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Abstract 

Background Modifiable lifestyle behaviors account for a large proportion of dementia risk. However, the combined 
contributions of multidomain lifestyle patterns to cognitive aging are poorly understood, as most studies have exam-
ined individual lifestyle behaviors in isolation and without neuropathological characterization. This study examined 
data-driven patterns of lifestyle behaviors across multiple domains among older adults and tested their associations 
with disease-specific neuropathological burden and cognitive decline.

Methods Participants included 2059 older adults enrolled in the longitudinal Memory and Aging Project (MAP) 
at the Rush Alzheimer’s Disease Center; none of whom had dementia at baseline (73% no cognitive impairment (NCI), 
27% mild cognitive impairment [MCI]). All participants completed cognitive testing annually. Lifestyle factors were 
measured during at least one visit and included (1) actigraphy-measured physical activity, as well as self-reported (2) 
sleep quality, (3) life space, (4) cognitive activities, (5) social activities, and (6) social network. A subset of participants (n 
= 791) had autopsy data for which burden of Alzheimer’s disease (AD), cerebrovascular disease (CVD), Lewy body dis-
ease, and hippocampal sclerosis/TDP-43 was measured. Latent profile analysis across all 2059 participants identified 
distinct subgroups (i.e., classes) of lifestyle patterns. Linear mixed-effects models examined relationships between life-
style classes and global cognitive trajectories, with and without covarying for all neuropathologies. Classes were 
also compared on rates of incident MCI/dementia.

Results Five classes were identified: Class  1Low Life Space (lowest lifestyle engagement), Class  2PA (high physical activ-
ity), Class  3Low Avg (low to average lifestyle engagement), Class  4Balanced (high average lifestyle engagement), and Class 
 5Social (large social network). Classes  4Balanced and  5Social had the lowest AD burden, and Class  2PA had the lowest CVD 
burden. Classes 2–5 had significantly less steep global cognitive decline compared to Class  1Low Life Space, with com-
parable effect sizes before and after covarying for neuropathological burden. Classes  4Balanced and  5Social exhibited 
the lowest rates of incident MCI/dementia.

Conclusions Lifestyle behavior patterns among older adults account for differential rates of cognitive decline 
and clinical progression. Those with at least average engagement across all lifestyle domains exhibit greater cogni-
tive stability after adjustment for neuropathology, highlighting the importance of engagement in multiple healthy 
lifestyle behaviors for later life cognitive health.
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Introduction
The prevalence of dementia is precipitously rising, yet 
development of cognitive impairment with age is not 
inevitable. Converging lines of evidence suggest that 
over 40% of dementia cases are attributable to modifiable 
exposures and lifestyle factors [1]. Optimal engagement 
in later life behaviors such as physical activity, sleep, and 
cognitive and social activities has each been linked with 
reduced cognitive decline, even among older adults with 
autosomal dominant genetic risk for dementia. These 
data underscore a key need to develop primary preven-
tion approaches for brain health. Yet, despite significant 
advancements in our understanding of individual demen-
tia prevention techniques, lifestyle behaviors do not 
occur in isolation, and holistic understanding of lifestyle 
patterns for dementia prevention has lagged.

Indeed, the vast majority of studies have examined 
potential neuroprotective behaviors one at a time, despite 
the high level of interconnection across such lifestyle fac-
tors. Therefore, little is known about whether specific 
neuroprotective patterns of lifestyle behaviors exist [2–4]. 
Previous work from Carlson and colleagues [5] showed 
that participation in a variety of lifestyle behaviors is 
most associated with reduced risk of cognitive aging or 
the development of dementia. Similarly, data from the 
randomized controlled FINGER trial demonstrate that a 
multimodal approach to lifestyle optimization can sup-
port cognitive health over a 2-year period in older adults 
at risk for dementia [6]. These and other studies sug-
gest that a deeper understanding of multimodal lifestyle 
patterns for dementia prevention is highly warranted. 
However, most studies in this area do not account for 
interrelationships among multiple lifestyle factors [7, 8] 
or binarize (yes/no) these variables [9, 10], which may not 
fully capture the natural spectrum of behavior. Examin-
ing a wide range of lifestyle factors in combination is both 
ecologically valid and may provide additional insights 
into patterns that most strongly relate to better brain and 
cognitive outcomes.

Another limitation of the existing literature examin-
ing lifestyle behaviors and brain health is the lack of 
contextual neuropathological information available. For 
instance, animal models and some emerging human data 
indicate that physical activity and sleep may directly con-
tribute to pathological burden as well as impact one’s 
ability to engage in neuroprotective behaviors [11–14]. 
These data suggest that understanding the neuropatho-
logical milieu may be highly relevant when disentangling 

the effects of lifestyle on cognitive health. Notably, of the 
studies that have examined lifestyle factors and resist-
ance to pathological change (e.g., Alzheimer’s disease 
pathology), few have incorporated multiple facets of 
lifestyle [10, 11]. Understanding how modifiable risk fac-
tors associate with risk of specific pathology develop-
ment and incrementally relate to cognitive health beyond 
neuropathological burden (e.g., disease stage) is impor-
tant to inform person- and disease-specific brain health 
recommendations.

