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Abstract 

Background NeuroEPO plus is a recombinant human erythropoietin without erythropoietic activity and shorter 
plasma half-life due to its low sialic acid content. NeuroEPO plus prevents oxidative damage, neuroinflammation, 
apoptosis and cognitive deficit in an Alzheimer’s disease (AD) models. The aim of this study was to assess efficacy 
and safety of neuroEPO plus.

Methods This was a double-blind, randomized, placebo-controlled, phase 2–3 trial involving participants ≥ 50 years 
of age with mild-to-moderate AD clinical syndrome. Participants were randomized in a 1:1:1 ratio to receive 0.5 
or 1.0 mg of neuroEPO plus or placebo intranasally 3 times/week for 48 weeks. The primary outcome was change 
in the 11-item cognitive subscale of the AD Assessment Scale (ADAS-Cog11) score from baseline to 48 weeks (range, 
0 to 70; higher scores indicate greater impairment). Secondary outcomes included CIBIC+, GDS, MoCA, NPI, Activities 
of Daily Living Scales, cerebral perfusion, and hippocampal volume.

Results A total of 174 participants were enrolled and 170 were treated (57 in neuroEPO plus 0.5 mg, 56 in neuroEPO 
plus 1.0 mg and 57 in placebo group). Mean age, 74.0 years; 121 (71.2%) women and 85% completed the trial. The 
median change in ADAS-Cog11 score at 48 weeks was −3.0 (95% CI, −4.3 to −1.7) in the 0.5 mg neuroEPO plus group, 
−4.0 (95% CI, −5.9 to −2.1) in the 1.0 mg neuroEPO plus group and 4.0 (95% CI, 1.9 to 6.1) in the placebo group. The 
difference of neuroEPO plus 0.5 mg vs. placebo was 7.0 points (95% CI, 4.5–9.5) P = 0.000 and between the neuroEPO 
plus 1.0 mg vs. placebo was 8.0 points (95% CI, 5.2–10.8) P = 0.000. NeuroEPO plus treatment induced a statistically 
significant improvement in some of clinical secondary outcomes vs. placebo including CIBIC+, GDS, MoCA, NPI, 
and the brain perfusion.

Conclusions Among participants with mild-moderate Alzheimer’s disease clinical syndrome, neuroEPO 
plus improved the cognitive evaluation at 48 weeks, with a very good safety profile. Larger trials are warranted 
to determine the efficacy and safety of neuroEPO plus in Alzheimer’s disease.
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Trial registration https:// rpcec. sld. cu Identifier: RPCEC00000232.
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Introduction
Alzheimer’s disease (AD) is a progressive neurodegen-
erative disorder and the most common form of dementia. 
Considerable research efforts have been directed towards 
developing safe and effective pharmacological treat-
ments. The U.S. Food and Drug Administration (FDA) 
has approved seven drugs for the treatment of Alzhei-
mer’s: rivastigmine, galantamine, donepezil, meman-
tine, memantine plus donepezil, aducanumab (under the 
accelerated approval pathway), and lecanemab [1–7].

Lecanemab, the last drug approved by the FDA, 
reduced markers of amyloid in early Alzheimer’s dis-
ease and resulted in moderately less decline on measures 
of cognition and function than placebo at 18  months 
according Clarity AD trial [3, 4]. Another β-amyloid-tar-
geting antibody: donanemab, slowed clinical progression 
at 76 weeks in early symptomatic Alzheimer’s, according 
to the TRAILBLAZER-ALZ 2 randomized clinical trial 
[8]. Thus, there is an urgent need for developing new 
therapies for preventing, delaying onset, slowing progres-
sion, and improving symptoms of AD, with good safety 
profile.

