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Abstract 

Background Alzheimer’s disease is characterized by large‑scale structural changes in a specific pattern. Recent stud‑
ies developed morphological similarity networks constructed by brain regions similar in structural features to repre‑
sent brain structural organization. However, few studies have used local morphological properties to explore inter‑
regional structural similarity in Alzheimer’s disease.

Methods Here, we sourced T1‑weighted MRI images of 342 cognitively normal participants and 276 individuals 
with Alzheimer’s disease from the Alzheimer’s Disease Neuroimaging Initiative database. The relationships of grey 
matter intensity between adjacent voxels were defined and converted to the structural pattern indices. We con‑
ducted the information‑based similarity method to evaluate the structural similarity of structural pattern organization 
between brain regions. Besides, we examined the structural randomness on brain regions. Finally, the relationship 
between the structural randomness and cognitive performance of individuals with Alzheimer’s disease was assessed 
by stepwise regression.

Results Compared to cognitively normal participants, individuals with Alzheimer’s disease showed significant 
structural pattern changes in the bilateral posterior cingulate gyrus, hippocampus, and olfactory cortex. Additionally, 
individuals with Alzheimer’s disease showed that the bilateral insula had decreased inter‑regional structural similarity 
with frontal regions, while the bilateral hippocampus had increased inter‑regional structural similarity with temporal 
and subcortical regions. For the structural randomness, we found significant decreases in the temporal and subcorti‑
cal areas and significant increases in the occipital and frontal regions. The regression analysis showed that the struc‑
tural randomness of five brain regions was correlated with the Mini‑Mental State Examination scores of individuals 
with Alzheimer’s disease.

Conclusions Our study suggested that individuals with Alzheimer’s disease alter micro‑structural patterns and mor‑
phological similarity with the insula and hippocampus. Structural randomness of individuals with Alzheimer’s disease 
changed in temporal, frontal, and occipital brain regions. Morphological similarity and randomness provide valuable 
insight into brain structural organization in Alzheimer’s disease.
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Background
Alzheimer’s disease (AD) is a progressive neurodegen-
erative disease and the most common cause of demen-
tia. Individuals with AD have brain structural alterations 
related to amyloid-β plaques and tau-related neurofibril-
lary tangles including atrophy in the cortical regions and 
hippocampus [1–4]. Previous studies have found that 
regional structures in the medial temporal lobe (MTL), 
hippocampus, posterior cingulate gyrus, and amygdala 
are especially vulnerable to Alzheimer’s disease [5–8]. 
Cortical atrophy extended progressively to the parietal 
and frontal cortex and sparing of sensorimotor areas 
until the late stages of AD [7, 9]. These structural dete-
riorations were associated with disease severity and the 
progression of clinical symptoms [10, 11]. These studies 
together suggested that Alzheimer’s disease differentially 
and specifically affects brain regions and imply a specific 
degenerative pattern [12].

Rather than focusing on specific brain regions, neu-
roimaging studies increasingly investigated large-scale 
brain networks, providing insights into the whole-brain 
organization. Diffusion tensor imaging and structural 
covariance network (SCN) analysis were commonly used 
methods to construct structural brain networks. These 
networks demonstrated distinct anatomical organization 
and morphological patterns during development, healthy 
aging, as well as in neurological and psychiatric diseases 
[13–17]. The SCNs revealed the coordinated patterns 
in brain morphology using inter-individual correla-
tion of the structural measurements in regional volume, 
cortical thickness, and surface area [18–20]. The com-
mon approach to determining structural covariance was 
calculating the correlation of a structural feature (e.g., 
regional volume) between pairs of brain regions in a large 
sample of human individuals. Although the neurobio-
logical basis of structural covariance remains unclear, it 
is probably the result of mutually trophic effects or expe-
rience-related plasticity and is also influenced by genetic 
and environmental factors [20–24].

SCNs exhibited specific trajectories across the lifes-
pan [25]. Covariances in healthy aging reduced in 
cognitive and language networks but remained in sen-
sorimotor regions [25, 26]. Organized networks with 
structural correlation were found to be targeted by neu-
rodegenerative diseases and represent the syndrome-
specific atrophy pattern [15, 27]. In the brain networks 
of AD, the default mode network regions, particularly 
in the posterior cingulate cortex, were widely reported 

to decrease structural connectivity, supporting one 
hypothesis of AD as a disconnection syndrome [28–
31]. Meanwhile, increased structural covariances were 
observed in the salience and executive control net-
works of AD, which may reflect either overconnectiv-
ity or synchronized degeneration [18, 29, 32]. In the 
systems-level view, individuals with AD exhibited more 
localized, segregated, and less integrated whole-brain 
networks compared to healthy older adults [33–35]. 
While there was also a loss of small-world network 
characteristics in AD, previous studies have yielded 
inconsistent results regarding whether the networks 
became regular or random configurations [15, 36–38]. 
These analyses jointly suggested that mapping the 
structural patterns between brain regions could pro-
vide insights into the pathology of AD at the large-scale 
network level [18].

