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Abstract

Background Modifiable lifestyle behaviors account for a large proportion of dementia risk. However, the combined
contributions of multidomain lifestyle patterns to cognitive aging are poorly understood, as most studies have exam-
ined individual lifestyle behaviors in isolation and without neuropathological characterization. This study examined
data-driven patterns of lifestyle behaviors across multiple domains among older adults and tested their associations
with disease-specific neuropathological burden and cognitive decline.

Methods Participants included 2059 older adults enrolled in the longitudinal Memory and Aging Project (MAP)

at the Rush Alzheimer’s Disease Center; none of whom had dementia at baseline (73% no cognitive impairment (NCI),
27% mild cognitive impairment [MCI]). All participants completed cognitive testing annually. Lifestyle factors were
measured during at least one visit and included (1) actigraphy-measured physical activity, as well as self-reported (2)
sleep quality, (3) life space, (4) cognitive activities, (5) social activities, and (6) social network. A subset of participants (n
= 791) had autopsy data for which burden of Alzheimer’s disease (AD), cerebrovascular disease (CVD), Lewy body dis-
ease, and hippocampal sclerosis/TDP-43 was measured. Latent profile analysis across all 2059 participants identified
distinct subgroups (i.e., classes) of lifestyle patterns. Linear mixed-effects models examined relationships between life-
style classes and global cognitive trajectories, with and without covarying for all neuropathologies. Classes were

also compared on rates of incident MCl/dementia.

Results Five classes were identified: Class 1 4, |ife space (IOWest lifestyle engagement), Class 2p, (high physical activ-
ity), Class 35, asq (IoW to average lifestyle engagement), Class 4g,,nceq (Nigh average lifestyle engagement), and Class
S5¢oaal (Iarge social network). Classes 4p,1anceq aNd 545 had the lowest AD burden, and Class 2p, had the lowest CVD
burden. Classes 2-5 had significantly less steep global cognitive decline compared to Class 1, o, jife spacer With com-
parable effect sizes before and after covarying for neuropathological burden. Classes 4g,janceq @3Nd Scocia €Xibited
the lowest rates of incident MCl/dementia.

Conclusions Lifestyle behavior patterns among older adults account for differential rates of cognitive decline

and clinical progression. Those with at least average engagement across all lifestyle domains exhibit greater cogni-
tive stability after adjustment for neuropathology, highlighting the importance of engagement in multiple healthy
lifestyle behaviors for later life cognitive health.
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Introduction

The prevalence of dementia is precipitously rising, yet
development of cognitive impairment with age is not
inevitable. Converging lines of evidence suggest that
over 40% of dementia cases are attributable to modifiable
exposures and lifestyle factors [1]. Optimal engagement
in later life behaviors such as physical activity, sleep, and
cognitive and social activities has each been linked with
reduced cognitive decline, even among older adults with
autosomal dominant genetic risk for dementia. These
data underscore a key need to develop primary preven-
tion approaches for brain health. Yet, despite significant
advancements in our understanding of individual demen-
tia prevention techniques, lifestyle behaviors do not
occur in isolation, and holistic understanding of lifestyle
patterns for dementia prevention has lagged.

Indeed, the vast majority of studies have examined
potential neuroprotective behaviors one at a time, despite
the high level of interconnection across such lifestyle fac-
tors. Therefore, little is known about whether specific
neuroprotective patterns of lifestyle behaviors exist [2—4].
Previous work from Carlson and colleagues [5] showed
that participation in a variety of lifestyle behaviors is
most associated with reduced risk of cognitive aging or
the development of dementia. Similarly, data from the
randomized controlled FINGER trial demonstrate that a
multimodal approach to lifestyle optimization can sup-
port cognitive health over a 2-year period in older adults
at risk for dementia [6]. These and other studies sug-
gest that a deeper understanding of multimodal lifestyle
patterns for dementia prevention is highly warranted.
However, most studies in this area do not account for
interrelationships among multiple lifestyle factors [7, 8]
or binarize (yes/no) these variables [9, 10], which may not
fully capture the natural spectrum of behavior. Examin-
ing a wide range of lifestyle factors in combination is both
ecologically valid and may provide additional insights
into patterns that most strongly relate to better brain and
cognitive outcomes.

Another limitation of the existing literature examin-
ing lifestyle behaviors and brain health is the lack of
contextual neuropathological information available. For
instance, animal models and some emerging human data
indicate that physical activity and sleep may directly con-
tribute to pathological burden as well as impact one’s
ability to engage in neuroprotective behaviors [11-14].
These data suggest that understanding the neuropatho-
logical milieu may be highly relevant when disentangling

the effects of lifestyle on cognitive health. Notably, of the
studies that have examined lifestyle factors and resist-
ance to pathological change (e.g., Alzheimer’s disease
pathology), few have incorporated multiple facets of
lifestyle [10, 11]. Understanding how modifiable risk fac-
tors associate with risk of specific pathology develop-
ment and incrementally relate to cognitive health beyond
neuropathological burden (e.g., disease stage) is impor-
tant to inform person- and disease-specific brain health
recommendations.

