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Abstract
Background Predicting future Alzheimer’s disease (AD)-related cognitive decline among individuals with subjective 
cognitive decline (SCD) or mild cognitive impairment (MCI) is an important task for healthcare. Structural brain 
imaging as measured by magnetic resonance imaging (MRI) could potentially contribute when making such 
predictions. It is unclear if the predictive performance of MRI can be improved using entire brain images in deep 
learning (DL) models compared to using pre-defined brain regions.

Methods A cohort of 332 individuals with SCD/MCI were included from the Swedish BioFINDER-1 study. The goal 
was to predict longitudinal SCD/MCI-to-AD dementia progression and change in Mini-Mental State Examination 
(MMSE) over four years. Four models were evaluated using different predictors: (1) clinical data only, including 
demographics, cognitive tests and APOE ε4 status, (2) clinical data plus hippocampal volume, (3) clinical data plus all 
regional MRI gray matter volumes (N = 68) extracted using FreeSurfer software, (4) a DL model trained using multi-task 
learning with MRI images, Jacobian determinant images and baseline cognition as input. A double cross-validation 
scheme, with five test folds and for each of those ten validation folds, was used. External evaluation was performed on 
part of the ADNI dataset, including 108 patients. Mann-Whitney U-test was used to determine statistically significant 
differences in performance, with p-values less than 0.05 considered significant.

Results In the BioFINDER cohort, 109 patients (33%) progressed to AD dementia. The performance of the clinical 
data model for prediction of progression to AD dementia was area under the curve (AUC) = 0.85 and four-year 
cognitive decline was R2 = 0.14. The performance was improved for both outcomes when adding hippocampal 
volume (AUC = 0.86, R2 = 0.16). Adding FreeSurfer brain regions improved prediction of four-year cognitive decline 

Comparing a pre-defined versus deep 
learning approach for extracting brain atrophy 
patterns to predict cognitive decline due 
to Alzheimer’s disease in patients with mild 
cognitive symptoms
Ida Arvidsson1*, Olof Strandberg2, Sebastian Palmqvist2,3, Erik Stomrud2,3, Nicholas Cullen2, Shorena Janelidze2, 
Pontus Tideman2,3, Anders Heyden1, Karl Åström1, Oskar Hansson2,3 and Niklas Mattsson-Carlgren2,4,5*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13195-024-01428-5&domain=pdf&date_stamp=2024-3-18


Page 2 of 14Arvidsson et al. Alzheimer's Research & Therapy           (2024) 16:61 

Introduction
Alzheimer’s disease (AD) affects millions of individuals 
worldwide. AD dementia is characterized by a prolonged 
prodromal phase in which amyloid pathology accumu-
lates in the brain before cognitive decline starts [1]. The 
subsequent onset of tau pathology and atrophy tracks 
more closely with occurrence of symptoms in the early 
phase of the disease in which individuals experience only 
subjective cognitive decline (SCD), or cognitive decline 
that qualify for mild cognitive impairment (MCI) [1, 2]. 
However, despite this understanding of the pathophysi-
ological cascade of AD, it is not straight forward which 
individuals, who are present in a clinical setting with 
SCD/MCI, will progress to AD dementia (early AD) ver-
sus those that remain with stable SCD/MCI or develop 
other dementias (non-AD) [3–5]. It is also often unclear 
at which rate individuals with SCD/MCI will continue 
to decline cognitively, particularly due to varying bio-
logical resiliency to AD pathology at the individual level 
[6]. With the recent breakthroughs in disease-modifying 
treatments (DMT) against AD [7, 8], it may be possible to 
alter the course of disease in patients with SCD/MCI due 
to AD. Given the heterogeneity of the SCD/MCI popula-
tion, it is now urgent to bring forward methods that can 
guide physicians when making decisions about which 
patients that are most likely to benefit from receiving 
DMTs targeting AD pathology.

To improve the prognosis of AD-related cognitive 
changes, artificial intelligence (AI) could be useful. Fea-
tures from clinical data and different biomarker modali-
ties can automatically be extracted and combined, to 
guide in the discrimination between individuals who will 
remain with SCD/MCI and those who will be diagnosed 
with AD dementia. One of the most common imaging 
modalities used for this task is magnetic resonance imag-
ing (MRI). Several previous studies have utilized AI and 
MRI for this, including for example [9–24]. As can be 
seen in the review by Grueso et al. [25], the AI methods 
used vary but often include the support vector machine. 
However, in more recent studies the usage of deep learn-
ing (DL) and convolutional neural networks (CNN) have 
become frequent thanks to larger datasets and increased 
computational power. With DL it is possible to extract 

complex features from a large amount of data, such as a 
3D MRI image. A review of publications regarding AD 
dementia detection using DL is given in [26], showing 
that MRI is the most widely available and used biomarker 
for this task, but a variety of DL models are used, includ-
ing both voxel-based, slice-based, patch-based and region 
of interest-based. Despite this development in methods, 
there is only a few studies [14, 22] that objectively com-
pare the performance of AI methods with more intuitive 
methods, such as logistic or linear regression models with 
a restricted number of predictors of cognitive decline in 
the early stages of AD. In SCD/MCI patients, there is also 
a lack of studies for prediction of longitudinal cognitive 
decline using commonly used continuous measures of 
cognition, rather than progression to AD dementia as an 
outcome.