However, several challenges arise with the meth-
ods used for SCNs. Using population-level MRI data 
to construct SCNs might eliminate the inter-individ-
ual differences, limiting their clinical application in 
evaluating individual brain networks. Moreover, using 
Pearson’s correlation for a single structural feature, 
combined with the requirement for a large number of 
participants, might affect the stability of inter-regional 
structural patterns and ignore the distribution of intra-
regional information [39, 40]. Recently, several inno-
vative approaches have been developed to estimate 
morphological similarity and construct individual-
level networks [39–46]. Using MRI data from an indi-
vidual, one or multiple structural measurements are 
extracted to build an individual-based brain network. 
This network is based on the morphological similari-
ties between brain regions, representing the intrinsic 
structural organization. To precisely depict the mor-
phological distributions, Tijms et  al. [41] proposed a 
method to divide the grey matter segmentation into 3 × 
3 × 3 voxel cubes and correlate spatial patterns between 
two cubes. Kong et  al. [42] further estimated regional 
morphological probability density and overcame the 
limitation associated with the rigid extraction of the 
cubes. In addition, recent studies combined multiple 
morphological indices (e.g., grey matter volume, sur-
face area, curvature, and diffusion metrics) to construct 
morphometric patterns based on histological similarity 
accurately [39, 40, 47]. These studies together exhibited 
the potential of individual morphological networks in 
understanding cerebral organization and individual 
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intrinsic interaction in brain structure and function. 
Since research on individual-based structural networks 
is still developing, few studies have focused on the 
micro-scale patterns and investigated the single-subject 
networks in individuals with AD [48, 49].

Given the limitations in previous studies, developing 
the approach to define the three-dimensional micro-
scopic structures and more accurately estimate regional 
similarity may further elucidate the comprehensive mor-
phological connection. Similar to the concept of regional 
homogeneity method, we identified the local structural 
patterns within the clusters of seven voxels [50]. We 
assumed that except for the grey matter intensity in a 
single voxel, the structural coordination within neighbor-
ing voxels reflects a specific morphological pattern and is 
disrupted in AD. To measure the inter-regional similarity 
by the probability distribution of structural patterns, we 
applied the information-based similarity (IBS) method 
[51]. The IBS method maps the sequence data into binary 
segments as specific patterns and compares the occur-
rences of different patterns between two sequences. By 
integrating the methods mentioned above, there is a 
potential to characterize local grey matter information to 
assess intrinsic architecture in brain regions and further 
investigate morphological changes in individual networks 
of AD. Our approach might provide new perspectives 
for future application in the precise personalized evalu-
ation of individuals with AD. We aimed to develop a new 
approach for constructing individual morphological sim-
ilarity based on structural patterns of grey matter voxels. 
Furthermore, we investigated the impacts of AD on mor-
phological similarity between brain regions and regional 
structural organization. Our research on morphological 
similarity networks might provide comprehensive infor-
mation on brain structural organization in AD.

Materials and methods
Participants
Data in the present study were sourced from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) data-
base (https:// adni. loni. usc. edu/). ADNI is a multicenter 
longitudinal study launched in 2003 and collects clini-
cal, genetic, and imaging data from individuals across 
the AD clinical continuum. The clinical dataset includes 
demographics and cognitive assessment data of each 
participant. Besides, to establish imaging biomarkers in 
stages of the disease, MRI and PET data of participants 
are collected. Cognitively normal older adults (CN) 
without memory complaints were enrolled as control 
participants. The inclusion criteria were a Mini-Mental 
State Examination (MMSE) score of 24-30 points and a 
Clinical Dementia Rating (CDR) score of zero. Individu-
als with a subject memory complaint were diagnosed 

with AD requiring an MMSE score of 20-26 points, a 
CDR score of 0.5 or one, and a clinician’s diagnosis using 
NINCDS/ADRDA criteria for probable AD. All par-
ticipants were assessed memory function by the Logical 
Memory II subscale from the Wechsler Memory Scale-
Revised and scored according to their years of education. 
The stability of the allowed medications for 4 weeks was 
also checked. Participants with any significant neurologic 
disease other than AD were excluded. For up-to-date 
information, please see www. adni- info. org.

In this study, we incorporated the participants accord-
ing to the following criteria. Participants had to 1) be 
diagnosed by criteria from ADNI and be categorized into 
the AD and CN groups; 2) be included in the screening 
or baseline visit; 3) have MRI images with a description 
of MPRAGE/MP-RAGE.