To better understand the combined contribution of
multiple, modifiable lifestyle patterns on neuropathol-
ogy burden and cognitive aging, we leveraged multi-
modal lifestyle and longitudinal cognitive data from
adults without baseline dementia enrolled in the Rush
Memory and Aging Project (MAP) neuropathology
cohort. Prior work in this cohort has reported independ-
ent relationships among individual lifestyle factors (e.g.,
cognitive activities, physical activity, social engagement),
cognitive change, and individual neuropathologies (e.g.,
AD burden) [11, 15, 16]. Here, we extend that work. We
employed latent profile analysis to empirically derive
subgroups of participants with similar behavior patterns
across different lifestyle domains, including physical
activity, cognitive activity, social engagement, sleep, and
environmental enrichment. We examined the relation-
ship between lifestyle patterns and neuropathology bur-
den as well as longitudinal cognitive trajectories and rates
of incident CI. Systematic model comparisons deter-
mined whether lifestyle pattern effects on cognition were
comparable to, and independent of, the relative effects of
disease burden across multiple neuropathologies.

Methods

Participants

Study participants were more than 2000 older adults
enrolled in the longitudinal MAP cohort [17]. Partici-
pants completed cognitive testing and received clini-
cal diagnoses at baseline and each annual follow-up
visit. For the present analysis, we included individuals
who were free of dementia at baseline (i.e., cognitively
unimpaired and mild cognitive impairment [MCI] only)
and had available data for at least half of the six lifestyle
measures of interest (see below). Of the 2059 study par-
ticipants, 791 had available autopsy data. The MAP study
was approved by a Rush University Medical Center Insti-
tutional Review Board, conducted in accordance with
the latest Declaration of Helsinki. Participants provided
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written informed and repository consents and Anatomic
Gift Act for organ donation.

Lifestyle measures

Physical activity

Omnidirectional actigraphy monitors were worn by par-
ticipants on the nondominant wrist and measured rest/
activity continuously for 24 h a day, for up to 10 days
per visit (Actical; Mini Mitter). Activity counts were
extracted in 15-s epoch estimates, provided by Actical.
Incomplete data were detected via inspection of acceler-
ometer recordings through an automated program that
flagged average daily counts at extreme levels: ~ 0/day or
> 500/day. Only participants with valid data for 1+ days
were included in analyses. Daily physical activity values
included a summary of both exercise and non-exercise
activities and was calculated as the average sum of all
15-s epoch daily activity counts for all full days of actig-
raphy data.

Sleep quality

Sleep quality was measured using a modified version of
the Pittsburg Sleep Quality Index (PSQI) and select items
from the Berlin Questionnaire, per previous protocols
[18, 19]. Individual questionnaire items were aggregated
to calculate scores for the following six PSQI compo-
nents: sleep latency, sleep duration, sleep efficiency, sleep
disturbances, usage of sleeping medications, and day-
time dysfunction. These sleep component scores were
summed and reverse scored to assign a total sleep quality
score ranging from O to 16, with higher indicating better
sleep quality.

Social activities

Participant social activity was assessed as frequency of
engagement in social activity in late life [20]. On a 6-item
survey, participants were asked to rate how often they
engaged in common types of activities involving social
interaction on a 5-point scale (e.g., 1 = once a year, 2 =
several times a year, 3 = several times a month, 4 = sev-
eral times a week, 5 = every day or almost every day).
Higher values indicate more frequent participation in the
listed activity. The social activity composite measure was
calculated by averaging all item scores, with higher scores
representing greater social activity (range 1 to 5).

Social network

Social network was assessed as a measure of network size
[15] and was quantified based on standardized questions
about the following: (1) number of close family members
and friends that were seen by the participant and (2) how
often the participant interacted with them (a minimum
of once a month). Specifically, social network size was
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quantified by the number of community members, rela-
tives, and friends seen at least once a month (range 0 to
no upper limit).

Life space

Life space has been defined as distance traveled from
home in daily life and is posited to reflect degree of spa-
tial movement through an individuals’ environment as a
proxy for environmental enrichment. A modified version
of the Life Space Questionnaire was used to develop a
scale that quantifies spatial movement in up to six spe-
cific environment zones (bedroom, porch/patio, parking
lot/yard, within neighborhood, outside neighborhood,
outside of town) [21]. Participants reported their pres-
ence in each of the zones within the past week of ques-
tionnaire administration (yes = 1 or no = 0). Individual
life space scores were calculated as a sum of all binary
responses and ranged from 0 to 6, with higher scores
indicating greater life space.

Cognitive activities

Cognitive activity was measured as frequency of par-
ticipation in cognitively stimulating behaviors in late
life [22]. The composite score was generated by averag-
ing individual frequency scores across seven cognitively
stimulating activities in the past year, including read-
ing, writing letters, visiting a library, and playing games
of skill (e.g., chess, checkers). These activities were spe-
cifically included to tap into skills involving information
processing or retention and being relatively accessible
(few barriers to participation). Each item was scored on
a 5-point scale, with higher values indicating more fre-
quent participation (range 1 to 5).

Cognitive testing

A global cognitive composite score was derived from a
battery of 21 cognitive tests administered to participants
each year. Tests measured episodic memory, seman-
tic processing, working memory, processing speed, and
executive functioning. Raw test scores from the 19 tasks
were first converted to z-scores and then averaged to
produce a global cognitive function summary measure,
as previously described [23]. Mean and standard devia-
tion at baseline were used to compute the z-scores.