To better understand the combined contribution of 
multiple, modifiable lifestyle patterns on neuropathol-
ogy burden and cognitive aging, we leveraged multi-
modal lifestyle and longitudinal cognitive data from 
adults without baseline dementia enrolled in the Rush 
Memory and Aging Project (MAP) neuropathology 
cohort. Prior work in this cohort has reported independ-
ent relationships among individual lifestyle factors (e.g., 
cognitive activities, physical activity, social engagement), 
cognitive change, and individual neuropathologies (e.g., 
AD burden) [11, 15, 16]. Here, we extend that work. We 
employed latent profile analysis to empirically derive 
subgroups of participants with similar behavior patterns 
across different lifestyle domains, including physical 
activity, cognitive activity, social engagement, sleep, and 
environmental enrichment. We examined the relation-
ship between lifestyle patterns and neuropathology bur-
den as well as longitudinal cognitive trajectories and rates 
of incident CI. Systematic model comparisons deter-
mined whether lifestyle pattern effects on cognition were 
comparable to, and independent of, the relative effects of 
disease burden across multiple neuropathologies.

Methods
Participants
Study participants were more than 2000 older adults 
enrolled in the longitudinal MAP cohort [17]. Partici-
pants completed cognitive testing and received clini-
cal diagnoses at baseline and each annual follow-up 
visit. For the present analysis, we included individuals 
who were free of dementia at baseline (i.e., cognitively 
unimpaired and mild cognitive impairment [MCI] only) 
and had available data for at least half of the six lifestyle 
measures of interest (see below). Of the 2059 study par-
ticipants, 791 had available autopsy data. The MAP study 
was approved by a Rush University Medical Center Insti-
tutional Review Board, conducted in accordance with 
the latest Declaration of Helsinki. Participants provided 
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written informed and repository consents and Anatomic 
Gift Act for organ donation.

Lifestyle measures
Physical activity
Omnidirectional actigraphy monitors were worn by par-
ticipants on the nondominant wrist and measured rest/
activity continuously for 24 h a day, for up to 10 days 
per visit (Actical; Mini Mitter). Activity counts were 
extracted in 15-s epoch estimates, provided by Actical. 
Incomplete data were detected via inspection of acceler-
ometer recordings through an automated program that 
flagged average daily counts at extreme levels: ≈ 0/day or 
> 500/day. Only participants with valid data for 1+ days 
were included in analyses. Daily physical activity values 
included a summary of both exercise and non-exercise 
activities and was calculated as the average sum of all 
15-s epoch daily activity counts for all full days of actig-
raphy data.

Sleep quality
Sleep quality was measured using a modified version of 
the Pittsburg Sleep Quality Index (PSQI) and select items 
from the Berlin Questionnaire, per previous protocols 
[18, 19]. Individual questionnaire items were aggregated 
to calculate scores for the following six PSQI compo-
nents: sleep latency, sleep duration, sleep efficiency, sleep 
disturbances, usage of sleeping medications, and day-
time dysfunction. These sleep component scores were 
summed and reverse scored to assign a total sleep quality 
score ranging from 0 to 16, with higher indicating better 
sleep quality.

Social activities
Participant social activity was assessed as frequency of 
engagement in social activity in late life [20]. On a 6-item 
survey, participants were asked to rate how often they 
engaged in common types of activities involving social 
interaction on a 5-point scale (e.g., 1 = once a year, 2 = 
several times a year, 3 = several times a month, 4 = sev-
eral times a week, 5 = every day or almost every day). 
Higher values indicate more frequent participation in the 
listed activity. The social activity composite measure was 
calculated by averaging all item scores, with higher scores 
representing greater social activity (range 1 to 5).

Social network
Social network was assessed as a measure of network size 
[15] and was quantified based on standardized questions 
about the following: (1) number of close family members 
and friends that were seen by the participant and (2) how 
often the participant interacted with them (a minimum 
of once a month). Specifically, social network size was 

quantified by the number of community members, rela-
tives, and friends seen at least once a month (range 0 to 
no upper limit).

Life space
Life space has been defined as distance traveled from 
home in daily life and is posited to reflect degree of spa-
tial movement through an individuals’ environment as a 
proxy for environmental enrichment. A modified version 
of the Life Space Questionnaire was used to develop a 
scale that quantifies spatial movement in up to six spe-
cific environment zones (bedroom, porch/patio, parking 
lot/yard, within neighborhood, outside neighborhood, 
outside of town) [21]. Participants reported their pres-
ence in each of the zones within the past week of ques-
tionnaire administration (yes = 1 or no = 0). Individual 
life space scores were calculated as a sum of all binary 
responses and ranged from 0 to 6, with higher scores 
indicating greater life space.

Cognitive activities
Cognitive activity was measured as frequency of par-
ticipation in cognitively stimulating behaviors in late 
life [22]. The composite score was generated by averag-
ing individual frequency scores across seven cognitively 
stimulating activities in the past year, including read-
ing, writing letters, visiting a library, and playing games 
of skill (e.g., chess, checkers). These activities were spe-
cifically included to tap into skills involving information 
processing or retention and being relatively accessible 
(few barriers to participation). Each item was scored on 
a 5-point scale, with higher values indicating more fre-
quent participation (range 1 to 5).

Cognitive testing
A global cognitive composite score was derived from a 
battery of 21 cognitive tests administered to participants 
each year. Tests measured episodic memory, seman-
tic processing, working memory, processing speed, and 
executive functioning. Raw test scores from the 19 tasks 
were first converted to z-scores and then averaged to 
produce a global cognitive function summary measure, 
as previously described [23]. Mean and standard devia-
tion at baseline were used to compute the z-scores.