The main goal of the present study was to perform an 
unbiased comparison between models utilizing different 
baseline information for prediction of future cognitive 
decline in SCD/MCI patients. This is done to understand 
which variables hold the most information and which 
method is the most accurate. Two different predictions 
were done – progression from SCD/MCI to AD demen-
tia within four years (binary outcome) and four-years 
Mini Mental State Examination (MMSE) slope (continu-
ous outcome). The variables evaluated were demographic 
information, baseline cognition based on cognitive tests, 
APOE genotype, predefined volumetric variables, and 
MRI images. The models used were logistic and linear 
regression, random forest as well as a DL model consist-
ing of a three-dimensional (3D) CNN. Understanding 
and evaluating the clinical usefulness of these models 
have rarely been done in an independent and prospec-
tive manner. The present study aims to answer whether 
most of the prognostic information about cognitive 
decline in an MRI scan is contained in features of the 
brain (1) which can be obtained through volumetric 
analysis of pre-specified brain regions, or (2) which can 
only be obtained through an AI model identifying novel 
and previously unspecified patterns of brain structure. 
In this sense, the present study can provide insight as to 
which level of abstraction prognostic information for AD 
dementia progression is found.

but not progression to AD (AUC = 0.83, R2 = 0.17), while the DL model worsened the performance for both outcomes 
(AUC = 0.84, R2 = 0.08). A sensitivity analysis showed that the Jacobian determinant image was more informative than 
the MRI image, but that performance was maximized when both were included. In the external evaluation cohort 
from ADNI, 23 patients (21%) progressed to AD dementia. The results for predicted progression to AD dementia were 
similar to the results for the BioFINDER test data, while the performance for the cognitive decline was deteriorated.

Conclusions The DL model did not significantly improve the prediction of clinical disease progression in AD, 
compared to regression models with a single pre-defined brain region.

Keywords Alzheimer’s disease, Cognitive decline, Deep learning
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Methods
Cohort description – BioFINDER
Individuals with SCD or MCI were included from 
the Swedish BioFINDER-1 study (clinical trial no. 
NCT01208675). The study protocol is described in detail 
before [27]. Briefly, the consecutively recruited par-
ticipants in BioFINDER-1 are aged between 60 and 80 
years, perform ≥ 24 points on the MMSE, and have been 
referred to any of the participating memory clinics due to 
cognitive complaints. A neuropsychological assessment 
including a comprehensive test battery was used to clas-
sify participants as SCD or MCI as previously described 
[28]. All patients with MCI were classified based on 
the DSM-5 criteria for MCI [29]. Note however, that 
for this study the SCD and MCI groups were analyzed 
together, since the aim of the project was to develop 
methods that would be useful for longitudinal predic-
tions in an unselected group of patients with cognitive 
complaints, prior to dementia. Exclusion criteria were 
cognitive impairment that could be better accounted 
for by another non-neurodegenerative condition, severe 
somatic disease, and current alcohol or substance abuse. 
Only patients with available baseline MRI scans and lon-
gitudinal cognitive follow-up of at least four years from 
baseline were included here. Demographic information 
(age, sex, education), APOE ε4 carriership status (nega-
tive/positive) and baseline cognition (MMSE score and 
Alzheimer’s Disease Assessment Scale [ADAS] delayed 
word recall) were collected for all individuals.

To guarantee reproducibility and robustness of the 
models, a double cross-validation scheme was used, such 
that the data from all individuals could be utilized for 
both training, validation and test. A five-fold division into 
development set (80%, used for training and validation) 
and test set (20%) was used. A stratified random split 
was used, such that there was no significant difference 

between development and test sets in the distribution of 
diagnosis, age, education, sex, or APOE status. The strati-
fied random split was produced by randomly splitting 
the dataset until a division fulfilling the constraints was 
obtained. For the development sets a 10-fold cross-vali-
dation was used, where the folds were drawn such that 
the same ratio of early AD and non-AD was obtained for 
each fold, but otherwise randomly. Similarly to the divi-
sion into test and development, the stratified random 
split was produced by randomly splitting the dataset 
until a division fulfilling the constraints was obtained. 
The double cross-validation scheme was chosen to get 
robustness and good estimates of the uncertainties of the 
results. An overview of the demographics for the cohort 
can be seen in Table 1.

Cohort description – ADNI
A sub cohort of the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) dataset was used for independent eval-
uation. All participants included had MCI at baseline, 
at least four-year longitudinal cognitive follow-up from 
baseline and either MCI or AD dementia after four years. 
The same variables as included from the BioFINDER 
cohort where included, including MRI images. An over-
view of the demographics for the cohort can be seen in 
Table 1.