Neuropathology

Brain autopsy procedures were completed by examiners
blinded to all clinical information. Brains were removed,
and hemispheres were cut coronally into 1-cm slabs
using a Plexiglas jig, with one hemisphere preserved in
4% paraformaldehyde. Following gross examination of
each hemisphere, nine brain regions of interest were dis-
sected from the fixed tissue and processed and embedded
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in paraffin, including midfrontal, midtemporal, basal gan-
glia, thalamus, midbrain, inferior parietal, anterior cingu-
late, and entorhinal and hippocampal cortices. Paraffin
blocks were then stained for assessment of pathology.
Additional information on these procedures has been
previously described in detail [24—27]. Neuropatholo-
gies were categorized into four groupings: Alzheimer’s
disease, cerebrovascular disease, Lewy body disease, and
hippocampal sclerosis/ TDP-43.

Alzheimer’s disease

A measure of global Alzheimer’s disease (AD) pathol-
ogy burden was created using a quantitative summary of
AD pathology, based on methods previously described
[17]. AD pathology involved total count of neurofi-
brillary tangles, neuritic plaques, and diffuse plaques.
Regional counts were derived from 15 regions (e.g., hip-
pocampus and the midfrontal, midtemporal, inferior
parietal, and entorhinal cortices) and scaled by dividing
by the corresponding regional standard deviation. Each
of the scaled regional measures were then averaged into
three summary pathology measures (neurofibrillary tan-
gles, neuritic plaques, and diffuse plaques); finally, the
three summary pathology measures were then averaged
into a global AD pathology metric, following previous
approaches [17].

Cerebrovascular disease (CVD)

Cerebral amyloid angiopathy (CAA) was assessed by
examining amyloid deposition in meningeal and paren-
chymal vessels using a previously described protocol
[28]. CAA scores were classified into a severity rating (0
=none, 1 = mild, 2 = moderate, 3 = severe) using cutoffs
determined by the neuropathologist [27].

Large vessel cerebral atherosclerosis ratings were com-
pleted through visual inspection of the circle of Willis at
the base of the brain using methods previously described
[29]. Severity was graded (0 to 6) based on the extent
of involvement of each artery and number of arteries
involved and was collapsed to 4 levels for analysis (0 = no
significant atherosclerosis observed, 3 = atherosclerosis
was examined in more than half of all visualized arteries,
and/or more than 75% occlusion of one or more vessels).

Arteriolosclerosis was defined by any histological
change found in the small vessels, including smooth
muscle degeneration, fibrohyalinotic thickening of arte-
rioles with consequent narrowing of the vascular lumen,
and intimal deterioration. The vessels were evaluated in
the anterior basal ganglia using a semiquantitative grad-
ing system that has been previously described elsewhere
[30]. For the cerebrovascular composite, the levels were
compressed into four levels (0 = none, 1 = mild, 2 =
moderate, 3 = severe).
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Gross infarcts were identified visually and confirmed
histologically, while micro infarcts were identified under
microscopy using hematoxylin and eosin (H&E) stain
[24, 31]. Gross and micro infarcts were coded on a sever-
ity scale (0 = none present, 1 = one or more infarction,
regardless of location) based on methods previously
described [32, 33].

A cerebrovascular composite was created by taking
the sum of CAA (0 to 3) + arteriolosclerosis (0 to 3) +
atherosclerosis (0 to 3) + gross chronic infarcts (0 or 1)
X 3 + micro infarcts (0 or 1) X 3. Each cerebrovascular
pathology was weighted to be equally represented in the
composite (range = 0-15) based on methods previously
used for the creation of summary scores of cerebrovascu-
lar dysfunction [34-36].

Lewy body disease (LBD)

The presence of Lewy body pathology was determined
using antibodies to a-synuclein [37]. LBD was binarized
as no Lewy body pathology (0) or Lewy bodies present in
nigral, limbic, or neocortical regions (1).

Hippocampal sclerosis (HS)/TDP-43

Hippocampal sclerosis was determined using H&E stain
on a section of the mid-hippocampus, based on methods
previously described elsewhere [25]. TDP-43 cytoplasmic
inclusions in neurons and glia were determined for eight
regions (yes vs. no), including amygdala, entorhinal cor-
tex, hippocampus CA1, hippocampus dentate gyrus, and
anterior temporal pole, midtemporal, orbital frontal, and
midfrontal cortices. TDP-43 inclusions were determined
using antibodies to phosphorylated TDP-43 (pS409/410;
1:100), and TDP-43 distribution was grouped into four
stages (0: none present; 1: localized to amygdala; 2: exten-
sion to limbic regions; 3: extension to the neocortex).
TDP-43 was considered present if positive for stages 2
or 3 [26, 38]. When examining the data, there was a high
degree of overlap between participants with hippocampal
sclerosis and TDP-43, such that only # = 7 demonstrated
hippocampal sclerosis without TDP-43. Therefore, to
reduce collinearity of pathologies represented, individu-
als with hippocampal sclerosis only were excluded, and
participants were coded into the following three groups:
no TDP-43 or hippocampal sclerosis (0), only TDP-43
(1), and both TDP-43 and hippocampal sclerosis present
(2).