Neuropathology
Brain autopsy procedures were completed by examiners 
blinded to all clinical information. Brains were removed, 
and hemispheres were cut coronally into 1-cm slabs 
using a Plexiglas jig, with one hemisphere preserved in 
4% paraformaldehyde. Following gross examination of 
each hemisphere, nine brain regions of interest were dis-
sected from the fixed tissue and processed and embedded 
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in paraffin, including midfrontal, midtemporal, basal gan-
glia, thalamus, midbrain, inferior parietal, anterior cingu-
late, and entorhinal and hippocampal cortices. Paraffin 
blocks were then stained for assessment of pathology. 
Additional information on these procedures has been 
previously described in detail [24–27]. Neuropatholo-
gies were categorized into four groupings: Alzheimer’s 
disease, cerebrovascular disease, Lewy body disease, and 
hippocampal sclerosis/TDP-43.

Alzheimer’s disease
A measure of global Alzheimer’s disease (AD) pathol-
ogy burden was created using a quantitative summary of 
AD pathology, based on methods previously described 
[17]. AD pathology involved total count of neurofi-
brillary tangles, neuritic plaques, and diffuse plaques. 
Regional counts were derived from 15 regions (e.g., hip-
pocampus and the midfrontal, midtemporal, inferior 
parietal, and entorhinal cortices) and scaled by dividing 
by the corresponding regional standard deviation. Each 
of the scaled regional measures were then averaged into 
three summary pathology measures (neurofibrillary tan-
gles, neuritic plaques, and diffuse plaques); finally, the 
three summary pathology measures were then averaged 
into a global AD pathology metric, following previous 
approaches [17].

Cerebrovascular disease (CVD)
Cerebral amyloid angiopathy (CAA) was assessed by 
examining amyloid deposition in meningeal and paren-
chymal vessels using a previously described protocol 
[28]. CAA scores were classified into a severity rating (0 
= none, 1 = mild, 2 = moderate, 3 = severe) using cutoffs 
determined by the neuropathologist [27].

Large vessel cerebral atherosclerosis ratings were com-
pleted through visual inspection of the circle of Willis at 
the base of the brain using methods previously described 
[29]. Severity was graded (0 to 6) based on the extent 
of involvement of each artery and number of arteries 
involved and was collapsed to 4 levels for analysis (0 = no 
significant atherosclerosis observed, 3 = atherosclerosis 
was examined in more than half of all visualized arteries, 
and/or more than 75% occlusion of one or more vessels).

Arteriolosclerosis was defined by any histological 
change found in the small vessels, including smooth 
muscle degeneration, fibrohyalinotic thickening of arte-
rioles with consequent narrowing of the vascular lumen, 
and intimal deterioration. The vessels were evaluated in 
the anterior basal ganglia using a semiquantitative grad-
ing system that has been previously described elsewhere 
[30]. For the cerebrovascular composite, the levels were 
compressed into four levels (0 = none, 1 = mild, 2 = 
moderate, 3 = severe).

Gross infarcts were identified visually and confirmed 
histologically, while micro infarcts were identified under 
microscopy using hematoxylin and eosin (H&E) stain 
[24, 31]. Gross and micro infarcts were coded on a sever-
ity scale (0 = none present, 1 = one or more infarction, 
regardless of location) based on methods previously 
described [32, 33].

A cerebrovascular composite was created by taking 
the sum of CAA (0 to 3) + arteriolosclerosis (0 to 3) + 
atherosclerosis (0 to 3) + gross chronic infarcts (0 or 1) 
× 3 + micro infarcts (0 or 1) × 3. Each cerebrovascular 
pathology was weighted to be equally represented in the 
composite (range = 0–15) based on methods previously 
used for the creation of summary scores of cerebrovascu-
lar dysfunction [34–36].

Lewy body disease (LBD)
The presence of Lewy body pathology was determined 
using antibodies to α-synuclein [37]. LBD was binarized 
as no Lewy body pathology (0) or Lewy bodies present in 
nigral, limbic, or neocortical regions (1).

Hippocampal sclerosis (HS)/TDP‑43
Hippocampal sclerosis was determined using H&E stain 
on a section of the mid-hippocampus, based on methods 
previously described elsewhere [25]. TDP-43 cytoplasmic 
inclusions in neurons and glia were determined for eight 
regions (yes vs. no), including amygdala, entorhinal cor-
tex, hippocampus CA1, hippocampus dentate gyrus, and 
anterior temporal pole, midtemporal, orbital frontal, and 
midfrontal cortices. TDP-43 inclusions were determined 
using antibodies to phosphorylated TDP-43 (pS409/410; 
1:100), and TDP-43 distribution was grouped into four 
stages (0: none present; 1: localized to amygdala; 2: exten-
sion to limbic regions; 3: extension to the neocortex). 
TDP-43 was considered present if positive for stages 2 
or 3 [26, 38]. When examining the data, there was a high 
degree of overlap between participants with hippocampal 
sclerosis and TDP-43, such that only n = 7 demonstrated 
hippocampal sclerosis without TDP-43. Therefore, to 
reduce collinearity of pathologies represented, individu-
als with hippocampal sclerosis only were excluded, and 
participants were coded into the following three groups: 
no TDP-43 or hippocampal sclerosis (0), only TDP-43 
(1), and both TDP-43 and hippocampal sclerosis present 
(2).