MRI acquisition and preprocessing
MRI scans for ADNI-1 were performed on a 1.5T or 3T 
scanner. T1-weighted images were acquired using an 
MPRAGE sequence (repetition time = 2400 ms, echo 
time = 3 ms, flip angle = 8°, thickness = 1.2 mm, in-
plane matrix size = 192 × 192, field of view = 240 × 240 
 mm2) [52]. MRI scans for ADNI-2 were performed at 3T 
with an MPRAGE protocol (repetition time = 2300 ms, 
echo time = 2.95 ms, flip angle = 9°, thickness = 1.2 mm, 
in-plane matrix size = 256 × 256, field of view = 260 × 
260  mm2). For the participants with multiple visits, we 
selected the baseline scan for the following processing 
and analysis.

The preprocessing of structural MRI images was per-
formed using the Data Processing Assistant for Rest-
ing-State fMRI (DPARSF) in the add-on toolbox for 
Data Processing & Analysis for Brain Imaging (DPABI) 
V4.3_200401 [53] and Statistical Parametric Mapping 12 
(SPM12) running on MATLAB 2021a. After reorienta-
tion and skull stripping, images of all participants were 
normalized and transformed into MNI152 space. Finally, 
structural images were segmented into grey matter, white 
matter, and CSF of 2 mm × 2 mm × 2 mm voxels. Ana-
tomical labeling of brain regions applied automated ana-
tomical labeling (AAL) atlas [54].

Information‑based similarity analysis
Information‑based similarity index
We conducted the information-based similarity 
method [51] to evaluate the similarity of structural pat-
terns in brain regions between AD and CN groups. The 
method was developed to discover the hidden struc-
ture of sequence data and compare the similarity of 
two sequences. The information-based similarity index 
quantifies the distance (or dissimilarity) between two 
sequences using the occurrence proportion of defined 

https://adni.loni.usc.edu/
http://www.adni-info.org
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elements. It has been applied to analyse symbolic 
sequences including heart rate time series [51], literary 
authorship disputes [55], and genetic sequences [56]. 
In these studies, the “words” were elements defined 
in a given length, representing a unique pattern in the 
sequence (e.g., fluctuations in time series and n-tuple 
nucleotides in genetic sequences). These words are 
then ranked according to their occurrence probabili-
ties in the sequence in descending order. The first rank 
word corresponds to the most common pattern in the 
symbolic sequence. Using the rank order of words, the 
weighted distance, denoted as D and ranging from zero 
to one, defined the dissimilarity of two sequences,  S1 
and  S2.

The weighting function F(wk) derived from Shannon’s 
entropy is as follows, where Z indicates the normaliza-
tion factor.

Here  R1(wk) and  p1(wk) denote the rank and probability 
of a given word,  wk, in the sequence  S1.  R2(wk) and  p2(wk) 
represent the same in sequence  S2.  N12 is the total num-
ber of shared words in sequence  S1 and  S2.

Structural pattern index
To capture the structural pattern in micro-scale (i.e., 
words in the IBS method), we defined the structural pat-
tern indices by relationships of grey matter intensity in 
adjacent voxels relative to a given voxel. For a voxel x, its 
grey matter intensity was compared to its six adjacent 
voxels. If the grey matter intensity in voxel x was greater 
than or equal to its neighbor voxel n (v1, v2, …, v6), the 
symbol Sn (S1, S2, …, S6) was marked with a one; other-
wise, it was marked with a zero.

(1)D(S1, S2) =
1

N12

N12
∑

k=1

|R1(wk)− R2(wk)|F(wk)

(2)F(wk ) =
1

Z
−p1(wk )log(p1(wk ))−p2(wk )log(p2(wk ))

(3)
N12
∑

k=1

F(wk) = 1

We mapped the six symbols to a binary sequence, fol-
lowing the order: right, left, anterior, posterior, superior, 
and inferior voxels. The binary sequence, representing 
intensity relationships, was then converted into a deci-
mal number (see more details in Fig. 1A). These decimal 
numbers, identified as structural pattern indices, were 
integers between zero and 63 (i.e.,  26 = 64 combina-
tions), with each index corresponding to a unique spatial 
pattern.

To ensure grey matter voxels and their neighbors were 
included in the analysis and to preserve the boundary 
information, the preprocessed structural MRI data of 
all participants were mapped with a zero-padded grey 
matter mask. This study only included grey matter vox-
els with six intact neighboring voxels. Next, we filled the 
structural pattern indices into the corresponding vox-
els to generate a map for each participant. The resulting 
images were mapped with the standard grey matter mask 
again and applied for morphological similarity analysis 
(Fig. 1B).

Structural similarity
In this study, we performed a word rank frequency anal-
ysis on 64 structural pattern indices in a specific brain 
area. We calculated the occurrence probability of each 
index and sorted it in descending order. Subsequently, 
the IBS distance between two brain areas was measured 
based on their respective index rank orders, allowing us 
to assess inter-regional structural similarity (Fig. 1C). The 
small IBS distances between brain regions are expressed 
as structural similarity.