Statistical analyses

Latent profile analysis (LPA) was used to identify homo-
geneous groups of participants (n = 2059) with simi-
lar lifestyle patterns based on the 6 available lifestyle
measures described above: physical activity, sleep qual-
ity, life space, late life cognitive activities, late life social
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activities, and size of social network [39]. Raw scores
for each lifestyle metric were averaged within persons
across all available study visits to estimate stable, later life
engagement in each lifestyle domain [40, 41]. This meth-
odology was employed as repeated measurements pro-
vide a more reliable estimate of stable trends in behavior
compared to single-timepoint measurements [42, 43].
To enhance interpretability, these averaged late life life-
style scores were z-score transformed prior to inclusion
in the LPA. Participants were required to have data for
at least three of the six lifestyle metrics to be included.
As part of standard LPA procedures, missing data were
imputed using a random forest imputation algorithm
from the MissForest package in R [44, 45]. To determine
the optimal number of groups (i.e., classes) underlying
the lifestyle data, separate models with an increasing
number of latent classes were estimated and compared
using the following model fit indices: log likelihood,
Bayesian information criterion (BIC), Akaike information
criterion (AIC), and the bootstrapped likelihood ratio
test (BLRT). Model diagnostics are also reported (i.e.,
entropy and average posterior classification probabil-
ity). For each model with k number of classes, the BLRT
compared the log likelihood to that of the model with
k-1 classes to examine whether adding the kth class sig-
nificantly improved model fit [46]. In addition to examin-
ing fit indices, a qualitative examination of class size and
interpretability was utilized to select the model with the
number of classes best fitting the data. Participants are
identified as belonging to one class. LPA was conducted
using R version 4.2.0 and MPlus version 7.4.

To examine differences in demographics and clini-
cal characteristics by latent lifestyle class membership,
ANOVA or chi-square tests were used for continuous
or categorical variables, respectively. ANOVAs were
also used to examine how lifestyle classes directly relate
to burden of each measured neuropathology. Next, we
examined how lifestyle patterns associated with later life
cognitive trajectories. Linear mixed-effects (LME) mod-
els were used to examine the interaction between latent
lifestyle class membership and time on global cogni-
tion in a two-step fashion: (1) without covarying for the
effects of neuropathology on cognitive trajectory and (2)
covarying for neuropathology on cognitive trajectory.
Both models included person-specific random intercepts
and a random effect of time, as well as time-invariant
covariates (i.e., baseline age, sex, education, and total
number of study visits). Including these random effects
in the model provides estimation of individual intercepts
(i.e., levels of the global cognition at baseline) and indi-
vidual slopes (i.e., trajectories of global cognition over
time) for each person, which allows proper examination
of whether class membership explains variance in these
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individual cognitive slopes. Estimates from LME regres-
sion models are reported as standardized betas (), which
describe the strength of the relationship between predic-
tor and outcome in units of standard deviations. A post
hoc LME model was conducted to examine the unique
contribution of each individual lifestyle measure on
global cognitive trajectory, covarying for neuropathol-
ogy, age, and sex. Additionally, analyses examined rates of
incident CI from first to last visit by lifestyle group using
chi-square tests. FDR-adjusted p-values were utilized for
pairwise class comparisons.

Results

Participant characteristics

Table 1 presents demographic, clinical, lifestyle, and neu-
ropathological characteristics in the study sample. Par-
ticipants were 75% female and on average 80 years old
at baseline (range: 53—100) with 14.9 years of education.

Table 1 Participant characteristics (N = 2059)

Mean (SD) or N (%)
Demographics
Baseline age 79.75 (7.55)
Education 1491 (3.31)
Sex (female) 1537 (75%)
Race/ethnicity
White 1922 (93%)
Black/African American 109 (5%)
Other 28 (2%)
Study characteristics

Number of visits 7.03 (4.69) [range = 1-22]

Total time in study until death (n = 797) 7.61(4.32)
Lifestyle characteristics
Average physical activity raw score 2.07(1.15)
Average sleep quality raw score 10.18 (2.46)
Average life space raw score 5(1.00)
Average cognitive activities raw score 3.03 (0.64)
Average social activities raw score 248 (0.53)
Average social network raw score 6.66 (4.63)
Cognitive characteristics
Baseline global cognition 0.08 (0.55)
Clinical diagnosis Baseline Last visit
Normal cognition 1510 (73%) 1130 (55%)
MCI 549 (27%) 492 (24%)
Dementia - 437 (21%)
Neuropathology (n = 791)
Alzheimer's disease 0.71 (0.61)
Cerebrovascular disease 546 (3.02)
Lewy body disease (present) 176 (23%)
Hippocampal sclerosis/TDP-43 0.61(0.63)

“Other”race/ethnicity includes the following: Asian, American Indian or Alaska
Native, Native Hawaiian or Other Pacific Islander, other, or unknown
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At baseline, 73% of participants were NCI, and 27% were
diagnosed with MCI. At last study visit, 55% of partici-
pants were NCI, 24% MCI, and 21% dementia. Partici-
pants completed an average of seven annual cognitive
assessments, and the average time from baseline visit to
death in the autopsy subcohort was 7.6 years.

Lifestyle profiles

Correlational analyses examining the six individual life-
style measures (Table 2) evidenced relationships that
ranged from minimal to medium (r range: 0.05 to 0.50).
The majority of associations were statistically significant,
with the exception of null associations between sleep and
physical activity (r = 0.05), sleep and cognitive activities
(r = 0.06), and physical activity and social network (r =
0.05).