Statistical analyses
Latent profile analysis (LPA) was used to identify homo-
geneous groups of participants (n = 2059) with simi-
lar lifestyle patterns based on the 6 available lifestyle 
measures described above: physical activity, sleep qual-
ity, life space, late life cognitive activities, late life social 



Page 5 of 14Paolillo et al. Alzheimer’s Research & Therapy          (2023) 15:221  

activities, and size of social network [39]. Raw scores 
for each lifestyle metric were averaged within persons 
across all available study visits to estimate stable, later life 
engagement in each lifestyle domain [40, 41]. This meth-
odology was employed as repeated measurements pro-
vide a more reliable estimate of stable trends in behavior 
compared to single-timepoint measurements [42, 43]. 
To enhance interpretability, these averaged late life life-
style scores were z-score transformed prior to inclusion 
in the LPA. Participants were required to have data for 
at least three of the six lifestyle metrics to be included. 
As part of standard LPA procedures, missing data were 
imputed using a random forest imputation algorithm 
from the MissForest package in R [44, 45]. To determine 
the optimal number of groups (i.e., classes) underlying 
the lifestyle data, separate models with an increasing 
number of latent classes were estimated and compared 
using the following model fit indices: log likelihood, 
Bayesian information criterion (BIC), Akaike information 
criterion (AIC), and the bootstrapped likelihood ratio 
test (BLRT). Model diagnostics are also reported (i.e., 
entropy and average posterior classification probabil-
ity). For each model with k number of classes, the BLRT 
compared the log likelihood to that of the model with 
k-1 classes to examine whether adding the kth class sig-
nificantly improved model fit [46]. In addition to examin-
ing fit indices, a qualitative examination of class size and 
interpretability was utilized to select the model with the 
number of classes best fitting the data. Participants are 
identified as belonging to one class. LPA was conducted 
using R version 4.2.0 and MPlus version 7.4.

To examine differences in demographics and clini-
cal characteristics by latent lifestyle class membership, 
ANOVA or chi-square tests were used for continuous 
or categorical variables, respectively. ANOVAs were 
also used to examine how lifestyle classes directly relate 
to burden of each measured neuropathology. Next, we 
examined how lifestyle patterns associated with later life 
cognitive trajectories. Linear mixed-effects (LME) mod-
els were used to examine the interaction between latent 
lifestyle class membership and time on global cogni-
tion in a two-step fashion: (1) without covarying for the 
effects of neuropathology on cognitive trajectory and (2) 
covarying for neuropathology on cognitive trajectory. 
Both models included person-specific random intercepts 
and a random effect of time, as well as time-invariant 
covariates (i.e., baseline age, sex, education, and total 
number of study visits). Including these random effects 
in the model provides estimation of individual intercepts 
(i.e., levels of the global cognition at baseline) and indi-
vidual slopes (i.e., trajectories of global cognition over 
time) for each person, which allows proper examination 
of whether class membership explains variance in these 

individual cognitive slopes. Estimates from LME regres-
sion models are reported as standardized betas (β), which 
describe the strength of the relationship between predic-
tor and outcome in units of standard deviations. A post 
hoc LME model was conducted to examine the unique 
contribution of each individual lifestyle measure on 
global cognitive trajectory, covarying for neuropathol-
ogy, age, and sex. Additionally, analyses examined rates of 
incident CI from first to last visit by lifestyle group using 
chi-square tests. FDR-adjusted p-values were utilized for 
pairwise class comparisons.

Results
Participant characteristics
Table 1 presents demographic, clinical, lifestyle, and neu-
ropathological characteristics in the study sample. Par-
ticipants were 75% female and on average 80 years old 
at baseline (range: 53–100) with 14.9 years of education. 

Table 1 Participant characteristics (N = 2059)

“Other” race/ethnicity includes the following: Asian, American Indian or Alaska 
Native, Native Hawaiian or Other Pacific Islander, other, or unknown

Mean (SD) or N (%)

Demographics

 Baseline age 79.75 (7.55)

 Education 14.91 (3.31)

 Sex (female) 1537 (75%)

 Race/ethnicity

  White 1922 (93%)

  Black/African American 109 (5%)

  Other 28 (2%)

Study characteristics

 Number of visits 7.03 (4.69) [range = 1–22]

 Total time in study until death (n = 791) 7.61 (4.32)

Lifestyle characteristics

 Average physical activity raw score 2.07 (1.15)

 Average sleep quality raw score 10.18 (2.46)

 Average life space raw score 5.15 (1.00)

 Average cognitive activities raw score 3.03 (0.64)

 Average social activities raw score 2.48 (0.53)

 Average social network raw score 6.66 (4.63)

Cognitive characteristics

 Baseline global cognition 0.08 (0.55)

 Clinical diagnosis Baseline Last visit

  Normal cognition 1510 (73%) 1130 (55%)

  MCI 549 (27%) 492 (24%)

  Dementia - 437 (21%)

Neuropathology (n = 791)

 Alzheimer’s disease 0.71 (0.61)

 Cerebrovascular disease 5.46 (3.02)

 Lewy body disease (present) 176 (23%)

 Hippocampal sclerosis/TDP-43 0.61 (0.63)
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At baseline, 73% of participants were NCI, and 27% were 
diagnosed with MCI. At last study visit, 55% of partici-
pants were NCI, 24% MCI, and 21% dementia. Partici-
pants completed an average of seven annual cognitive 
assessments, and the average time from baseline visit to 
death in the autopsy subcohort was 7.6 years.

Lifestyle profiles
Correlational analyses examining the six individual life-
style measures (Table  2) evidenced relationships that 
ranged from minimal to medium (r range: 0.05 to 0.50). 
The majority of associations were statistically significant, 
with the exception of null associations between sleep and 
physical activity (r = 0.05), sleep and cognitive activities 
(r = 0.06), and physical activity and social network (r = 
0.05).

