) clinic of the LUMC or 
the Radboud University Medical Center (RUMC) and 
were diagnosed with probable CAA by an experienced  
vascular neurologist and neuroradiologist based on 
the modified Boston criteria [21]. Control participants  
were visitors of the neurology outpatient clinic or 
were admitted to the RUMC in whom central nervous  
system (CNS) diseases were excluded after neurological  
examination and diagnostic workup. Cognitive impair-
ment was an exclusion criterium. Controls were divided 
into < 55 years and ≥ 55 years of age to obtain matching 
age categories for the pre-symptomatic D-CAA carriers 
and participants with symptomatic D-CAA or sCAA. 
The cut-off point of 55 years was based on the mean 
age of index ICH in D-CAA and the age threshold in 
the modified Boston criteria for sCAA [21, 22].

We collected data on demographics, medical history 
and clinical symptoms for all D-CAA and sCAA partici-
pants by standardized questionnaires. Montreal Cogni-
tive Assessment (MoCA) was used as a global cognitive 
screening test by trained staff at time of inclusion [23]. 
Demographic information was obtained for the control 
population. In this cohort, no information on cognitive 
function was available.

Fluid biomarkers
Serum and CSF samples from the 3 cohorts were 
analyzed in the laboratories of ADx NeuroSciences, 
Ghent, Belgium. Serum and CSF NFL and GFAP levels 
were quantified using the commercially available single 
molecule array (Simoa)™ NF-Light Advantage Kit 
(Quanterix, catalogue nr. 103,186) and Simoa™ GFAP 
Discovery Kit (Quanterix, catalogue nr. 102,336) [24, 
25]. A comprehensive description of the fluid biomarker 
analyses can be found in Supplementary Methods. 
Aβ1–40 and Aβ1–42 levels in CSF were quantified 
at the RUMC using Lumipulse® G fully automated 
immunoassays (Fujirebio, Ghent, Belgium).

MRI assessment
The 3T MRI was performed in research setting 
on the same day as blood and CSF withdrawal 
was performed. The following MRI markers of 
CAA related brain injury were scored according 
to the Standards for Reporting Vascular changes 
on neuroimaging (STRIVE) criteria [26]: cerebral 

microbleeds (CMB), cortical superficial siderosis 
(cSS), white matter hyperintensities (WMH) and 
enlarged perivascular spaces in the centrum semi ovale 
(CSO-EPVS). Distribution of WMH was subdivided 
in periventricular WMH and deep WMH and scored 
according to the 4-point Fazekas rating scale [27]. 
PVS were rated using a validated visual rating scale 
(no PVS; ≤10 PVSs; 11–20 PVS; 21–40 PVS and 
> 40 PVS) [28]. The CAA related small vessel disease 
score (CAA CSVD score) was calculated for each 
participant. The CAA CSVD score consisted of lobar 
CMBs (2–4: 1 point, ≥ 5: 2 points), cSS (focal: 1 points, 
disseminated: 2 points), CSO-EPVSs (> 20: 1 point), 
and WMHs (deep WMH Fazekas score 2 or 3 and/or 
periventricular WMH Fazekas score 3: 1 point), with 
a higher score reflecting a more severe disease burden 
[29]. MR images were analyzed blinded for NFL and 
GFAP levels and clinical data. A single observer with 
over 5 years of experience in the field (EAK) scored 
all MRI markers and discussed her findings with a 
neuroradiologist with over 15 years of experience in 
the field (MAAvW) in case of uncertainty. Further 
details regarding the MRI protocol and assessment can 
be found in the Supplementary Methods.

Statistical analysis
We investigated differences between the following 
groups: presymptomatic D-CAA versus controls < 55 
years, symptomatic D-CAA versus controls ≥ 55 years, 
presymptomatic versus symptomatic D-CAA and sCAA 
versus controls ≥ 55 years. We performed multivariate 
linear regression analysis for NFL and GFAP levels for 
the pairwise comparison of groups with adjustment for 
age and sex. Second, we performed linear regression 
analysis to assess the association of the serum and CSF 
levels of NFL and GFAP with (1) age, (2) MoCA score, 
(3) CAA CSVD burden score, and (4) Aβ40 in CSF and 
(5) Aβ42 levels in CSF. We adjusted for age and sex in 
the analyses of the MoCA score, CAA CSVD burden 
score and the Aβ40 and Aβ42 levels. We assessed the 
correlation for NFL and GFAP levels in serum versus 
their levels in CSF by use of linear regression analysis.