Study outcomes
There were two outcomes of interest. The primary binary 
outcome was four-year progression to AD dementia, 
where a clinical diagnosis of AD dementia during the four 
years follow-up was considered as a progression. Clinical 
status of AD dementia was evaluated according to the 
DSM-5 criteria for major neurocognitive disorders and 
recorded at each visit by a senior neuropsychologist and 
experienced memory disorder specialist. Additionally, a 

Table 1 Demographic of patients included in the study
BioFINDER-1 cohort ADNI cohort
Non-AD Early AD Non-AD Early AD

No. of subjects 332 108
223 (67.2%) 109 (32.8%) 85 (78.7%) 23 (21.3%)

MCI 92 (41.2%) 78 (71.6%) 85 (100%) 23 (100%)
Female 106 (47.5%) 51 (46.8%) 27 (31.8%) 10 (43.5%)
Age (years) 70.2 ± 5.5 72.1 ± 4.7 70.9 ± 7.0 74.0 ± 4.9
Education (years) 12.0 ± 3.7 11.8 ± 3.5 16.1 ± 2.6 16.1 ± 2.9
Baseline MMSE score 28.2 ± 1.7 27.1 ± 1.7 28.3 ± 1.5 25.9 ± 2.2
APOE ε4 0.4 ± 0.6 1.0 ± 0.7 0.5 ± 0.7 0.9 ± 0.7
ADAS-cog delayed recall (no of errors) 4.2 ± 2.4 6.7 ± 2.1 4.1 ± 2.2 6.6 ± 2.4
Hippocampal volume (mm3) 3339 ± 480 2927 ± 415 3592 ± 447 3130 ± 483
Intracranial volume (cm3) 1136 ± 153 1114 ± 107 1502 ± 134 1440 ± 155
Aβ-positive 25% 100% 29% 82%
Values are n (%) or mean ± standard deviation. Aβ-status defined by CSF Aβ42/Aβ40 in BioFINDER-1 (available in N=238) and by 18F-florbetapir in ADNI (available 
in N=85). The BioFINDER cohort was used for both training, validation and testing, in a double cross-validation setting. The ADNI cohort was used for external 
evaluation
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diagnosis of AD dementia was only used if the partici-
pant had an abnormal cerebrospinal fluid profile consis-
tent with AD pathological change. The diagnostic process 
is described in detail in [27]. The primary continuous 
outcome was four-year cognitive decline as measured by 
the change from baseline in the MMSE score. MMSE is 
a measure of global cognition, and ranges from 0 to 30 
where lower scores indicate worse cognition. Four-year 
cognitive decline was measured by fitting linear regres-
sion models for each individual separately using all avail-
able follow-up data within four years from baseline, then 
extracting the estimated regression slope.

MRI procedures
T1-weighted MRI was performed on a 3T Skyra MRI 
scanner (Siemens Healthineers, Erlangen, Germany) pro-
ducing a high-resolution anatomical MP-RAGE image 
(TR = 1950 ms, TE = 3.4 ms, 1  mm isotropic voxels, 178 
slices). The MRI images were minimally processed using 
skull stripping, bias correction, and normalization to 
MNI152 template space [30] using ANTS [31] (normal-
ized using a multi-resolution level [shrink factors = 8, 4, 2, 
1, and smoothing sigmas = 3, 2, 1, 0] approach with rigid 
[mutual information metric 32 bins, regular sampling 
25%], affine [mutual information metric 32 bins, regular 
sampling 25%] and SyN [affine + deformable, cross cor-
relation metric, search radius = 4, full sampling]). Corti-
cal reconstruction and volumetric segmentation were 
performed with the FreeSurfer image analysis pipeline, as 
described previously [32]. The Jacobian determinant (JD) 
images where computed based on the anatomical MRIs 
non-linear warp to template space and quantify the local 
deformations, wherein reduced brain matter and atro-
phy are gauged. Thus, the MRI images are used in native 
space, as a normalization to MNI space could erase the 
crucial information, while the JD images are in MNI tem-
plate space as they map out the expansion/contraction 
of voxels relative a normal brain and are expected to add 
some information to the MRI in the form of tissue loss 
and atrophy relative a normal template brain.

Sets of predictors
Several a priori measurements are related to change 
in cognition, wherefor we investigated several differ-
ent types of data and models, see Fig. 1. The first model 
[“Clinical data model”] utilized readily available demo-
graphics information (age, sex, and education), MMSE 
score, ADAS delayed word recall [33] and APOE status. 
The second model [“Hippocampal volume model”], used 
hippocampal volume (average of left and right hemi-
sphere) as well as intracranial volume added to the clini-
cal data model. The third model [“FreeSurfer model”], 
used regional brain volumes from the FreeSurfer pipe-
line together with intracranial volume added to the 

clinical data model. The fourth model [“DL model”] used 
whole brain MRI and JD images along with the clinical 
data variables in a CNN model. The different models are 
described in more detail below.