Table  3 displays model fit indices and diagnostics for 
LPA models with increasing number of classes (ranging 
from 1 to 6 classes). A five-class solution was selected 
as the optimal model on the basis of fit indices showing 
lower log likelihood, AIC, and BIC compared to lower-
class solutions (BLRT p-value < 0.001) while maintaining 
optimal diagnostics (entropy and minimum average pos-
terior classification probability > 0.80). Although a six-
class solution yielded lower AIC and BIC values than the 
five-class solution, class profiles were less interpretable 

and had inferior model diagnostics. Given that lifestyle 
metrics were averaged across all study visits, which 
included follow-up visits in which participants had pro-
gressed to dementia, we performed a sensitivity analysis 
in which the computation of average lifestyle metrics was 
restricted to non-dementia timepoints (i.e., NCI, MCI). 
This analysis again yielded an optimal five-class solution 
with near identical class separation (entropy = 0.90) and 
lifestyle differences across class, thereby supporting sta-
bility of class profiles as independent of dementia state 
(e.g., rather than a consequence of dementia-related 
behavioral change).

As shown in Fig. 1, the five data-driven lifestyle classes 
that emerged can be described based on visual inspection 
of relative levels and peaks of engagement in each lifestyle 
domain. Class  1Low Life Space had the lowest levels across all 
six measures, with particularly low levels of life space (N 
= 138). Class  2PA demonstrated very high physical activ-
ity (PA) with average to high levels across the remaining 
5 measures (N = 64). Class  3Low Avg demonstrated low to 
average (avg) levels across all 6 measures (N = 394). Class 
 4Balanced had average to high levels across all 6 measures 
(N = 1374). Finally, Class  5Social had the largest social 
network, with high levels of social activities, cognitive 
activities, and life space, with average levels across the 
remaining 2 lifestyle measures (N = 89).

Table 2 Pearson r correlation matrix of individual lifestyle factor Z-scores

**p < .01. ***p < .001. aHigher scores = better sleep quality

PA Sleepa Life space Cognitive 
activities

Social activities Social network

Physical activity -

Sleepa 0.05 -

Life space 0.26*** 0.11*** -

Cognitive activities 0.10*** 0.06 0.31*** -

Social activities 0.20*** 0.10** 0.50*** 0.41*** -

Social network 0.05 0.08* 0.24*** 0.18*** 0.38*** -

Table 3 LPA fit indices and model diagnostics for class solutions 1 through 6

a Selected as the most optimal class solution based on a combination of fit indices. bRepresents the minimal of the diagonal of the average latent class probabilities for 
most likely class membership

Classes Log likelihood AIC BIC Smallest class size 
(% of sample)

BLRT BLRT p-value Entropy Minimum 
average posterior 
probabilityb

1 −16,573.15 33,170.30 33,237.86 2059 (100%) - - 1.00 1.00

2 −15,738.43 31,514.85 31,621.82 383 (18.6%) 1669.45 < .001 0.90 0.92

3 −15,473.25 30,998.49 31,144.87 100 (4.9%) 530.36 < .001 0.90 0.79

4 −15,252.65 30,571.30 30,757.09 91 (4.4%) 441.19 < .001 0.89 0.84

5a −15,094.37 30,268.74 30,493.94 64 (3.1%) 316.57 < .001 0.89 0.84

6 −14,978.71 30,051.43 30,316.03 62 (3.0%) 231.31 < .001 0.78 0.80
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Lifestyle class characteristics
Table  4 presents participant characteristics by lifestyle 
pattern class. Demographic differences by class were 
observed for age (mean age range: 76.0 years [Class  2PA] 
to 84.8 years [Class  1Low Life Space]), education (mean edu-
cation range: 13.6 years [Class  1Low Life Space] to 15.6 years 
[Class  5Social]), and, to a lesser extent, sex [%female range: 
65% [Class  5Social] to 81% [Class  2PA]). With regard to 
neuropathology, omnibus class differences were observed 
for AD and CVD, but not LBD or HS/TDP-43. Classes 
 4Balanced and  5Social exhibited the lowest levels of AD path-
ological burden, with pairwise comparisons showing that 
Class  4Balanced had significantly lower AD burden than 
Classes  2PA (p = .042) and  3Low Avg (p = .006). In contrast, 
Class  2PA exhibited the lowest CVD burden, with pair-
wise differences that were significant or approached sig-
nificance compared to the other 5 classes (p range: < .001 
to .061).

Lifestyle classes and cognitive trajectories
A two-step linear-mixed effects regression model tested 
the association between lifestyle class and cognitive tra-
jectories, before and after adjustment for neuropatho-
logical burden among the subset of 704 participants 
with autopsy data (Table  5). In Model 1, Classes 2–5 
exhibited significantly less steep global cognitive decline 
(all time × class interaction ps < .05; Fig.  2) compared 
to reference Class  1Low Life Space (time slope: β = −0.67, p 
< .001). Between Classes 2–5, Class  5Social exhibited the 
flattest cognitive trajectory (time slope: β = −0.18), fol-
lowed by Class  4Balanced (time slope: β = −0.33), Class 
 2PA (time slope: β = −0.45), and then Class  3Low Avg (time 

slope: β = −0.49). In Model 2, AD, CVD, LBD, and HS/
TDP-43 were added as independent pathological predic-
tors of cognitive trajectories. AD, LBD, and HS/TDP-43 
were each associated with significantly steeper cogni-
tive decline (ps < .002), with AD showing the strongest 
effects compared to that of other pathologies, consist-
ent with previous publications in this cohort [47]. In this 
pathology-adjusted model, Classes 2–5 continued to 
show slower cognitive decline compared to Class  1Low Life 

Space, with comparable effect sizes to Model 1 (Table  5). 
Further examination of pairwise class contrasts showed 
no statistically significant differences between Classes 
 2PA,  4Balanced, and  5Social on cognitive trajectories in either 
Model 1 or Model 2. In addition, Model 1 results in this 
subset of 704 participants with autopsy data were compa-
rable to that of the entire 2059 participant sample (Sup-
plementary Table 1).