We conducted two sections of examination to explore 
the alterations in structural similarity in AD. First, we 
computed the index rank for each brain region based on 
the group average probability of each index. The similar-
ity between a specific brain region of the two groups was 
then defined as the regional structural similarity. Brain 
areas with small regional structural similarity to the CN 
group represented the affected regions in AD. Second, we 

(4)Sn =

{

0, vx < vn
1, vx ≥ vn

(See figure on next page.)
Fig. 1 Flowchart. A Grey matter relationships with neighboring six voxels identified structural pattern indices. The binary symbol sequence, which 
represented the combination of intensity relationships, was then converted to a decimal pattern index. B Preprocessed grey matter maps were 
mapped using a zero‑padded grey matter mask. This step ensured the retention of voxels and their neighbors for morphological similarity analysis. 
Subsequently, these were mapped with the grey matter mask. C We measured the IBS distances as dissimilarity between two AAL brain regions 
based on the probabilities and rank orders of structural patterns. D The IBS distance between the original and spatial shuffled grey matter intensities 
assessed the structural randomness. The stepwise regression was used to examine the relationship of the MMSE score with structural randomness. 
E We applied the one‑sample t‑test to investigate the regional structural similarity and the independent t‑tests to explore group differences 
in inter‑regional structural similarity and structural randomness. AAL: automated anatomical labeling; IBS: information‑based similarity; MMSE: 
Mini‑Mental State Examination
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Fig. 1 (See legend on previous page.)
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calculated the inter-regional similarities between pairs of 
brain regions, resulting in 4005 (C(90,2) = 4005) struc-
tural similarities for each participant. The inter-regional 
similarities were examined to investigate whether the 
morphological associations varied with AD progression.

Structural randomness
To quantify the organizational characteristics of struc-
tural patterns in a brain region, we calculated the non-
randomness index derived from the IBS method [51]. 
The nonrandomness index is the average IBS distance 
between the original signal and its randomized sur-
rogates. A high nonrandomness index means that the 
original signal is not similar to the randomized one, sug-
gesting that it is a more regular organization. In contrast, 
a low nonrandomness index indicates a more random 
configuration. The nonrandomness index was applied to 
quantify underlying dynamics features of heart rate time 
series and effectively discriminate the healthy subjects 
and subjects with congestive heart failure [51].

In addition to structural similarity reflecting struc-
tural coordination between groups and brain regions, 
we explored structural randomness to find the underly-
ing organization of regional structure. The IBS distance 
between the structural pattern of the original and voxel-
shuffled grey matter density map evaluated the degree of 
structural nonrandomness. For every AAL brain region, 
we generated a regional zero-padded mask to extract 
neighboring voxels. Next, we created ten randomly shuf-
fled surrogates, remaining with the grey matter intensity 
information but disrupting the spatial distribution. Each 
surrogate was denoted with voxel-wise structural pattern 
indices and compared the IBS distance to the structural 
pattern map derived from the raw grey matter intensity. 
Finally, the average of ten distances was computed as the 
nonrandomness index for each brain region (Fig.  1D). 
The low nonrandomness index of a brain region is 
denoted as structural randomness.

Statistical analysis
For the demographic characteristics, we used the inde-
pendent t-test and chi-square test for the statistical anal-
ysis of continuous and categorical demographic variables 
respectively. The P value was set at 0.05.

We performed a one-sample t-test to investigate the 
regional structural similarities. The significantly large 
IBS distances were examined, setting the significance 
level at P < 0.05 (right-tailed). The comparison was used 
to identify the brain regions dissimilar in structural 
pattern between the CN and AD groups. After calcu-
lating 4005 inter-regional structural similarities for 
each participant, we performed the independent t-test 
for each inter-regional structural similarity to examine 

group differences. To correct for multiple comparisons, 
we used the Manhattan plots to investigate the thresh-
old and determined the significance at a P <  10-12 (Sup-
plementary Fig. 1 and Supplementary Fig. 2).

We performed the independent t-test on group com-
parisons in structural randomness. The Bonferroni cor-
rection was applied for multiple comparisons with P 
< 5.56 ×  10-4. Moreover, we evaluated the relationship 
between the regional structural randomness and the cog-
nitive performance of individuals with AD. In the regres-
sion models, the dependent variable was the MMSE 
score of individuals with AD and the nonrandomness 
indices of brain regions were the independent variables. 
We conducted the linear regression to identify potential 
brain regions with the significance level of P < 0.1. After 
normalizing the nonrandomness indices for these brain 
regions, we used the stepwise regression analysis using 
the stepwiselm function in MATLAB to identify brain 
regions with the significant association. We controlled 
for age, sex, and education using the generalized linear 
regression model. The significance level was set at 0.05. 
Finally, all results were visualized by the BrainNet Viewer 
(http:// www. nitrc. org/ proje cts/ bnv/) [57].