Results
We included 187 participants: 28 presymptomatic 
D-CAA mutation-carriers (mean age 40 years), 29 
participants with symptomatic D-CAA (mean age 58 
years), 59 participants with sCAA (mean age 72 years), 
33 controls < 55 years (mean age 42 years) and 38 older 
controls ≥ 55 years (mean age 65 years), see Table  1 
and Supplementary Fig.  1. In all participants with a 
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history of symptomatic ICH (n = 59, 32%), the median 
time between ICH and blood and CSF withdrawal was 
19.5 months from last ICH (range 2–87), see Sup-
plementary Fig.  2. Serum samples were available for 
all sCAA participants, D-CAA mutation-carriers 
and controls. 51 CAA participants gave consent for a 

lumbar puncture (11 pre-symptomatic D-CAA (22%), 
12 symptomatic D-CAA (24%) and 28 sCAA (55%)) 
and CSF was available for 53 controls. Age, sex and 
ICH presence were comparable for participants with 
(mean age 62 years, 51% female and 49% with ICH) 

Table 1 Baseline characteristics

Abbreviations: Aβ = β-amyloid, CAA Cerebral amyloid angiopathy, CSF Cerebrospinal fluid, CSVD Cerebral small vessel disease, D-CAA Dutch cerebral amyloid 
angiopathy, GFAP Glial fibrillary acidic protein, ICH Intracerebral hemorrhage, MoCA Montreal Cognitive Assessment, NFL Neurofilament light, p-tau phosphorylate tau, 
y years
a  Missing data in 4 participants, b missing data in 8 participants
c, d  Presymptomatic participants with D-CAA n = 11, symptomatic participants with D-CAA n = 12, sCAA participants n = 28, controls < 55 n = 32, controls ≥ 55 n = 21
e  sCAA participants = 19, controls < 55 n = 31, controls ≥ 55 n = 21

Presymptomatic D-CAA 
n = 28

Symptomatic D-CAA 
n = 29

Sporadic CAA 
n = 59

Controls < 55y
n = 33

Controls ≥ 55y
n = 38

Age, y, mean (range) 40.4 (27–55) 58.1 (43–74) 71.7 (57–86) 42.4 (27–54) 64.8 (55–85)

Women, n (%) 18 (64.3) 14 (48.3) 25 (42.4) 16 (48.5) 14 (36.8)

Education > 12y, n (%) 19 (67.9) 12 (41.4) 37 (62.7)a - -

Previous symptomatic ICH, n 
(%)

- 29 (100) 30 (50.8) - -

Time between ICH and blood/
CSF withdrawal in months, 
median (range)

- 22 (2–85) 14 (2–87) - -

Cognitive testing performed, 
n (%)

28 (100) 29 (100) 51 (86.4) - -

MoCA, median (range) 28 (24-30) 27 (15-30) 25.5 (8-30)b - -

MRI data available, n (%) 25 (89.3) 27 (93.1) 55 (93.2) - -

Macrobleed count, median 
(range)

0 (0–0) 4 (1-26) 0 (0–13) - -

CAA CSVD score, median 
(range)

1 (0–4) 4 (3-60 4 (0–6) - -

CSF Aβ40 (pg/mL), median 
(range)c

2184 (832–3752) 1733.5 (910–2702) 6125 (1642–12,029) 7551.5 (2889–14,874) 9036 (3905–16,305)

CSF Aβ42 (pg/mL), median 
(range)d

102 (41–184) 76 (41–106) 312.5 (72–1088) 629 (233–1578) 681 (326–1265)

CSF p-tau (pg/mL), median 
(range)e

- - 45.2 (24.5–207.1) 22.9 (11–49) 33.8 (18–94.7)

Table 2 Serum and CSF NFL and GFAP levels

a Presymptomatic participants with D-CAA n=28, symptomatic participants with D-CAA n=28, sCAA participants n=56, controls <55 n=29, controls ≥55 n=37
b Presymptomatic participants with D-CAA n=10, symptomatic participants with D-CAA n=12, sCAA participants n=28, controls <55 n=31, controls ≥55 n=18
c Presymptomatic participants with D-CAA n=25, symptomatic participants with D-CAA n=26, sCAA participants n=51, controls <55 n=31, controls ≥55 n=34
d Presymptomatic participants with D-CAA n=11, symptomatic participants with D-CAA n=12, sCAA participants n=28, controls <55 n=32, controls ≥55 n=20