Given the significant relationships between lifestyle 
pattern class and cognitive trajectories, post hoc mod-
els examined the strength of association between each 
of the six individual lifestyle measures and cognitive tra-
jectories to determine how the combined effects of life-
style factors compared to any individual domain. Figure 3 
displays a forest plot with standardized coefficients and 
95% confidence intervals for the effects of each individual 
lifestyle measure and lifestyle pattern class (vs. reference 
group Class  1Low Life Space). Of the individual measures, 
higher physical activity, cognitive activity, and life space 
were statistically significantly related to slower cognitive 
decline over time; however, the magnitude of these rela-
tionships (β range = −0.020 [social network] to 0.064 [life 
space]) was substantially weaker than those derived from 

Fig. 1 Five-class LPA solution. Colored lines represent average z-scores for each lifestyle activity across each class, with error bars representing 
standard deviations
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the lifestyle pattern classes, suggesting the combination 
of factors may be a more robust approach compared to 
individual behaviors explaining variance in cognitive 
health.

Lifestyle classes and incident CI
Chi-square tests examined lifestyle class differences 
in rates of incident CI from first to last study visit 
(Fig. 4). Among those who were cognitively unimpaired 
at baseline (n = 1510), class membership was signifi-
cantly related to incident CI by the last study visit (χ2 = 
109.4; p < 0.001). Highest rates of no cognitive impair-
ment (NCI) to incident MCI/dementia were observed 

among those in Class  3Low Avg (57%) and Class  1Low Life 

Space (54%), with significantly lower rates of incident CI 
in Class  2PA (31%; ps < 0.03), Class  4Balanced (26%; ps < 
0.001), and Class  5Social (20%; ps < 0.001). Among those 
who were characterized as MCI at baseline (n = 549), 
class membership was also significantly related to inci-
dent CI by the last study visit (χ2 = 39.1; p < 0.001). 
Again, highest rates of incident CI were observed 
among those in Class  1Low Life Space (53%) and Class  3Low 

Avg (50%), with lower rates of incident CI in Class  2PA 
(46%; nonsignificant, ps > 0.05), Class  4Balanced (25%; 
significant, ps < 0.001), and Class  5Social (14%; trending, 
ps = 0.058).

Table 4 Participant characteristics by class

Class  1Low Life Space  
(n = 138)

Class  2PA  
(n = 64)

Class  3Low Avg  
(n = 394)

Class  4Balanced  
(n = 1374)

Class  5Social  
(n = 89)

p-value

Demographics

 Baseline age 84.81 (6.53) 75.98 (7.61) 82.34 (6.91) 78.74 (7.47) 78.70 (6.60) < 0.001

 Education 13.56 (3.36) 14.22 (2.96) 13.89 (3.16) 15.33 (3.28) 15.60 (2.95) < 0.001

 Sex (female) 107 (78%) 52 (81%) 311 (79%) 1009 (73%) 58 (65%) 0.024

 Race/ethnicity 0.224

  White 134 (97%) 55 (86%) 364 (92%) 1284 (93%) 85 (96%)

  Black/African American 3 (2%) 9 (14%) 26 (6%) 68 (5%) 3 (3%)

  Other 1 (1%) 0 (0%) 4 (1%) 22 (2%) 1 (1%)

Study characteristics

 Number of visits 5.59 (3.84) 8.28 (4.08) 7.52 (4.40) 7.01 (4.83) 6.47 (4.99) < 0.001

Lifestyle Characteristics

 Average physical activity z score −0.77 (0.46) 2.69 (0.88) −0.33 (0.68) 0.04 (0.66) 0.09 (0.77) < 0.001

 Average sleep quality z score −0.26 (0.75) 0.07 (0.52) −0.30 (0.75) 0.02 (0.73) 0.18 (0.82) < 0.001

 Average life space z score −2.63 (0.63) 0.27 (0.59) −0.92 (0.48) 0.47 (0.39) 0.67 (0.31) < 0.001

 Average cognitive activities z score −0.80 (1.14) 0.06 (0.81) −0.59 (1.03) 0.21 (0.87) 0.52 (0.80) < 0.001

 Average social activities z score −1.18 (0.72) 0.25 (0.84) −0.80 (0.80) 0.27 (0.84) 1.11 (0.82) < 0.001

 Average social network z score −0.52 (0.75) −0.04 (0.68) −0.38 (0.69) −0.03 (0.73) 2.97 (1.30) < 0.001

Cognitive characteristics

 Baseline global cognition −0.36 (0.54) 0.10 (0.59) −0.17 (0.53) 0.18 (0.52) 0.25 (0.47) < 0.001

 Baseline clinical diagnosis (normal) 70 (51%) 51 (80%) 254 (65%) 1060 (77%) 75 (84%) < 0.001

 Change in clinical diagnosis from baseline 
to last visit

< 0.001

  Normal to normal 32 (23%) 35 (55%) 109 (28%) 782 (57%) 60 (67%)

  Normal to MCI 11 (8%) 9 (14%) 61 (16%) 158 (12%) 10 (11%)

  Normal to dementia 27 (20%) 7 (11%) 84 (21%) 120 (9%) 5 (6%)

  MCI to normal 3 (2%) 4 (6%) 19 (5%) 84 (6%) 2 (2%)

  MCI to MCI 29 (21%) 3 (5%) 51 (13%) 150 (11%) 10 (11%)

  MCI to dementia 36 (26%) 6 (9%) 70 (18%) 80 (6%) 2 (2%)

Neuropathology (n = 791)

 Alzheimer’s disease 0.71 (0.63) 0.94 (0.70) 0.80 (0.62) 0.66 (0.58) 0.64 (0.57) 0.029