Erythropoietin (EPO) is a growth factor mainly pro-
duced in the kidney and with a well-known activity on 
erythropoiesis. The EPO receptor (EPOR) is differentially 
expressed in neurons, astrocytes, and endothelial cells in 
different regions of the central nervous system (CNS) [9]. 
Different functions of EPO in the CNS with respect to 
the hematopoietic system are most likely due to the four 
different isoforms of the EPOR, which are expressed spe-
cifically in different tissues. The canonical EPOR isoform 
present in the hematopoietic system enables erythroid 
differentiation, whereas in the brain it regulates neuro-
inflammation and hypoxia. The EPOR/β cR (CD131) iso-
form is involved in neural tissue protection [10].

EPO binding to its cell surface receptor leads to a 
decrease in apoptosis, oxidative stress, and neuroin-
flammation. Studies have shown that EPO protects hip-
pocampal and cortical neurons from glutamate-induced 
cell death in  vitro and in  vivo [11], as well as from A β 
toxicity [12] by reducing inflammation [13] and by acting 
as an antioxidant [14]. Pre-clinical animal studies have 
shown that EPO improves neurological function [9, 15].

When administered intravenously, EPO can result 
in hypertension, thrombosis, and stroke [16]. To have 
activity in the brain, EPO must be intravenously admin-
istered at high levels, which can result in edema and cer-
ebral hemorrhage [17]. Therefore, in order to avoid these 

adverse events new strategies are needed to precisely 
deliver EPO to the brain.

NeuroEPO plus  (NeuralCIM®, Center of Molecular 
Immunology Havana Cuba) is a recombinant sialo-gly-
coprotein with low sialic acid content. NeuroEPO plus 
showed an increase in bi- and triantennary structures 
to detriment of tetraantennary with additional LacNAc 
units. This characteristic glycosylation detected in neu-
roEPO plus could explain the higher efficiency of this 
non-erythropoietic erythropoietin in the mechanisms 
of neuroprotection and neuroregeneration described 
in vitro and in vivo [18].

The reduction in sialic acid causes rapid hepatic deg-
radation, and thus neuroEPO plus needs to be adminis-
tered by the intranasal route to avoid hepatic first pass 
metabolism and degradation in the gastrointestinal tract 
[19]. NeuroEPO plus is a neuroprotective agent that acti-
vates multiple signaling pathways to inhibit apoptosis, 
reduce cellular neuronal death, inflammation, and local 
edema. NeuroEPO plus induces neuroglobin protein syn-
thesis selectively in the damaged regions and increases 
angiogenesis and extension of capillaries, which protects 
the vascular endothelium. NeuroEPO plus activity con-
tributes to neurogenesis and neuroplasticity that controls 
homeostasis and rescues brain functions damaged by 
brain injury [20–22].

In the ICV-Aβ25-35 AD mice model and in the aged 
transgenic mice model Tg2576, neuroEPO plus prevented 
neuronal loss in the hippocampal CA1 region, reduced 
the number of brain amyloid plaques, reduced the incre-
ment of TNF-α, IL-1β levels, glial activation, neuroinflam-
mation, oxidative effects, and apoptosis in neurons and, 
also, significantly improved spatial memory [23, 24].

Direct evidence of neuroEPO plus in the CNS has been 
demonstrated in Mongolian gerbils using radiolabeled 
neuroEPO plus [25, 26]. Indirect evidence of neuroEPO 
plus in the  cerebral spinal fluid (CSF) is supported by 
studies measuring total EPO in the CSF of non-human 
primates [26] and in patients with Spinocerebellar ataxia 
type 2 (SCA2) [27]. These studies suggest that neuroEPO 
plus is reaching the intended target when delivered 
intranasally.

NeuroEPO plus has been safely evaluated in healthy 
volunteers [28], patients with SCA2 [27] and patients 
with Parkinson disease [29]. We conducted a phase 2–3 
trial (ATHENEA), to assess the safety and efficacy of neu-
roEPO plus in participants with mild-to-moderate Alz-
heimer’s clinical syndrome.

https://rpcec.sld.cu
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Material and methods
Trial conduct
ATHENEA was a 48-week, phase 2–3, randomized, 
double-blind, parallel, multicenter, adaptive, placebo-
controlled trial with participants screened in Havana 
Cuba from September, 2017 to September, 2020. The 
responsible investigator or the site coordinator in each 
clinical site enrolled the participants.