Results
Demographic characteristics
We recruited T1-weighted images and cognitive assess-
ment data from 342 cognitively normal participants and 
276 individuals with AD from the ANDI-1 and ADNI-2 
studies. There were no age and sex differences between 
the CN group (mean age = 75.41 years, 178 females) and 
the AD group (mean age = 75.08 years, 130 females). 
Besides, significant group differences were found in the 
year of education and MMSE score (CN group: mean 
education = 16.28 years and mean MMSE score = 29.12; 
AD group: mean education = 15.19 years and mean 
MMSE score = 23.20). Individuals with AD had a mean 
disease duration of 3.91 years. The demographics of the 
two groups are reported in Table 1.

Table 1 Demographics

Data are presented as mean ± SD unless otherwise stated

CN Cognitively normal older adults, AD Alzheimer’s disease
a independent t-test, bchi-square test

CN (n = 342) AD (n = 276) P Value

Age, years 75.41 ± 6.11 75.08 ± 7.74 0.57a

Sex, female, n (%) 178 (52%) 130 (47%) 0.20b

Education, years 16.28 ± 2.68 15.19 ± 3.02 <0.0001a

Duration of AD, years ‑ 3.91 ± 2.89 ‑

MMSE 29.12 ± 1.08 23.20 ± 2.09 <0.0001a

http://www.nitrc.org/projects/bnv/
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Group differences in regional structural similarity
For each brain region, we compared the regional struc-
tural similarity between the AD and CN groups, reflect-
ing alterations in the combination of structural patterns 
in individuals with AD. Significant group differences in 
regional structural similarity were found in the bilateral 
posterior cingulate gyrus, olfactory cortex, hippocam-
pus, and right anterior cingulate and paracingulate gyri 
(Fig.  2). Supplementary Table  1 provides the full group 
dissimilarities of brain regions.

Group differences in inter‑regional structural similarity
We calculated inter-regional similarity to evaluate the 
individual morphological brain network in all partici-
pants. Compared to the CN group, the left and right 
insula of the AD group showed decreased similarity to 
14 and seven other brain regions, respectively. Most of 
these regions were located in the frontal and parietal 
lobes, including the postcentral gyrus, supplementary 
motor area, middle frontal gyrus, and medial frontal 
gyrus. The right olfactory cortex of individuals with AD 
also had decreased similarity to six brain regions, nota-
bly the superior frontal gyrus, postcentral gyrus, and sup-
plementary motor area. In the temporal and subcortical 
regions, the bilateral hippocampus showed decreased 
similarity to the ipsilateral caudate nucleus and temporal 
pole (Fig. 3A).

Meanwhile, the left and right hippocampus of indi-
viduals with AD revealed increased similarity to eight 
and 11 other brain regions. These regions were found 
in the temporal, subcortical, and occipital areas, par-
ticularly in the contralateral temporal pole, middle 
temporal gyrus, ipsilateral parahippocampal gyrus, 

left superior temporal gyrus, and left fusiform gyrus 
(Fig.  3B). Supplementary Table  2 presents the full 
details of group differences in inter-regional structural 
similarity.

Altered structural randomness in AD
We calculated the nonrandomness index of each brain 
region to investigate the differences in structural pattern 
organization between the two groups. Compared to the 
CN group, individuals with AD significantly decreased 
in structural randomness in the temporal and subcorti-
cal regions. Specifically, this decrease was evident in the 
right insula, bilateral hippocampus, anterior cingulate 
and paracingulate gyri, and temporal pole. Meanwhile, 
significant increases in structural randomness were 
found in the occipital and frontal regions, notably in the 
left inferior occipital gyrus, left caudate nucleus, and 
bilateral superior frontal gyrus. Fig. 4 illustrates the brain 
regions with alternation in structural randomness (see 
Supplementary Table 3 for full comparisons).

Association of structural randomness with cognitive 
performance in AD
In individuals with AD, we investigated the relationship 
between the structural randomness feature and cogni-
tive performance using a regression analysis. The result 
showed that the MMSE score was associated with the 
structural randomness in the right supramarginal gyrus 
(β = 0.34, SE = 0.09, P < 0.001), left angular gyrus (β = 
0.26, SE = 0.09, P = 0.003), right anterior cingulate and 
paracingulate gyri (β = -0.20, SE = 0.08, P = 0.009), right 
hippocampus (β = -0.20, SE = 0.08, P = 0.01), and left 

Fig. 2 Brain regions with significant difference in regional structural similarity. We first generated the group average probability of structural pattern 
indices. Next, we calculated the distances (dissimilarities) for the same region between the CN and AD groups. The nodes represent the brain 
regions with significant dissimilarity, and the colors illustrate the IBS distances. AD: Alzheimer’s disease; CN: cognitively normal older adults; IBS: 
information‑based similarity; ACG: anterior cingulate and paracingulate gyri; HIP: hippocampus; OLF: olfactory cortex; PCG: posterior cingulate gyrus
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middle temporal gyrus (β = -0.50, SE = 0.10, P < 0.001) 
(see more details in Fig.  5 ,  Supplementary Fig.  3,  and 
Supplementary Table 4).