Abbreviations: CAA cerebral amyloid angiopathy, CSF cerebrospinal fluid, NFL neurofilament light chain, D-CAA Dutch Cerebral Amyloid Angiopathy, GFAP glial fibrillary 
acidic protein, y years

Presymptomatic 
D-CAA 
 n = 28

Symptomatic D-CAA 
 n = 29

Sporadic CAA 
 n = 59

Controls <55 y
 n = 33

Controls ≥55 y
 n = 38

Serum NFL (pg/mL)a 6.72 (3.28 - 49.50) 26.20 (4.61 - 123.43) 25.56 (7.39 - 159.74) 7.78 (1.88 - 97.97) 12.46 (6.28 - 83.59)

CSF NFL*102 (pg/mL)b 4.34 (2.30 - 11.54) 16.80 (6.06 - 79.23) 20.00 (7.36 - 95.79) 3.63 (2.14 - 11.47) 7.76 (3.76 - 15.72)

Serum GFAP (pg/mL)c 66.03 (20.16 - 150.46) 130.75 (51.21 - 358.70) 177.89 (51.18 - 436.01) 60.75 (14.45 - 218.84) 123.37 (38.82 - 320.52)

CSF GFAP*103 (pg/mL)d 7.69 (3.46 - 11.03) 11.41 (5.87 - 26.50) 10.93 (3.48 - 32.01) 4.44 (0.77 - 7.98) 7.51 (1.19 - 14.99)
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and without lumbar puncture (mean age 60 years, 48% 
female and 52% with ICH).

Serum and CSF NFL and GFAP levels in the early 
and advanced stages of CAA 
NFL levels were similar in presymptomatic D-CAA 
and controls < 55 years in serum (6.7 pg/mL vs. 7.8 pg/
mL; P = 0.59) and CSF (4.3*102 pg/mL vs. 3.6*102 pg/
mL; P = 0.20) (Table  2; Fig.  1A and B). NFL levels were 
increased in symptomatic D-CAA vs. controls ≥ 55 years 
in serum (26.2 pg/mL vs. 12.5 pg/mL; P = 0.008) and CSF 

(16.8*102 pg/mL vs. 7.8*102 pg/mL; P = 0.01). NFL lev-
els were higher in symptomatic versus presymptomatic 
D-CAA in serum (26.2 pg/mL vs. 6.7 pg/mL; P = 0.05) 
and CSF (16.8*102 pg/mL vs. 4.3*102 pg/mL; P = 0.095) 
and in participants with sCAA versus controls ≥ 55 years 
in both serum (25.6 pg/mL vs. 12.5 pg/mL; P = 0.005) 
and CSF (20.0*102 pg/mL vs. 7.8*102 pg/mL; P = 0.008). 
The GFAP levels were similar in presymptomatic D-CAA 
versus controls < 55 years in serum (66.0 pg/mL vs. 60.8 
pg/mL; P = 0.91) but increased in CSF (7.7*103 pg/mL vs. 
4.4*103 pg/mL; P = < 0.001, Fig.  1D). GFAP levels were 

Fig. 1 Shows the NFL an GFAP levels in D-CAA, sCAA and controls
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increased in symptomatic D-CAA versus controls ≥ 55 
years in serum (130.8 pg/mL vs. 123.4 pg/mL; P = 0.027) 
and CSF (11.4*103 pg/mL vs. 7.5*103 pg/mL; P < 0.001).

GFAP levels in serum were higher in symptomatic 
versus presymptomatic D-CAA (130.8 pg/mL vs. 66.0 pg/
mL; P = 0.004) but not in CSF (11.4*103 pg/mL vs. 7.7*103 
pg/mL; P = 0.29). GFAP levels were similar in sCAA 
versus controls ≥ 55 years in serum (177.9 pg/nL vs. 123.4 
pg/nL; P = 0.33) and CSF (10.9*103 pg/mL vs. 7.5 pg/mL; 
P = 0.13, Fig. 1C and D).