Basic and Volumetric models
For the clinical data model and the hippocampal volume 
model we trained logistic regression models for predic-
tion of progression to AD dementia and linear regression 
models for prediction of longitudinal cognitive decline. 
For the FreeSurfer models, random forest was used.

For all of the models the features were standardized 
by removing the mean and scaling to unit variance. The 
models were optimized using the Scikit-learn library (v. 
0.22) in Python (v. 3.5) [34]. For the random forest mod-
els, the random forest classifier was used for prediction 
of progression to AD dementia and the random forest 
regressor was used for prediction of longitudinal cogni-
tive decline, both with default parameters.

Deep learning models
CNNs work by learning a successively more complex rep-
resentation of images across its increasing layers, where 
the earliest layers closest to the input image are acti-
vated by simple shapes such as edges, followed by more 
complex structures. This method of creating an increas-
ing complex visual representation is similar to how the 
brain’s visual cortex processes images. We used the CNN 
architecture suggested by Spasov et al. [14], which is a 
parameter-efficient network, reducing the risk of overfit-
ting when using small datasets, and has previously been 
proven successful [13, 14]. We modified the network 
slightly for our settings, see Supplementary Fig.  1. The 
model utilizes both the MRI image, the JD image and the 
clinical data. The main modification done compared to 
[14] was to train the network for new tasks using multi-
task learning [35], which reduces the risk of overfitting 
the model.

When using multi-task learning the network is trained 
for several tasks simultaneously, which for example can 
be beneficial when the dataset used is limited in size 
and thus the risk of overtraining is high. The multi-task 
learning was implemented by using three output layers, 
one for each of the tasks (i) discrimination for four-year 
progression to AD with sigmoid activation and class 
weighted categorical cross-entropy loss L1, (ii) predic-
tion of four-year cognitive decline measured with MMSE 
slope with linear activation and mean-squared-error loss 
L2, and (iii) prediction of hippocampal volume with lin-
ear activation and mean-squared-error loss L3. Thus, 
each training example was used for all three tasks and 
the total loss function L  was a weighted sum of the three 
individual ones with weights w1, w2, w3 ,
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 L = w1L1 + w2L2 + w3L3.  (1)

Depending on which task was the main one, the weight-
ing of the different individual losses was modified. For 
the model discriminating four-year progression to AD, 
we used w1 = 1 and w2 = w3 = 0.025 which was found 
being a good configuration by testing values in the range 
0-0.1, see Supplementary Table 1. Similarly, we used 
w2 = 1 and w1 = w3 = 0.025 for the model predicting 
MMSE slope, see Supplementary Table 2.

The size of our MRI images and JDs differed slightly 
from the sizes used in the work by Spasov et al. [14]. To 
be able to use the same network architecture, the MRIs 
were cropped, and the JDs were padded with zeros. The 
MRI images were rescaled to have voxel values in range 
[-1, 1], by dividing by 0.5 times the largest voxel value in 
the entire MRI set and subtracting 1. No normalization 
of the JD images was done. The clinical data was all indi-
vidually rescaled to have values in range [0,1], by remov-
ing the minimum value and dividing by the difference 
between the maximum and minimum value. The normal-
ization techniques were based on the ones used in [14], 

but slightly modified based on performance on validation 
data.

Similar to the settings used in [14], the network was 
trained for 50 epochs using the Adam optimizer with 
the same learning rate scheduler. The model was imple-
mented based on the code provided by [14] but with the 
final layers modified to be able to use multi-task learn-
ing. The implementation was done in Python (version 
3.8) using the Keras library [36] with TensorFlow [37] 
as backend and trained on a Nvidia Tesla V100 graphics 
card with 32GB VRAM.

Statistical analysis
The primary analysis involved the models described 
above. A sensitivity analysis was also performed look-
ing at the effect of including the MRI image only, the JD 
image only, or both in the DL model. Due to the training 
of each DL model taking several days, only one test fold 
was used in the sensitivity analysis. To improve model 
interpretability, canonical patterns of brain atrophy for 
the DL model were identified. Brain atrophy patterns are 
individualized in nature, so the block occlusion method 

Fig. 1 Overview of study. The study consisted of three parts: participant selection, model fitting, and model evaluation
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was followed whereby parts of the image were systemati-
cally set to 0 and model performance was evaluated with 
these images and compared to images without any occlu-
sion. Performing this procedure by systematically black-
ing out all parts of the image at different trials results in 
a whole brain atrophy pattern where it is assumed that 
regions whose blacking out results in a large decrease in 
model performance must be important to the DL model 
[38, 39]. This was done for five non-AD and five early AD 
individuals. The average of the results from the ten folds 
and ten individuals were used for the final illustrations.

The performance metric of interest for the binary out-
come of four-year progression to AD dementia was area 
under the receiver operating characteristics curve (AUC) 
and Matthews correlation coefficient (MCC). For the 
continuous outcome of four-year cognitive decline, the 
performance metric of interest was R2.