 Cerebrovascular disease 6.63 (3.26) 3.76 (2.26) 5.84 (2.91) 5.10 (2.98) 5.50 (2.31) < 0.001

 Lewy body disease (present) 18 (20%) 5 (25%) 48 (22%) 100 (24%) 5 (26%) 0.951

 Hippocampal sclerosis/TDP-43 0.63 (0.66) 0.65 (0.59) 0.66 (0.67) 0.57 (0.61) 0.53 (0.51) 0.545



Page 9 of 14Paolillo et al. Alzheimer’s Research & Therapy          (2023) 15:221  

Table 5 Linear mixed-effects model results

Both model 1 and model 2 include 704 participants with complete neuropathology data (N = 87 in Class  1Low Life Space; N = 19 in Class  2PA; N = 202 in Class  3Low Avg; N = 
380 in Class  4Balanced; N = 16 in Class  5Social)

Model 1 Model 2

Std. beta 95% CI p-value Std. beta 95% CI p-value

Baseline age −0.08 −0.12, −0.05 < 0.001 −0.06 −0.10, −0.03 0.001

Sex (ref.: female) −0.14 −0.22, −0.06 0.001 −0.13 −0.21, −0.05 0.001

Education 0.14 0.11, 0.18 < 0.001 0.14 0.10, 0.17 < 0.001

Total study visits 0.15 0.12, 0.19 < 0.001 0.18 0.14, 0.22 < 0.001

Time −0.67 −0.78, −0.57 < 0.001 −0.63 −0.73, −0.54 < 0.001

Class  2PA (ref.:  1Low Life Space) 0.64 0.29, 0.99 < 0.001 0.67 0.35, 0.99 < 0.001

Class  3Low Avg (ref.:  1Low Life Space) 0.31 0.13, 0.50 0.001 0.35 0.18, 0.52 < 0.001

Class  4Balanced (ref.:  1Low Life Space) 0.70 0.52, 0.87 < 0.001 0.66 0.50, 0.82 < 0.001

Class  5Social (ref.:  1Low Life Space) 0.85 0.43, 1.26 < 0.001 0.76 0.39, 1.13 < 0.001

Time × Class  2PA 0.22 0.00, 0.44 0.049 0.24 0.04, 0.44 0.018

Time × Class  3Low Avg 0.18 0.06, 0.30 0.004 0.21 0.10, 0.32 < 0.001

Time × Class  4Balanced 0.34 0.22, 0.45 < 0.001 0.31 0.21, 0.42 < 0.001

Time × Class  5Social 0.49 0.22, 0.77 < 0.001 0.43 0.19, 0.67 0.001

AD - - - −0.22 −0.27, −0.17 < 0.001

CVD - - - −0.07 −0.12, −0.02 0.004

LBD (ref.: no.) - - - −0.27 −0.39, −0.16 < 0.001

HS/TDP-43 - - - −0.11 −0.16, −0.06 < 0.001

Time × AD - - - −0.14 −0.17, −0.11 < 0.001

Time × CVD - - - −0.03 −0.06, 0.00 0.085

Time × LBD - - - −0.12 −0.19, −0.05 0.002

Time × HS/TDP-43 - - - −0.05 −0.08, −0.02 0.001

Fig. 2 Spaghetti plot showing raw data for each participant at every visit by LPA-derived lifestyle class. Each colored line represents one participant. 
Colors represent participants’ clinical consensus diagnosis at each visit. Black dashed lines are estimated class-specific global cognitive trajectories 
from linear mixed effects model results (adjusting for pathology), shown with corresponding standardized slope estimates
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Discussion
We found that discrete subgroups of older adults, defined 
by their pattern of engagement in multiple domains of 
lifestyle behaviors, exhibit differential rates of cognitive 
decline and incident CI. This person-specific and mul-
timodal approach to lifestyle characterization demon-
strated stronger associations with cognitive trajectories 
than any individual lifestyle behavior. Individuals char-
acterized by the lowest levels of engagement in all life-
style behaviors exhibited the steepest cognitive decline. 
Among the remaining lifestyle classes, attenuation of 

cognitive decline was observed in those with at least 
average levels of engagement across all domains, with 
some suggestion that social engagement may have addi-
tional positive effects on cognitive stability. Only AD 
and CVD burden, but not LBD or TDP-43, showed dif-
ferences across lifestyle classes, such that Class  4Balanced 
and Class  5Social had the lowest AD burden, while Class 
 2PA had the lowest CVD burden. Nonetheless, the mag-
nitude of relationships between lifestyle classes and cog-
nitive trajectories was robust to statistical adjustment 
for autopsy-defined neuropathological disease burden. 

Fig. 3 LPA-derived patterns of lifestyle factors are more predictive of global cognitive slope compared to that of each lifestyle factor individually, 
covarying for age, sex, and pathology. Class-specific standardized betas displayed below are the effect of each class in comparison to the reference 
group (i.e., class  1Low Life Space)

Fig. 4 Proportion of participants who remained stable or improved versus those who clinically converted to more severe levels of cognitive 
impairment from first to last visit by lifestyle class. A shows participants who were cognitively normal at baseline, and B shows those who had mild 
cognitive impairment (MCI) at baseline
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Taken together, these results suggest that moderate 
and balanced engagement in multiple healthy lifestyle 
behaviors may have the most robust effect on cognitive 
stability, even among individuals with mild cognitive 
symptoms and neuropathology.