Discussion
In this study, we developed a novel method to iden-
tify micro-structural patterns, enabling the estimation 
of morphological similarity and structural randomness 

Fig. 3 Altered inter‑regional structural similarities in AD. We calculated the inter‑regional distances to evaluate the individual morphological 
similarities in all participants. A The nodes represent brain regions where individuals with AD showed significantly decreased inter‑regional 
structural similarity. B The nodes represent the brain regions where inter‑regional structural similarity significantly increased in individuals with AD. 
The edges illustrate pairs of altered similarities, with colors representing the t values from comparisons between AD and CN groups. AD: Alzheimer’s 
disease; CN: cognitively normal older adults; HIP: hippocampus; INS: insula; OLF: olfactory cortex

Fig. 4 Group differences in structural randomness of brain regions. We calculated the nonrandomness index for each brain region and investigated 
the group differences. The colors represent the t values from group comparisons between AD and CN groups. AD: Alzheimer’s disease; CN: 
cognitively normal older adults
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based on regional pattern configuration. The present 
study has four main findings. First, large-scale alterations 
in morphological similarity were found in the AD group. 
Compared to the CN group, the AD group exhibited 
decreased inter-regional structural similarities between 
the insula and frontal and parietal regions. Second, the 
hippocampus increased inter-regional structural simi-
larities with the temporal, subcortical, and occipital areas 
in individuals with AD. Third, individuals with AD had a 
more regular morphological organization in the temporal 
and subcortical regions, while the occipital and frontal 
areas tended to have a more randomized arrangement of 
structural patterns. Finally, our stepwise regression anal-
ysis showed that the morphological randomness in five 
brain regions of individuals with AD was associated with 
overall cognitive performance.

Methodology of morphological similarity network
To the best of our knowledge, this is the first study using 
the local structural features—based on the grey matter 
intensity relationship between neighboring voxels—to 
construct structural patterns and investigate the indi-
vidual inter-regional similarity. Grey matter volume and 
cortical thickness were initially used in past studies of 
structural networks to measure regional morphology. 
Recent studies extended to include surface-based indi-
ces, geometric measures, and diffusion metrics through 
multimodal MRI data to capture microstructure and 
complement different morphological information [39, 40, 
43, 47]. In addition to regional structure, Tijms et al. [41] 
extracted the grey matter density in the cubes of 27 voxels 
to preserve the three-dimensional structure and spatial 
information. This approach reflected the local features 
and speculated the possible mechanism of intracortical 

similarities as axon tension theory [58]. The theory pro-
posed that connected cortical areas are pulled by a 
mechanical force and become thinner or thicker. Hilg-
etag & Barbas [59, 60] also proved that axon-connectivity 
had an influence on morphology by the tracer studies in 
the primate brains. Moreover, Seidlitz et  al. [40] exam-
ined the consistency between the distribution of mor-
phological similarity and cortical cytoarchitecture using 
MRI and diffusion-weighted imaging (DWI) data. They 
found a strong association between morphometric simi-
larity and both cytoarchitectonic and genomic measures 
of histological similarity, further linking this association 
to axonal connectivity [61, 62]. These findings supported 
that morphological similarity based on MRI measure-
ments could serve as an approximate marker for axonal 
connectivity with histological validity. Seidlitz et al. [40] 
also compared structural networks constructed only by 
structural covariance or diffusion tractography. The per-
formance in cytoarchitectonic alignment was found to 
be relatively weaker in DWI networks. This difference 
might arise from challenges associated with reconstruct-
ing long-distance and interhemispheric connections [63]. 
Our method focused on local patterns of grey matter and 
annotated within the anatomical regions, which might 
preserve more accurate and intact morphological infor-
mation. Because we identified the relationship of adja-
cent voxels in the determined order, future studies could 
potentially infer morphological changes from the struc-
tural pattern indices. The advancement of ultra-high field 
MRI has enabled the imaging of micro-anatomic struc-
tures, including cortical layers. Kenkhuis et  al. used 7T 
T2*-weighted MRI to observe disturbances in cortical 
lamination of MTL in individuals with AD [64]. Mapping 
the distribution of morphological similarity and layered 

Fig. 5 Brain regions with structural randomness associated with cognitive performance in AD. The nodes represent the brain regions 
where the nonrandomness indices correlated with the cognitive performance in individuals with AD. The colors illustrate the beta coefficients 
derived from the stepwise regression analysis. AD: Alzheimer’s disease; ACG: anterior cingulate and paracingulate gyri; ANG: angular gyrus; HIP: 
hippocampus; MTG: middle temporal gyrus; SMG: supramarginal gyrus.
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cortical structure may complement information on spe-
cific patterns of atrophy. Finally, further research is war-
ranted on extracting information from the voxels near 
brain regional boundaries and constructing reproducible 
similarity networks with a biological basis.