The model fitting procedure involved first performing 
10-fold cross validation on the development set, where 
the training set was the part of the data used to determine 
model parameters and the validation set was the part of 
the development set which was held out during cross 
validation to evaluate model parameters without looking 
at the test set. Once model parameters were determined 
from this internal cross validation procedure, perfor-
mance was finally evaluated on the previously unseen 
test set and reported as the mean for the ten folds. Five 
different BioFINDER test sets were used, using a double 
cross-validation scheme. External evaluation on ADNI 
data was performed after all models had been finalized.

Statistically significant differences in demographics 
were determined using p-values from Fisher’s exact test 
(sex) or t-test for independent samples (remaining vari-
ables). To determine statistically significant differences in 
performance on the test sets for the different models, the 
results from the 10 folds were used in a Mann-Whitney 
U-test using the Scipy library (v. 1.4.1) in Python (v. 3.5). 
All p-values less than 0.05 were considered significant. 
Bootstrapping on the test sets was used to estimate 95% 
confidence intervals (CI).

Results
Cohort characteristics
A total of 332 participants from the Swedish Bio-
FINDER-1 study were included in the present analysis, 
whereof 223 participants were non-AD participants who 
were cognitive stable with SCD or MCI for at least four 
years and the remaining 109 participants were early AD 
participants with SCD or MCI at baseline who subse-
quently progressed to AD dementia. As external valida-
tion, 108 participants from the ADNI cohort with MCI at 
baseline were included, whereof 85 participants remained 
with MCI for at least four years and the remaining 23 
participants progressed to AD dementia.

In the BioFINDER cohort, the non-AD participants 
did not differ from early AD participants significantly 
on education (12.0 years vs. 11.8 years average, p-value 
0.72), sex (47.5% female vs. 46.8% female, p-value 0.91) 
or intracranial volume (1136 cm3 vs. 1114 cm3 average, 
p-value 0.13), but the early AD group had a higher ratio 
of MCI (71.6% MCI vs. 41.2% MCI, p-value < 0.001), was 
older (72.1 years vs. 70.2 years average, p-value < 0.05), 
had lower baseline MMSE (27.1 vs. 28.2 average, 
p-value < 0.001), higher APOE ε4 allele presence (1.0 vs. 
0.4, p-value < 0.001), worse ADAS score (6.7 vs. 4.2 aver-
age, p-value < 0.001) and smaller hippocampal volume 
(2927 mm3 vs. 3339 mm3 average, p-value < 0.001). The 
same trends could be seen in the ADNI cohort, except 
that all included participants were MCI.

Performance for predicting four-year progression to AD
The clinical data model consisting of demographics (age, 
sex, and education), MMSE score, ADAS delayed word 
recall and APOE status had a mean BioFINDER test 
AUC of 0.850 (CI 0.698–0.954) and MCC of 0.621 (CI 
0.427–0.844) for predicting four-year progression to AD 
dementia. Adding intracranial and hippocampal volume 
to the clinical data model increased the test AUC to 0.862 
(CI 0.728–0.960) and MCC to 0.623 (CI 0.450–0.848). 
Conversely, adding the FreeSurfer brain region volumes 
to the clinical data model, the test AUC decreased to 
0.832 (CI 0.710–0.929) and MCC to 0.563 (CI 0.416–
0.788). Adding whole brain MRI and JD images to the 
clinical data together in a CNN model led to a decreased 
test AUC of 0.840 (CI 0.688–0.957) and MCC of 0.605 
(CI 0.418 − 0.850). Also, when testing if the differences of 
the four main models’ performances on the test sets are 
statistically significant, based on the 50 models from the 
5 test sets and 10-fold cross-validation, it was found that 
the hippocampal volume model was significantly better 
(p-value < 0.05) than both the FreeSurfer and DL models, 
the Clinical data model was significantly better than the 
FreeSurfer model, while there was no significant differ-
ence between any other pair of models. The results for 
the external ADNI test data had no significant difference 
in performance from the BioFINDER test data except for 
the FreeSurfer model and DL model, which performed 
significantly worse (FreeSurfer: AUC 0.688, CI 0.536–
0.827, DL: AUC 0.799, CI 0.677–0.904). The results are 
visualized in Figs. 2 and 3 and presented fully in Supple-
mentary Table 1.