Table 3 displays model fit indices and diagnostics for
LPA models with increasing number of classes (ranging
from 1 to 6 classes). A five-class solution was selected
as the optimal model on the basis of fit indices showing
lower log likelihood, AIC, and BIC compared to lower-
class solutions (BLRT p-value < 0.001) while maintaining
optimal diagnostics (entropy and minimum average pos-
terior classification probability > 0.80). Although a six-
class solution yielded lower AIC and BIC values than the
five-class solution, class profiles were less interpretable
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and had inferior model diagnostics. Given that lifestyle
metrics were averaged across all study visits, which
included follow-up visits in which participants had pro-
gressed to dementia, we performed a sensitivity analysis
in which the computation of average lifestyle metrics was
restricted to non-dementia timepoints (i.e., NCI, MCI).
This analysis again yielded an optimal five-class solution
with near identical class separation (entropy = 0.90) and
lifestyle differences across class, thereby supporting sta-
bility of class profiles as independent of dementia state
(e.g., rather than a consequence of dementia-related
behavioral change).

As shown in Fig. 1, the five data-driven lifestyle classes
that emerged can be described based on visual inspection
of relative levels and peaks of engagement in each lifestyle
domain. Class 1, 1ife space Nad the lowest levels across all
six measures, with particularly low levels of life space (N
= 138). Class 2,, demonstrated very high physical activ-
ity (PA) with average to high levels across the remaining
5 measures (N = 64). Class 3, ., demonstrated low to
average (avg) levels across all 6 measures (N = 394). Class
4p.1anceq Nad average to high levels across all 6 measures
(N = 1374). Finally, Class 5¢,,; had the largest social
network, with high levels of social activities, cognitive
activities, and life space, with average levels across the
remaining 2 lifestyle measures (N = 89).

Table 2 Pearson r correlation matrix of individual lifestyle factor Z-scores

PA Sleep? Life space Cognitive Social activities Social network
activities
Physical activity -
Sleep? 0.05 -
Life space 0.26%** 0.17%x* -
Cognitive activities 0.10%** 0.06 0.37%** -
Social activities 0.20%** 0.10%* 0.50%** 0.41%%* -
Social network 0.05 0.08* 0.24%** 0.18*** 0.38*** -
**p <.01. ***p < .001. °Higher scores = better sleep quality
Table 3 LPA fitindices and model diagnostics for class solutions 1 through 6
Classes Log likelihood AIC BIC Smallest class size  BLRT BLRT p-value Entropy Minimum
(% of sample) average posterior
probability®
1 —-16,573.15 33,170.30 33,237.86 2059 (100%) - 1.00 1.00
2 —15,73843 31,514.85 31,621.82 383 (18.6%) 1669.45 <.001 0.90 0.92
3 —15,473.25 30,998.49 31,144.87 100 (4.9%) 530.36 <.001 0.90 0.79
4 —15,252.65 30,571.30 30,757.09 91 (4.4%) 441.19 <.001 0.89 0.84
5@ —15,094.37 30,268.74 30,493.94 64 (3.1%) 316.57 <.001 0.89 0.84
6 —14,978.71 30,05143 30,316.03 62 (3.0%) 231.31 <.001 0.78 0.80

2 Selected as the most optimal class solution based on a combination of fit indices. Represents the minimal of the diagonal of the average latent class probabilities for

most likely class membership
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Fig. 1 Five-class LPA solution. Colored lines represent average z-scores for each lifestyle activity across each class, with error bars representing

standard deviations

Lifestyle class characteristics

Table 4 presents participant characteristics by lifestyle
pattern class. Demographic differences by class were
observed for age (mean age range: 76.0 years [Class 2p,]
to 84.8 years [Class 1}, it spacel)> €ducation (mean edu-
cation range: 13.6 years [Class 1} 4 1ife space] t0 15.6 years
[Class 5¢,.1]), and, to a lesser extent, sex [%female range:
65% [Class 5¢,..] to 81% [Class 2p,]). With regard to
neuropathology, omnibus class differences were observed
for AD and CVD, but not LBD or HS/TDP-43. Classes
4p 1anced aNd 5g, a1 €xhibited the lowest levels of AD path-
ological burden, with pairwise comparisons showing that
Class 4p,1.nceq had significantly lower AD burden than
Classes 2p, (p =.042) and 3, 5,4 (p = .006). In contrast,
Class 2p, exhibited the lowest CVD burden, with pair-
wise differences that were significant or approached sig-
nificance compared to the other 5 classes (p range: < .001
to .061).

Lifestyle classes and cognitive trajectories

A two-step linear-mixed effects regression model tested
the association between lifestyle class and cognitive tra-
jectories, before and after adjustment for neuropatho-
logical burden among the subset of 704 participants
with autopsy data (Table 5). In Model 1, Classes 2-5
exhibited significantly less steep global cognitive decline
(all time X class interaction ps < .05; Fig. 2) compared
to reference Class 1y, 1ife space (time slope: f = —0.67, p
< .001). Between Classes 2-5, Class 5¢,, exhibited the
flattest cognitive trajectory (time slope: f = —0.18), fol-
lowed by Class 4p,10nceq (time slope: 8 = —0.33), Class
2p, (time slope: B = —0.45), and then Class 3, Ay, (time

slope: B = —0.49). In Model 2, AD, CVD, LBD, and HS/
TDP-43 were added as independent pathological predic-
tors of cognitive trajectories. AD, LBD, and HS/TDP-43
were each associated with significantly steeper cogni-
tive decline (ps < .002), with AD showing the strongest
effects compared to that of other pathologies, consist-
ent with previous publications in this cohort [47]. In this
pathology-adjusted model, Classes 2-5 continued to
show slower cognitive decline compared to Class 1, Life
space With comparable effect sizes to Model 1 (Table 5).
Further examination of pairwise class contrasts showed
no statistically significant differences between Classes
2pas Lpatanced A0 Bgociq ON COgnitive trajectories in either
Model 1 or Model 2. In addition, Model 1 results in this
subset of 704 participants with autopsy data were compa-
rable to that of the entire 2059 participant sample (Sup-
plementary Table 1).