Lifestyle classes were characterized by activity-inde-
pendent variation in overall engagement (e.g., Class  1Low 

Life Space vs. Class  4Balanced), as well as activity-specific fea-
tures (e.g., Class  2PA vs. Class  5Social). Despite the diver-
sity of lifestyle patterns, our most robust observation 
was consistent attenuation of cognitive decline among 
Classes 2–5 compared to Class  1Low Life Space. This is 
consistent with both observational and interventional 
data indicating that varied and balanced engagement 
in healthy lifestyle behaviors is more strongly related to 
cognitive stability with age than any single activity [5, 
48–50]. The remaining inter-class differences in cogni-
tive outcomes were relatively more subtle, although it is 
notable that the smallest magnitude of cognitive decline 
and lowest rate of clinical progression occurred in Class 
 5Social. The clinical relevance of social activity is sup-
ported by the 2020 Lancet Commission on dementia pre-
vention, which estimated that infrequent social contact 
accounts for a similar, if not higher, population attribut-
able fraction of dementia worldwide compared to physi-
cal inactivity ((1); 4% vs. 2%). Interestingly, social activity 
and social network scores were not related to cognitive 
slopes in analyses that modelled lifestyle factors as indi-
vidual predictors, adjusting for all other factors. Thus, 
the strong cognitive performance among Class  5Social may 
capture the benefits of socialization when layered upon a 
foundation of other healthy lifestyle engagement. In con-
trast, the lack of class differences in self-reported sleep 
quality as well as the null individual effect of sleep quality 
on cognitive trajectory suggests that it may not have been 
an important factor in this cohort; however, more objec-
tive measures of sleep may be more informative in future 
studies given well-studied relationships between sleep 
and dementia [12, 13]. Another notable lifestyle pattern 
was the strikingly restricted life space in Class  1Low Life 

Space relative to other groups, consistent with prior work 
[51]. Life space was the only factor significantly cor-
related with every other lifestyle indicator, potentially 
reflecting reduced environmental engagement and/or 
mobility as a central feature of a multifaceted risk factor 
for cognitive decline [51].

Across pathologies, we only observed direct rela-
tionships between lifestyle patterns with cerebrovas-
cular and Alzheimer’s disease (AD) burden. More 
specifically, the lifestyle class involving highest lev-
els of physical activity showed specific neuroprotec-
tive relationships with cerebrovascular disease. These 

findings are consistent with well-established evidence 
directly linking a range of cardiometabolic lifestyle 
factors (e.g., exercise, body mass index) to reduced 
risk of cerebrovascular disease and stroke [52]. Fur-
ther, lifestyle patterns involving high social connected-
ness or a balance of at least average or high frequency 
of a variety of activities and behaviors demonstrated 
the lowest AD burden. These results highlight the rel-
evance of social engagement added on top of other 
lifestyle behaviors for cognitive health and also raise 
interesting hypotheses for potential brain resist-
ance to development of AD pathology. This finding 
is consistent with prior in  vivo studies demonstrating 
that among adults with NCI, those with higher social 
engagement had lower CSF ptau and total tau com-
pared to isolated older adults [10]. Interestingly, LBD 
and TDP-43/hippocampal sclerosis did not evidence 
strong associations with lifestyle class membership, 
suggesting the relationship between lifestyle behav-
iors and direct risk for developing these pathologies is 
less prominent. Although all pathologies showed sig-
nificant relationships with cognitive decline, covarying 
for these pathologies did not alter the degree to which 
lifestyle classes explained variance in cognitive slopes. 
These findings suggest that while lifestyle factors may 
contribute to some neuropathology accumulation, the 
majority of the biologic mechanisms linking lifestyle to 
cognitive health may be independent of pathology (at 
least as measured in this study). Taken together, these 
data suggest that participation in lifestyle behaviors 
may have high relevance for how neuropathological 
burden clinically manifests.

Our study is not without limitations. Although we 
included over 2000 older adults to derive the latent 
lifestyle classes, some of the class sizes were relatively 
small. For instance, Class  2PA only included 64 indi-
viduals, suggesting that some lifestyle patterns may 
not be highly represented in older adults. Additionally, 
other than actigraphy data to capture physical activ-
ity levels, most of the other lifestyle metrics were self-
report. These measures may suffer from recall bias or 
social desirability. Future studies leveraging technologi-
cal capture of these constructs (e.g., GPS for life space, 
calls/texts for social activity) are warranted. Other limi-
tations include the observational design, which cannot 
determine directionality in the relationship between 
lifestyle patterns and neuropathological or cogni-
tive outcomes. Of note, we estimated lifestyle patterns 
averaged across late life to represent more “trait” level 
behaviors and excluded individuals with dementia at 
baseline to quantify lifestyle patterns before dementia 
onset. These methodological choices may help mitigate 
some issues around reverse causality.



Page 12 of 14Paolillo et al. Alzheimer’s Research & Therapy          (2023) 15:221 

Conclusions
Overall, this study is among the most comprehensive 
assessments of lifestyle patterns in the context of cogni-
tive aging and neuropathology. In contrast to measur-
ing one lifestyle behavior in isolation, our data-driven 
approach to quantifying and characterizing multiple 
lifestyle patterns provides a holistic and multidimen-
sional measurement of human behaviors that are rele-
vant for brain health. Findings highlight the importance 
of multifaceted lifestyle enrichment in maintaining 
optimal cognition in older adulthood, even in the face 
of neurodegenerative pathologies. Although memory 
clinic providers commonly include clinical recom-
mendations to increase physical activity, emphasis 
on integrating other lifestyle behaviors, particularly 
environmental enrichment and social activity, may be 
particularly relevant for bolstering brain and cogni-
tive health in the oldest ages. Our study also provides 
further support for multi-domain lifestyle intervention 
studies to optimize cognitive health with age.
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