Sensitivity analysis of image modalities and multi-task 
learning included in deep learning model
The DL model described above included by default 
both the MRI image and the JD image derived from the 
image registration procedure. However, extracting JD 
images represents an extra, more burdensome processing 
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step so we performed a sensitivity analysis in which 
the effect of fitting the DL model with MRI only or JD 
only. We found that using the JD image only, which had 
a mean test AUC of 0.605 (CI 0.418–0.766) for predict-
ing four-year progression to AD dementia, outperformed 
a model using the MRI image only, which had a mean 
test AUC of 0.575 (CI 0.274–0.782). Moreover, we found 
that including both MRI and JD images had a mean test 
AUC of 0.609 (CI 0.366–0.766), thereby improving on 
the result from using the JD image only. The multi-task 
learning approach used was only evaluated for a lim-
ited number of w -values due to limited computational 
resources: w = 0,0.025,0.050,0.075,0.01. The best value 
was determined based on the validation data, found to be 
w1 = 1, w2 = w3 = 0.025 . All these results are displayed 
in Supplementary Table 1.

Performance for predicting four-year decline in cognition
The clinical data model consisting of demographics 
(age, sex, and education), baseline cognition (MMSE 
score, ADAS delayed word recall) and APOE status had 
a mean BioFINDER test R2 of 0.138 (CI -0.171–0.328) 

for predicting four-year cognitive decline as measured 
by MMSE. Adding hippocampal volume to the clini-
cal data model improved the mean test R2 to 0.157 (CI 
-0.296–0.403). Adding FreeSurfer brain regions to the 
clinical data model improved the mean test R2 to 0.175 
(CI -0.127–0.396). The DL model featuring the clinical 
data features and the whole brain MRI and JD images had 
the lowest mean test R2 of 0.079 (-0.206–0.267). The val-
ues for w  that were found optimal for the previous task 
was used here as well but altered to prioritize this task 
(w2 = 1, w1 = w3 = 0.025). All models were significantly 
better (p-value < 0.05) than the DL model, and the hippo-
campal volume model was furthermore also significantly 
better than the clinical data model. However, the perfor-
mance on the external ADNI test data was significantly 
worse for all models except the DL model. The results are 
visualized in Figs. 4 and 5 and presented fully in Supple-
mentary Table 2.

Fig. 2 Box plots for AUC when predicting progression into AD dementia within four years. Results are for the BioFINDER test sets using the different 
models from double cross-validation. The clinical data includes demographics (age, sex, and education), baseline cognition (MMSE score, ADAS delayed 
word recall) and APOE genotype. The orange lines show the median, the boxes span from the first quartile to the third quartile, and the whiskers extend 
from the box by 1.5 times the interquartile range. Significant differences (p-value < 0.05) are indicated with *
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Identifying atrophy patterns from FreeSurfer and deep 
learning models
Atrophy patterns representing the important brain 
regions of interest were identified for the DL whole brain 
model using the patch occlusion method described in the 
section “Statistical analysis”. Regions in the temporal and 
parietal lobes were identified, see visualization in Fig. 6.

Discussion
We developed and evaluated different models for identi-
fying SCD/MCI individuals who are more likely to prog-
ress to AD dementia within four years, as well as models 
for prediction of change in MMSE over four years. The 
models were based on combinations of demographics, 
standard cognitive tests, hippocampal volume, volumet-
ric data from FreeSurfer, MRI 3D images and JDs com-
puted from MRI. We focused on realistically evaluating 
model performances by following a rigorous approach 
without leakage of information from training to test 

Fig. 3 ROC curves and AUC for progression to AD dementia. Models using a) clinical data (age, sex, and education, baseline cognition [MMSE score, 
ADAS delayed word recall] and APOE genotype), b) clinical data, intracranial volume and hippocampal volume, c) clinical data, intracranial volume and 
FreeSurfer, d) clinical data, MRI and JD. The blue curve shows the results on the BioFINDER test data and the red curves the results on the ADNI data. The 
solid line presents the mean from the five test folds and ten cross-validation folds, the transparent lines present the induvial results, and the shaded areas 
show the mean plus/minus one standard deviation
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sets as well as including external evaluation, and we also 
focused on unbiased comparisons between models of dif-
ferent complexity. In general, we found that a model with 
only demographics and baseline clinical data (cognitive 
tests plus APOE ε4 status) performed very well, and that 
only smaller improvements in predictive ability were seen 
when adding hippocampal volume or volumetrics data 
from FreeSurfer. We could not see consistent improve-
ments in model performance when using the entire MR 
images in DL models. Taken together, this suggests that 
among the predictors tested here, most of the relevant 
predictive information for patients in the SCD/MCI stage 
of AD dementia is contained in the baseline cognitive 
profile together with an MRI assessment of hippocampal 
atrophy.