Given the significant relationships between lifestyle
pattern class and cognitive trajectories, post hoc mod-
els examined the strength of association between each
of the six individual lifestyle measures and cognitive tra-
jectories to determine how the combined effects of life-
style factors compared to any individual domain. Figure 3
displays a forest plot with standardized coefficients and
95% confidence intervals for the effects of each individual
lifestyle measure and lifestyle pattern class (vs. reference
group Class 1j,, rife space)- Of the individual measures,
higher physical activity, cognitive activity, and life space
were statistically significantly related to slower cognitive
decline over time; however, the magnitude of these rela-
tionships (8 range = —0.020 [social network] to 0.064 [life
space]) was substantially weaker than those derived from
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Table 4 Participant characteristics by class
Class T owiifespace  Class 2py Class 3 ouavg  Class4gianced  Class 5goa  p-value
(n=138) (n=64) (n=394) (n=1374) (n=289)
Demographics
Baseline age 84.81 (6.53) 75.98 (7.61) 8234 (6.91) 7874 (747) 78.70 (6.60) <0.001
Education 13.56 (3.36) 14.22 (2.96) 13.89 (3.16) 1533 (3.28) 15.60 (2.95) < 0.001
Sex (female) 107 (78%) 52 (81%) 311 (79%) 1009 (73%) 58 (65%) 0.024
Race/ethnicity 0.224
White 134 (97%) 55 (86%) 364 (92%) 1284 (93%) 85 (96%)
Black/African American 3 (2%) 9 (14%) 26 (6%) 68 (5%) 3(3%)
Other 1 (1%) 0 (0%) 4 (1%) 22 (2%) 1 (1%)
Study characteristics
Number of visits 5.59(3.84) 8.28 (4.08) 7.52 (4.40) 7.01 (4.83) 6.47 (4.99) < 0.001
Lifestyle Characteristics
Average physical activity z score —0.77 (0.46) 2.69 (0.88) —0.33 (0.68) 0.04 (0.66) 0.09 (0.77) <0.001
Average sleep quality z score —0.26 (0.75) 0.07 (0.52) —0.30(0.75) 0.02 (0.73) 0.18(0.82) < 0.001
Average life space z score —2.63(0.63) 0.27 (0.59) —0.92 (0.48) 047 (0.39) 0.67 (0.31) <0.001
Average cognitive activities z score -0.80(1.14) 0.06 (0.81) —0.59 (1.03) 1(0.87) 0.52 (0.80) <0.001
Average social activities z score -1.18(0.72) 0.25(0.84) —0.80 (0.80) 0.27 (0.84) 1.11(0.82) <0.001
Average social network z score -0.52(0.75) —0.04 (0.68) —0.38 (0.69) -0.03(0.73) 2.97 (1.30) <0.001
Cognitive characteristics
Baseline global cognition —-0.36 (0.54) 0.10 (0.59) —-0.17(0.53) 0.18 (0.52) 0.25 (0.47) <0.001
Baseline clinical diagnosis (normal) 70 (51%) 51 (80%) 254 (65%) 1060 (77%) 75 (84%) <0.001
Change in clinical diagnosis from baseline < 0.001
to last visit
Normal to normal 32 (23%) 35 (55%) 109 (28%) 782 (57%) 60 (67%)
Normal to MCl 11 (8%) 9 (14%) 61 (16%) 158 (12%) 10 (11%)
Normal to dementia 27 (20%) 7 (11%) 84 (21%) 120 (9%) 5 (6%)
MCl to normal 3 (2%) 4 (6%) 9 (5%) 84 (6%) 2 (2%)
MCl to MCI 29 (21%) 3 (5%) 51(13%) 150 (11%) 10 (11%)
MCI to dementia 36 (26%) 6 (9%) 70 (18%) 80 (6%) 2 (2%)
Neuropathology (n = 791)
Alzheimer’s disease 0.71 (0.63) 0.94 (0.70) 0.80 (0.62) 0.66 (0.58) 0.64 (0.57) 0.029
Cerebrovascular disease 6.63 (3.26) 3.76 (2.26) 584 (291) 5.10 (2.98) 550(2.31) < 0.001
Lewy body disease (present) 18 (20%) 5(25%) 48 (22%) 00 (24%) 5 (26%) 0.951
Hippocampal sclerosis/TDP-43 0.63 (0.66) 0.65(0.59) 0.66 (0.67) 0.57 (0.61) 0.53(0.51) 0.545

the lifestyle pattern classes, suggesting the combination
of factors may be a more robust approach compared to
individual behaviors explaining variance in cognitive
health.