Morphological pattern in cognitively normal older adults
We first evaluated the morphological similarity in cog-
nitively normal older adults to demonstrate the inter-
regional properties constructed by our method. The 
detailed results of the CN group can be found in the sup-
plementary information. In the CN group, we observed 
that several regions, including bilateral precentral gyrus, 
middle frontal gyrus, right postcentral gyrus, left superior 
parietal gyrus, right supramarginal gyrus, and left precu-
neus showed structural patterns similar to many other 
brain regions. These regions were located at the sensori-
motor and association cortex. Montembeault et  al. [65] 
found that the sensorimotor cortex remained stable in 
structural covariance during normal aging. Meanwhile, 
we noted the regions with structural similarity also 
shared spatial proximity. Our results were consistent with 
previous findings that the strength of structural similar-
ity was inversely related to the physical distance between 
regions [18, 66]. Oppositely, the bilateral globus pallidus 
(GP) were dissimilar in structural pattern to other brain 
areas. Past studies have subdivided the GP into an inter-
nal and an external segment and found topographically 
and functionally segregated clusters and pathways in the 
GP [67, 68]. These findings jointly suggested that corti-
cal regions involved in the same function were similar in 
structural pattern, while subcortical areas with subdivi-
sions had their unique structural arrangement. Further-
more, our method may reflect the property of structural 
similarity between brain regions based on cortical func-
tion and topological arrangement.

Moreover, we found lower structural randomness in 
the bilateral amygdala, left temporal pole, and left thal-
amus, indicating a more regular configuration of the 
structural patterns in these regions. The amygdala, com-
prises a collection of nuclei, is regarded as the integrative 
core of emotion. Previous findings have highlighted the 
amygdala was observed to tend to retain structural integ-
rity during normal aging [69, 70]. Concurrently, the tem-
poral pole regions and thalamus, characterized by their 
complex structures and involved in high-order cognitive 
functions and relaying information, also showed relative 
preservation in the age-related grey matter alteration 
[71–73]. Although previous studies have yielded incon-
sistent results on structural changes in these regions, we 
speculated that brain regions with complex structure and 
function might have unique and stable structural organi-
zation, as reflected by the structural randomness.

Regional structural similarity altered in individuals with AD
In the AD group, we found significant differences in 
regional structural similarity in the bilateral posterior 
cingulate gyrus, olfactory cortex, hippocampus, and right 
anterior cingulate and paracingulate gyri compared to the 
CN group. These brain areas were detected as structural 
atrophy and vulnerable to AD [7, 74, 75]. Past studies 
found the posterior cingulate cortex and hippocampus as 
core regions in the structural network in the early stage 
of AD. The degenerations in these regions were observed 
earlier and could predict atrophy in other brain regions, 
correlating with the progression of AD [76, 77]. Our 
results further revealed that vulnerable brain regions in 
AD might disrupt the configuration of structural patterns 
rather than homogeneous atrophy in all regions.

Altered inter‑regional structural similarity in individuals 
with AD
Compared to the CN group, we observed a decrease in 
inter-regional structural similarity between bilateral 
insula and both frontal and parietal regions in individu-
als with AD. The insula is the crucial hub of the human 
brain networks, integrating information from differ-
ent functional systems that support sensory, emotional, 
motivational, and cognitive processing [78, 79]. Studies 
in nonhuman primates have described widespread struc-
tural connections of the insula with frontal, parietal, tem-
poral, and subcortical regions [79, 80]. In human studies, 
Ghaziri et  al. [81] performed structural connectivities 
between the insula and several regions, including the 
orbitofrontal cortex, the supplementary motor area, the 
primary motor, and the somatosensory cortices. Mean-
while, the insular cortex was found to be vulnerable to 
AD pathology and altered functional connectivity in indi-
viduals with mild cognitive impairment (MCI) and AD 
[82–84]. Xie et  al. [84] demonstrated that both anterior 
and posterior insula networks exhibited decreased posi-
tive connectivity in the dorsolateral prefrontal cortex and 
temporal pole in individuals with amnestic MCI. These 
brain regions were aligned with our findings of decreased 
inter-regional structural similarities to the insula.

Additionally, we noted reduced inter-regional similari-
ties between the bilateral hippocampus and the ipsilateral 
caudate nucleus. The hippocampus plays a crucial role in 
learning and memory, and its impairment is widely asso-
ciated with episodic memory deficits in the early stage 
of AD [85]. Furthermore, the hippocampus is a central 
structure in various memory systems and interacts with 
various regions across different brain networks [86, 87]. 
Several studies have indicated that the ipsilateral interac-
tion between the hippocampus and the caudate nucleus 
involved navigation and map-based spatial memory [86, 
88, 89]. The topographical disorientation in AD was 
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characterized as clinical significance and might serve as 
a potential biomarker for detecting AD in the preclinical 
stages [90, 91]. Taken together, our findings supported 
the disconnection hypothesis of AD and implied the 
probable relationship between dysfunction and micro-
scale morphological patterns.