The problem of predicting progression to AD dementia 
has been studied multiple times before, both using MRI 
but also using data from e.g., PET. While PET has been 
shown to provide more information than MRI [25], it also 
has drawbacks such as being expensive and less available 
wherefore it was not used in this study. MRI in contrast is 
more readily available and a realistic option for prediction 

models in clinical practice. Previous publications have 
reported results with AUC values in the range 0.53–0.98 
[25]. However, it is hard to compare the studies in a fair 
way due to variations in for example imaging modal-
ity (e.g., MRI or PET), prediction task (e.g., MCI versus 
AD, or progressive MCI versus stable MCI with different 
follow-up times), the dataset used as well as the data-
set’s division into development and test data. Our best-
performing model with an AUC of 0.86, on both the test 
data and the external evaluation data, is within the range 
of previous reported results. Many studies are using 
data from the publicly available ADNI cohort [40], but 
due to different exclusion criteria and validation meth-
ods the final ADNI datasets vary. Furthermore, accord-
ing to the review in [12], comparing studies performing 
classification of AD dementia using DL and MRI, it was 
found that there may have been data leakage and thus a 
bias in the reported results in more than half of the sur-
veyed papers. It was shown that when correctly dividing 
the data such that data from the same subject was never 
present in both training and test set simultaneously, the 
accuracy dropped from 99 to 90% [10]. We used data 

Fig. 4 Box plots for R2 when predicting four years MMSE slopes. Results are for the BioFINDER test sets using the different models from double cross-
validation. The clinical data includes demographics (age, sex, and education), baseline cognition (MMSE score, ADAS delayed word recall) and APOE 
genotype. The orange lines show the median, the boxes span from the first quartile to the third quartile, and the whiskers extend from the box by 1.5 
times the interquartile range. Significant differences (p-value < 0.05) are indicated with *
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Fig. 6 Heatmap with features used by the CNN. This figure shows the results of an occlusion experiment. Areas of the brain which are colored red are 
those areas whose occlusion led to a drop in model performance compared to when no occlusion was used

 

Fig. 5 Correlation between predicted slope and corresponding ground truth. Models using a) clinical data (age, sex, and education, baseline cognition 
[MMSE score, ADAS delayed word recall] and APOE genotype), b) clinical data, intracranial volume and hippocampal volume, c) clinical data, intracranial 
volume and FreeSurfer, d) clinical data, MRI and JD. The blue data shows the BioFINDER test sets and the red data shows the external evaluation on ADNI 
data
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from the Swedish BioFINDER study, which has the major 
benefit of being a well-characterized cohort in terms of 
clinical diagnosis and biomarker confirmation of amyloid 
pathology as well as being more representative to a gen-
eral memory clinic setting compared to the ADNI cohort 
(which is a more selected cohort, characterized for exam-
ple by highly educated study participants, and few vascu-
lar co-pathologies). However, as external evaluation we 
include participants from the ADNI cohort. The test sets 
were only used for evaluation after all models were final-
ized, thus not in any way influencing the development of 
the algorithm or model selection.

Prediction of MMSE slope is a less explored task than 
prediction of AD dementia. Compared to the binary clas-
sification task of separating non-AD and early AD, it has 
the advantage of being a continuous measure which is 
potentially less prone to bias and subjectivity compared 
to a clinical diagnosis. Moreover, cognitive assessment is 
relevant because it is typically the primary endpoint for 
clinical trials of AD.

We investigated whether predefined volumetric vari-
ables, such as hippocampal volume and volumetric vari-
ables from FreeSurfer, or data-driven features from MRI 
using DL optimized for the given task, provided the most 
information for prediction of SCD/MCI-to-AD progres-
sion and MMSE slope. While the MRI ought to contain 
at least as much information as the volumetric variables, 
since the volumetric variables are determined from the 
MRI, we anyway obtain results showing that the hippo-
campal volume gives the best prediction for SCD/MCI-
to-AD progression while the FreeSurfer variables give 
the best MMSE slope prediction. The reason for this is 
probably that the amount of data available for training 
is too small to learn more representative features using 
DL and that the model’s capacity is too limited. The lim-
ited capacity was chosen to avoid overfitting and define 
a model suitable to the amount of available data. The 
results show that more data is needed for DL models to 
be successful. Thus, the results should not be interpreted 
as a failure for DL, but rather that its success might 
require an order of magnitude more data. Furthermore, 
it has been established for a long time that pathological 
changes in AD are focused in the hippocampus [41]. A 
hypothesis for the difference in performance between 
the DL model and FreeSurfer model is that JDs derived 
from normalization can be difficult for a severely atro-
phied brain with very large ventricles. In such cases, 
native FreeSurfer segmentation could be more informa-
tive. However, the DL model also utilizes the MRIs in 
native space, so the worse performance of the DL model 
is probably caused by its limited capacity, chosen to fit 
the number of subjects available.

The DL model used in this work is based on the net-
work developed by [14], which uses parameter-efficient 

layers such as grouped and separable convolutions. How-
ever, a few modifications were done to optimize it for our 
settings. Similar to the original network we used multi-
task learning, but for other tasks. Instead of simultane-
ously predict SCD/MCI-to-AD progression as well as 
classify AD dementia vs. healthy controls using a data-
set with normal, stable MCI and progressive MCI cases, 
we use a dataset with only SCD/MCI cases and predict 
SCD/MCI-to-AD progression together with four years 
MMSE slopes and hippocampal volume. We show that 
the multi-task learning approach improves the perfor-
mance (Supplementary Table 1). Training the model for 
all tasks simultaneously has a regularizing effect on the 
training and reduces the risk of overfitting the model to 
the relatively small dataset. Furthermore, it is likely that 
different tasks find descriptive information in similar fea-
tures, hence the multi-task learning should not limit the 
models’ capacities.