Association of serum and CSF NFL and GFAP levels 
with age, cognition, CAA burden on MRI and CSF 
amyloid-βlevels
Increasing NFL levels in serum (β [95%CI] = 0.60 [0.37–
0.83]; P < 0.001), NFL levels in CSF (β [95%CI] = 47.38 
[26.91–67.85]; P < 0.001), GFAP levels in serum (β 
[95%CI] = 3.30 [2.58–4.02] P < 0.001) and GFAP levels in 
CSF (β [95%CI] = 207.07 [140.02–274.12]; P < 0.001) were 
all correlated with increasing age (Fig. 2).

Increasing levels of NFL in serum were associated with 
decreasing MoCA scores (β [95%CI] = -1.97 [-3.42 – 
-0.52]; P = 0.008) whereas GFAP levels in serum and NFL 
and GFAP levels in CSF were not (Fig. 3A-D, Supplemen-
tary Fig. 4).

Increasing NFL levels in serum (β [95%CI] = 6.03 
[2.72–9.35]; P = < 0.001) correlated with higher CAA 
CSVD scores, whereas GFAP levels in serum (β 
[95%CI] = 11.10 [-0.90–23.10]; P = 0.07), NFL levels 
in CSF (β [95%CI] = 429.55 [-38.35–897.45]; P = 0.07) 
and GFAP levels in CSF (β [95%CI] = 775.65 [-721.59–
2272.90]; P = 0.30) did not show a clear association with 
the CSVD score, Fig. 4A-D, Supplementary Fig. 5).

Aβ40 and Aβ42 levels in CSF were decreased in pre-
symptomatic D-CAA, symptomatic D-CAA and sCAA 
in comparison to controls (Table  1). Increasing levels 
of NFL and GFAP in CSF were correlated with decreas-
ing Aβ40 and Aβ42 levels in CSF although the correla-
tion was only statically significant for the correlation with 
Aβ42 (NFL: β [95%CI] = -1.08 [-1.91 – -0.24]; P = 0.01 
and GFAP: β [95%CI] = -3.16 [-5.89 – -0.43]; P = 0.02, 
Fig. 5).

Discussion
In this large prospective cohort of both hereditary and 
sCAA participants we found that (1) GFAP in CSF is 
increased in the early presymptomatic stage of CAA, (2) 
NFL and GFAP levels in serum and CSF are increased in 
either sporadic or more severe hereditary symptomatic 
stages of CAA and (3) increasing levels of NFL and GFAP 
are associated with increasing age, decreasing MoCA 

Fig. 2 Shows the association of the biomarker levels with age. P-values are based on the linear regression analysis of all participants
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Fig. 3 Shows n=108 participants in whom the MoCA was performed (28 presymptomatic D-CAA, 29 symptomatic D-CAA and 51 sporadic CAA)

Fig. 4 Shows n=107 participants in whom a 3 Tesla MRI was performed (n=25 presymptomatic D-CAA, n=27 symptomatic D-CAA and n=55 
sporadic CAA)
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score, increasing CAA SVD score on MRI and decreasing 
Aβ levels in CSF. Although both markers are not-CAA 
specific, these results suggest that GFAP in CSF is a 
biomarker for early CAA pathology and both NFL and 
GFAP in serum and CSF are markers for advanced stages 
of CAA.

Our findings that NFL is increased in participants 
with symptomatic D-CAA as well as sCAA compared 
to controls confirm the results of a small previous 
exploratory cross-sectional study that found increased 
NFL levels in CSF in 10 participants with sCAA 
compared to participants with AD and controls [14]. 
Our results are also consistent with previous studies 
that investigated NFL as a promising biomarker in other 
neurodegenerative and neurovascular diseases. CAA 
is closely related to AD. In both diseases Aβ deposition 
plays a crucial role although the subsequent mechanisms 
of brain injury are different [8]. In AD, NFL levels in 
plasma and CSF were shown to be higher than in healthy 
controls and CSF NFL was associated with cognitive 
decline, white matter changes and brain atrophy [11, 
30]. Also, in non-demented elderly, NFL levels in serum 
were associated with SVD markers on MRI and impaired 
processing speed [31, 32]. Moreover, in CADASIL, the 
most prevalent form of hereditary SVD, serum NFL levels 
have been correlated with disease severity (microbleed 

and lacune count), disease progression and survival 
[33]. In line with these findings, we found a correlation 
between NFL levels in serum with the CAA CSVD 
score. For MoCA, the correlation was present, but less 
pronounced. There is growing evidence that cognition 
in CAA appears to be more specifically affected in the 
domains of executive functioning and processing speed 
[3, 34, 35].The rather unspecific nature of the MoCA 
score might explain why the correlation with serum NFL 
was not very robust. This explanation might also apply to 
GFAP in serum and CSF NFL and GFAP.