In the meantime, we observed increased inter-regional 
similarities between the hippocampus and the temporal, 
subcortical, and occipital regions in individuals with AD. 
These regions included the temporal pole, middle tempo-
ral gyrus, parahippocampal gyrus, left superior temporal 
gyrus, and left fusiform gyrus. While many studies have 
reported disrupted inter-regional connectivity in indi-
viduals with AD, a few have observed increased connec-
tivity. In particular, studies of structural and functional 
networks in AD have found increased connections in 
salience networks [32, 92]. Dautricourt et  al. [93] found 
increased functional connectivity between the anterior 
hippocampus and perirhinal cortex seeds and left ante-
rior medial temporal regions in individuals with AD com-
pared to controls. The increased structural covariance 
may represent the hyperconnectivity or synchronized 
deterioration between brain regions [18]. To interpret the 
clinical implications of the structural similarity and elu-
cidate the underlying mechanism, more research is war-
ranted, especially including participants with severe AD 
and incorporating functional data.

Structural randomness and its relationship to cognitive 
performance
Individuals with AD had a significantly lower level of 
structural randomness in the temporal and subcortical 
areas, including the right insula, bilateral hippocampus, 
anterior cingulate and paracingulate gyri, and tempo-
ral pole. Meanwhile, the occipital and frontal regions 
showed increases in randomness, notably in the left infe-
rior occipital gyrus, left caudate nucleus, and bilateral 
superior frontal gyrus. Importantly, we focused on the 
intra-regional morphological organization rather than 
properties between regions. Bonthius et  al. [82] found 
that the severity of insular pathology was affected by 
different cytoarchitectonic arrangements in individuals 
with AD. Our results showed that brain regions vulnera-
ble to the early stage of AD tended to have a more regular 
pattern arrangement. The occipital and frontal regions 
affected in the late stage of AD reveal a more random 
configuration of structural patterns. Together, these find-
ings suggested that the regular morphological configura-
tion may be vulnerable to pathology and associated with 
regional atrophy. Further research is needed to clarify the 
biological mechanism and reliability.

Furthermore, we found an association between the 
MMSE score in individuals with AD and the morphological 

randomness in the right supramarginal gyrus, left angular 
gyrus, right anterior cingulate and paracingulate gyri, right 
hippocampus, and left middle temporal gyrus. The angular 
gyrus, a part of the parietal association cortex, is consid-
ered the major connecting hub of complex language func-
tions [94]. Anatomical tracer studies have illustrated the 
structural connection between the angular gyrus and pos-
terior supramarginal gyrus, middle temporal gyrus, and 
hippocampus [95–97]. These brain regions were consist-
ent with our results and functionally involved in seman-
tic processing and episodic memory retrieval [94, 98]. 
Individuals with AD exhibited measurable semantic and 
memorial deficits in the early disease stage [85, 99, 100]. 
Taken together, our results suggested that the structural 
organization of specific brain regions might have a rela-
tionship with cognitive function, potentially reflecting the 
factors affecting cognitive performance.

Limitations
The present study still comes with some limitations. First, 
we used a cross-sectional design to explore morphological 
similarity in AD. It is essential to confirm the progression 
of structural patterns in one individual using longitudinal 
data in future studies. Second, MRI data from ADNI-1 
were acquired at 1.5T and 3T. Although the data distribu-
tions of field strengths match in the two groups, we could 
not completely rule out the probable effect. Furthermore, 
we did not apply graph-based network analysis but focused 
on inter-regional similarity. Finally, we only used MMSE to 
assess the cognitive performance of participants. MMSE 
was often observed with the ceiling effect and might not 
detect early cognitive impairment reliably [101]. Incorpo-
rating a broader range of cognitive assessments could help 
clarify the relationship between cognitive functions and 
morphological similarity.

Conclusions
In conclusion, the present study developed a novel 
method to construct individual morphological similar-
ity networks based on the grey matter intensity relation-
ship between neighboring voxels. With this approach, we 
found individuals with AD had decreased inter-regional 
structural similarity between the insula and frontal 
regions, while the hippocampus revealed increased inter-
regional structural similarity to temporal and subcortical 
regions. In addition, we observed decreased structural 
randomness in the temporal and subcortical regions 
while increased structural randomness in the occipital 
and frontal regions. Notably, the MMSE score in indi-
viduals with AD was associated with structural random-
ness in five brain regions. Our morphological similarity 
network approach could provide valuable insight into the 
whole-brain structural organization of AD.
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