Our best-performing model for prediction of SCD/
MCI-to-AD progression utilizes the clinical data together 
with the hippocampal volume. However, the clinical 
data model alone performs very well and, in most cases, 
outperforms the other models which only utilizes one 
type of data (hippocampal volume, FreeSurfer variables, 
MRI or JD), Supplementary Table 1. A similar result 
was obtained in the study by [14], where they obtained 
an AUC of 0.79 when using MRI only and an AUC of 
0.88 when using clinical variables only, similarly to our 
clinical data model. However, in the study by [22], they 
received significantly better results using a DL model and 
MRI images compared to e.g. MMSE, hippocampal vol-
ume, cerebrospinal fluid Aβ and tau. They did however 
not evaluate using multiple simple features combined or 
looked at longitudinal cognitive decline using continuous 
measures of cognition, as we have done in this study.

While the atrophy patterns identified as important by 
the DL model differ for all patients, we can observe that 
the regions often coincide with regions that have been 
previously associated with AD dementia such as tem-
poral and parietal lobes, see Fig. 6. The finding that the 
regions identified as important varied across patients is 
inherent to DL models compared to statistical models 
such as logistic regression that instead identify a common 
pattern of atrophy in the entire study population. The 
individualized nature of atrophy patterns derived from 
DL is a strong benefit because it can allow for personal-
ized explanations as to how an individual’s predicted risk 
score was derived.

The main limitation of our study is the size of the data-
set used, although it is similar in size (N = 332) to what 
has been used in some previous studies [ (11): N = 968, 
(14): N = 785, (15): N = 509, (16): N = 559, (20): N = 200, 
(21): N = 819, (22): N = 786] but of higher quality with 
fewer healthy controls and AD dementia and higher 



Page 12 of 14Arvidsson et al. Alzheimer's Research & Therapy           (2024) 16:61 

ratio of SCD/MCI patients [our: N = 332, (11): N = 413, 
(14): N = 409, (15): N = 210, (16): N = 216, (20): N = 97, 
(21): N = 398, (22): N = 582]. Another limitation is the 
selection of model architecture and hyperparameters, 
which can be further explored. We investigated different 
amount of multi-task learning (Supplementary Table 1) 
and different techniques for normalization of the input 
data, but further optimization could be done. However, 
the network architecture used has been optimized in 
previous studies using another dataset [13, 14], and by 
not optimizing it further we reduce the risk of overfit-
ting it to our study. Finally, the evaluation is limited by 
the gold standard, which is determined by the cognition 
variables and thus is biased towards those. Thus, it is 
not surprising that these variables have high correlation 
with the outcomes we use. The clinical gold standard is 
used clinically today and there is no similar metric that 
is based on for example volumetric features. However, 
it could be that such a metric also has a high correlation 
with both patients’ symptoms as well as our MRI based 
models. Another aspect of our work is that we did not 
test for conversion to all-cause dementia. Our aim was to 
develop tools that specifically predicted development of 
dementia due to AD. Due to the recent breakthroughs in 
DMTs against AD [7, 8], it is of high importance to spe-
cifically predict future development of dementia due to 
AD rather than dementia due to other diagnoses, since 
only patients at risk for developing dementia due to AD 
should receive these new types of treatment.

Conclusions
We developed and evaluated four different models on 
two different outcomes. The models perform similar, but 
the clinical data model using only demographics (gender, 
age, education), baseline cognition (MMSE score, ADAS 
delayed word recall) and APOE status performs well, and 
only small improvements can be seen when adding hip-
pocampal volume or regional MRI gray matter volumes 
extracted using FreeSurfer. For identification of patients 
with high risk of SCD/MCI-to-AD progression within 
four years we obtained an AUC of 0.862 and for four-
years MMSE slope prediction we obtained an R2 score of 
0.157 using clinical data and hippocampal volume. Simi-
lar results for prediction of SCD/MCI-to-AD progression 
was seen in the external ADNI cohort, while the results 
for predicting four-years MMSE slope was significantly 
deteriorated. The result for SCD/MCI-to-AD progres-
sion is similar to previous studies, while to the best of our 
knowledge no data are currently available with respect to 
prediction of MMSE slope. The best DL models identi-
fied uses multi-task learning, by being trained to simul-
taneously predict both SCD/MCI-to-AD progression, 
four years MMSE slope as well as hippocampal volume. 
We confirmed that the areas found as interesting by the 

DL models are reasonable using an occlusion algorithm. 
The results are humbling with respect to what can be 
achieved by DL models. In the future, it may be tested 
if better performance can be achieved by increasing the 
training sample size, or by adding additional investiga-
tional modalities or MRI-sequences, or by fine-tuning 
the outcome measures to minimize noise and variability.
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