Lifestyle classes and incident Cl

Chi-square tests examined lifestyle class differences
in rates of incident CI from first to last study visit
(Fig. 4). Among those who were cognitively unimpaired
at baseline (n = 1510), class membership was signifi-
cantly related to incident CI by the last study visit (y* =
109.4; p < 0.001). Highest rates of no cognitive impair-
ment (NCI) to incident MCI/dementia were observed

among those in Class 3, Ay (57%) and Class 1;,, 16
space (54%), with significantly lower rates of incident CI
in Class 2p, (31%; ps < 0.03), Class 4g,10nceq (26%; ps <
0.001), and Class 5, (20%; ps < 0.001). Among those
who were characterized as MCI at baseline (n = 549),
class membership was also significantly related to inci-
dent CI by the last study visit (y* = 39.1; p < 0.001).
Again, highest rates of incident CI were observed
among those in Class 1o, 1ife space (53%) and Class 3,
avg (50%), with lower rates of incident CI in Class 2p,
(46%; nonsignificant, ps > 0.05), Class 4p,.nceq (25%;
significant, ps < 0.001), and Class 5¢,;, (14%; trending,
ps = 0.058).
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Table 5 Linear mixed-effects model results

Model 1 Model 2

Std. beta 95% ClI p-value Std. beta 95% ClI p-value
Baseline age -0.08 -0.12,-0.05 < 0.001 —0.06 -0.10, -0.03 0.001
Sex (ref.: female) -0.14 -0.22,-0.06 0.001 -0.13 -0.21,-0.05 0.001
Education 0.14 0.11,0.18 < 0.001 0.14 0.10,0.17 < 0.001
Total study visits 0.15 0.12,0.19 < 0.001 0.18 0.14,0.22 <0.001
Time -0.67 -0.78,-0.57 < 0.001 -0.63 —0.73,-0.54 < 0.001
Class 2pp (1ef: 10,0 e Space) 0.64 0.29,0.99 <0007 067 0.35,0.99 <0001
€135 3o avg (F: T Lie space) 031 0.13,0.50 0.001 035 0.18,0.52 <0.001
Class Agapances (€ T Lo Lfe space) 070 052,087 <0001 066 0.50,0.82 < 0,001
€135 Ssocial (€F: T gu L Space) 085 043,1.26 <0.0071 076 039,1.13 <0.0071
Time X Class 2p5 0.22 0.00,0.44 0.049 0.24 0.04,0.44 0.018
Time x Class 3, Avg 0.18 0.06,0.30 0.004 0.21 0.10,0.32 <0.001
Time x Class 4gyanced 034 022,045 <0.001 031 021,042 <0.001
Time x Class 5¢, 049 022,077 <0007 043 0.19,0.67 0.001
AD - - - -0.22 -0.27,-0.17 < 0.001
[@Y/b) - - - -0.07 -0.12,-0.02 0.004
LBD (ref. no.) - - - -0.27 -0.39,-0.16 < 0.001
HS/TDP-43 - - - -0.11 -0.16,-0.06 < 0.001
Time x AD - - - -0.14 -0.17,-0.11 < 0.001
Time x CVD - - - -0.03 —-0.06, 0.00 0.085
Time X LBD - - - -0.12 —-0.19, -0.05 0.002
Time x HS/TDP-43 - - - -0.05 —-0.08,-0.02 0.001

Both model 1 and model 2 include 704 participants with complete

380 in Class 4g,,nceqs N = 16 in Class 5¢,,)

neuropathology data (N =87 in Class 1o, e spacei N = 19 in Class 2p5; N = 202 in Class 3, pvgi N =

1: Low Life Space

3: Low Avg

=063 2]
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Global Cognitive Z Score
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Fig. 2 Spaghetti plot showing raw data for each participant at every visit by LPA-derived lifestyle class. Each colored line represents one participant.
Colors represent participants'clinical consensus diagnosis at each visit. Black dashed lines are estimated class-specific global cognitive trajectories
from linear mixed effects model results (adjusting for pathology), shown with corresponding standardized slope estimates
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Fig. 4 Proportion of participants who remained stable or improved versus those who clinically converted to more severe levels of cognitive
impairment from first to last visit by lifestyle class. A shows participants who were cognitively normal at baseline, and B shows those who had mild

cognitive impairment (MCI) at baseline

Discussion

We found that discrete subgroups of older adults, defined
by their pattern of engagement in multiple domains of
lifestyle behaviors, exhibit differential rates of cognitive
decline and incident CI. This person-specific and mul-
timodal approach to lifestyle characterization demon-
strated stronger associations with cognitive trajectories
than any individual lifestyle behavior. Individuals char-
acterized by the lowest levels of engagement in all life-
style behaviors exhibited the steepest cognitive decline.
Among the remaining lifestyle classes, attenuation of

cognitive decline was observed in those with at least
average levels of engagement across all domains, with
some suggestion that social engagement may have addi-
tional positive effects on cognitive stability. Only AD
and CVD burden, but not LBD or TDP-43, showed dif-
ferences across lifestyle classes, such that Class 4g,j,nced
and Class 5¢,.,; had the lowest AD burden, while Class
2pa had the lowest CVD burden. Nonetheless, the mag-
nitude of relationships between lifestyle classes and cog-
nitive trajectories was robust to statistical adjustment
for autopsy-defined neuropathological disease burden.
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Taken together, these results suggest that moderate
and balanced engagement in multiple healthy lifestyle
behaviors may have the most robust effect on cognitive
stability, even among individuals with mild cognitive
symptoms and neuropathology.