GFAP levels were increased in CSF but not in serum 
of presymptomatic mutation-carriers with D-CAA. This 
difference could be explained by the proximity of CSF to 
cerebral neuropathology with subsequent diluted effects 
in serum. Furthermore, GFAP levels were increased 
in symptomatic D-CAA compared to controls in both 
serum and CSF. This is in line with a previous study in 
four transgenic mouse models of amyloid deposition, 
that found that CAA pathology causes loss of GFAP-
positive cells [36]. However, in sCAA, GFAP levels 
were somewhat higher but not statistically significant 
increased compared to controls. We do not fully 
understand this finding. Possible explanations might be 
the limited sample size or residual confounding of aging 
effects.

Fig. 5 Shows n=104 participants (11 presymptomatic D-CAA, 12 symptomatic D-CAA, 28 sporadic CAA, 32 controls <55 years and 21 controls ≥55 
years). P-values are based on the linear regression analysis of all participants
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Recent studies indicated that GFAP is promising 
biomarker for several neurological diseases other 
than CAA [37]. A previous study reported that GFAP 
levels were increased in serum and CSF of patients 
with AD [16]. Based on our results, it might be 
possible that at least a part of the increase of NFL 
or GFAP in AD is due to co-existing CAA pathology, 
since this is frequently observed in brains of patients 
with AD [38, 39]. To our knowledge there have been 
no previous studies investigating serum and CSF 
GFAP levels in CAA.

In contrast with GFAP levels in CSF, NFL levels 
were not increased in the presymptomatic phase 
of D-CAA. Because NFL is mainly a biomarker 
for neurodegeneration, this might indicate that 
neurodegeneration occurs at later stages of the CAA 
disease cascade compared to neuroinflammation and 
perivascular astrocyte activation.

Strengths of our study are our unique hereditary CAA 
population including presymptomatic carriers, which 
makes it possible to investigate the early asymptomatic 
stages of disease in persons with a definite diagnosis 
of CAA. Second, the participants with D-CAA are 
relatively young with limited coexisting age-related 
pathology. Third, all data of participants with sCAA 
and D-CAA mutation-carriers were prospectively 
collected using a standardized study protocol with all 
study components performed at the same study visit. 
Moreover, we used state-of-the-art ultra-sensitive 
Simoa to reliably asses NFL and GFAP levels in both 
CSF and peripheral blood [40].

Our study has limitations. First, because not all 
participants consented for lumbar puncture, the number 
of included participants with CSF was relatively small. This 
might explain why we did not find significant associations 
between NFL and GFAP CSF levels, and cognitive 
performance and the CAA CSVD score. Second, we did 
not have data on MRI markers or cognitive performance 
for the control group. Third, the sample sizes of our CAA 
groups were not sufficient to allow subgroup analyses 
with tauopathy positive (increased phosphorylated tau 
(p-tau)) and tauopathy negative participants to assess 
the possible influence of co-existing AD. Fourth, the 
control participants in our study were not true healthy 
controls since they visited the outpatient neurology 
clinic with symptoms. However, no CNS diseases were 
diagnosed in these persons after careful evaluation. Fifth, 
blood and CSF samples of participants with sCAA were 
collected in two different centers. We tried to minimize 
differences between the centers by uniform collection, 
storage and grouped analyses and use of the same pre-
analytical protocol. Sixth, we did not correct for multiple 
comparisons as this was an explorative study. Finally, as a 

consequence of the cross-sectional study design, we were 
not able to assess the association of NFL and GFAP with 
disease progression. Our results, however, do suggest 
an association with disease severity on a group level 
with higher NFL and GFAP levels in participants with 
symptomatic versus presymptomatic D-CAA.

Conclusions
Our study shows that GFAP in CSF is an early indicator 
of CAA related pathology and is increased years before 
ICH occurs. NFL and GFAP levels in serum and CSF are 
biomarkers reflecting neurodegeneration and reactive 
astrocytosis in advanced CAA. Both NFL and GFAP 
correlate with age, cognition, CAA related changes 
on MRI and Aβ in CSF. Future longitudinal studies 
are needed to investigate the prognostic value of NFL 
and GFAP and their potential to monitor therapeutic 
treatment responses in CAA pathology.
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