Lifestyle classes were characterized by activity-inde-
pendent variation in overall engagement (e.g., Class 1,
Life Space VS+ Class 4p,janceq), as well as activity-specific fea-
tures (e.g., Class 2p, vs. Class 5g,.,)- Despite the diver-
sity of lifestyle patterns, our most robust observation
was consistent attenuation of cognitive decline among
Classes 2-5 compared to Class 1;,, i spae- 1hiS is
consistent with both observational and interventional
data indicating that varied and balanced engagement
in healthy lifestyle behaviors is more strongly related to
cognitive stability with age than any single activity [5,
48-50]. The remaining inter-class differences in cogni-
tive outcomes were relatively more subtle, although it is
notable that the smallest magnitude of cognitive decline
and lowest rate of clinical progression occurred in Class
5¢ocialr 1he clinical relevance of social activity is sup-
ported by the 2020 Lancet Commission on dementia pre-
vention, which estimated that infrequent social contact
accounts for a similar, if not higher, population attribut-
able fraction of dementia worldwide compared to physi-
cal inactivity ((1); 4% vs. 2%). Interestingly, social activity
and social network scores were not related to cognitive
slopes in analyses that modelled lifestyle factors as indi-
vidual predictors, adjusting for all other factors. Thus,
the strong cognitive performance among Class 5¢,;,; may
capture the benefits of socialization when layered upon a
foundation of other healthy lifestyle engagement. In con-
trast, the lack of class differences in self-reported sleep
quality as well as the null individual effect of sleep quality
on cognitive trajectory suggests that it may not have been
an important factor in this cohort; however, more objec-
tive measures of sleep may be more informative in future
studies given well-studied relationships between sleep
and dementia [12, 13]. Another notable lifestyle pattern
was the strikingly restricted life space in Class 1, 1
space elative to other groups, consistent with prior work
[51]. Life space was the only factor significantly cor-
related with every other lifestyle indicator, potentially
reflecting reduced environmental engagement and/or
mobility as a central feature of a multifaceted risk factor
for cognitive decline [51].

Across pathologies, we only observed direct rela-
tionships between lifestyle patterns with cerebrovas-
cular and Alzheimer’s disease (AD) burden. More
specifically, the lifestyle class involving highest lev-
els of physical activity showed specific neuroprotec-
tive relationships with cerebrovascular disease. These
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findings are consistent with well-established evidence
directly linking a range of cardiometabolic lifestyle
factors (e.g., exercise, body mass index) to reduced
risk of cerebrovascular disease and stroke [52]. Fur-
ther, lifestyle patterns involving high social connected-
ness or a balance of at least average or high frequency
of a variety of activities and behaviors demonstrated
the lowest AD burden. These results highlight the rel-
evance of social engagement added on top of other
lifestyle behaviors for cognitive health and also raise
interesting hypotheses for potential brain resist-
ance to development of AD pathology. This finding
is consistent with prior in vivo studies demonstrating
that among adults with NCI, those with higher social
engagement had lower CSF ptau and total tau com-
pared to isolated older adults [10]. Interestingly, LBD
and TDP-43/hippocampal sclerosis did not evidence
strong associations with lifestyle class membership,
suggesting the relationship between lifestyle behav-
iors and direct risk for developing these pathologies is
less prominent. Although all pathologies showed sig-
nificant relationships with cognitive decline, covarying
for these pathologies did not alter the degree to which
lifestyle classes explained variance in cognitive slopes.
These findings suggest that while lifestyle factors may
contribute to some neuropathology accumulation, the
majority of the biologic mechanisms linking lifestyle to
cognitive health may be independent of pathology (at
least as measured in this study). Taken together, these
data suggest that participation in lifestyle behaviors
may have high relevance for how neuropathological
burden clinically manifests.

Our study is not without limitations. Although we
included over 2000 older adults to derive the latent
lifestyle classes, some of the class sizes were relatively
small. For instance, Class 2,, only included 64 indi-
viduals, suggesting that some lifestyle patterns may
not be highly represented in older adults. Additionally,
other than actigraphy data to capture physical activ-
ity levels, most of the other lifestyle metrics were self-
report. These measures may suffer from recall bias or
social desirability. Future studies leveraging technologi-
cal capture of these constructs (e.g., GPS for life space,
calls/texts for social activity) are warranted. Other limi-
tations include the observational design, which cannot
determine directionality in the relationship between
lifestyle patterns and neuropathological or cogni-
tive outcomes. Of note, we estimated lifestyle patterns
averaged across late life to represent more “trait” level
behaviors and excluded individuals with dementia at
baseline to quantify lifestyle patterns before dementia
onset. These methodological choices may help mitigate
some issues around reverse causality.
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Conclusions

Overall, this study is among the most comprehensive
assessments of lifestyle patterns in the context of cogni-
tive aging and neuropathology. In contrast to measur-
ing one lifestyle behavior in isolation, our data-driven
approach to quantifying and characterizing multiple
lifestyle patterns provides a holistic and multidimen-
sional measurement of human behaviors that are rele-
vant for brain health. Findings highlight the importance
of multifaceted lifestyle enrichment in maintaining
optimal cognition in older adulthood, even in the face
of neurodegenerative pathologies. Although memory
clinic providers commonly include clinical recom-
mendations to increase physical activity, emphasis
on integrating other lifestyle behaviors, particularly
environmental enrichment and social activity, may be
particularly relevant for bolstering brain and cogni-
tive health in the oldest ages. Our study also provides
further support for multi-domain lifestyle intervention
studies to optimize cognitive health with age.
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