All patients had the opportunity to drop-out of 
research. The sponsor CIM designed the trial and 
analyzed the data in collaboration with the academic 
authors, provided neuroEPO plus and placebo and 
aided in drafting the manuscript. Confidentiality agree-
ments were in place between the sponsor and the 
authors and site investigators. CIM provided partial 
funding for the trial.

An independent data and safety monitoring board, 
consisting of experts in Alzheimer’s disease, clini-
cal trial, and statistics, provided trial oversight. Clini-
cal assessment raters were unaware of the trial-group 
assignments. All the authors vouch for the complete-
ness and accuracy of the data, the fidelity of the trial 
to the protocol (available at https:// rpcec. sld. cu/ trials/ 
RPCEC 00000 232- En).

Data were blindly gathered by the study investigators, 
blindly analyzed by the sponsor, and interpreted by the 
sponsors in collaboration with the researchers once the 
randomization was opened.

Trial design and participants
The trial included participants age ≥ 50 years with Alz-
heimer’s clinical syndrome (—recommended terminol-
ogy for clinically ascertained multi- (or single-) domain 
amnestic syndrome or a classic syndromal variant 
(what has historically been labeled “possible or prob-
able AD”)) [30], on the basis of National Institute on 
Aging—Alzheimer’s Association (NIA-AA) 2011crite-
ria, the diagnosis was performed considering only clini-
cal criteria [31].

Eligible participants had a Global Deterioration 
Scale (GDS) score of 3 to 5 (inclusive). Procedures also 
included magnetic resonance imaging (MRI) consistent 
with AD [32–35]. Key exclusion criteria included neu-
rologic disease other than AD and presence of imaging 
abnormalities (brain tumor, head trauma, any intracer-
ebral hemorrhage greater than 1  cm3, two or more lacu-
nar infarcts, more than 1 area of superficial siderosis) 
on MRI.

In addition, cell DNA was extracted and apolipoprotein 
E (APOE) genotype determined by PCR, following the 
standard protocol for determination of the APOE ε4 car-
rier or non-carrier.

Randomization and intervention
Eligible participants were randomly assigned in a 1:1:1 
ratio (Fig. 1) by a computer-generated sequence using R 
v.3.2.4 (RCore Team, 2016), with adaptive randomiza-
tion by ADAS-Cog11 and GDS, to minimize the imbal-
ance between the groups. A first randomization block 
size was 6. From this point, a case-by-case randomization 
was made based on the two covariates mentioned above. 
The head of the pharmacy department at the sponsor site 
assigned participants to interventions.

Randomized participants received either neuroEPO 
plus 0.5 mg or neuroEPO plus 1.0 mg or placebo 3 times a 
week (Monday, Wednesday, and Friday), during 4 weeks. 
In order to keep the blinding, placebo was divided, and 
a half received 0.5 mL and the other 1.0 mL. From the 5 
to 48 weeks, neuroEPO plus groups received 0.5 mg and 
placebo group received 0.5 mL.

Outcomes
The primary outcome was change in the score on the 
11-item cognitive subscale of the Alzheimer’s Dis-
ease Assessment Scale (ADAS-Cog11) from baseline 
to 48  weeks. The ADAS-Cog11 score is a validated 
outcome measure used in clinical trials of Alzhei-
mer’s. It includes 11 tasks that include both subject-
completed tests and observer-based assessments. 
Together these tasks assess the cognitive domains of 
memory, language, and praxis [36, 37]. Total scores 
range from 0 to 70, higher scores indicating greater 
impairment and with a score of 16 to 45 indicating 
mild-moderate stage.

Secondary outcomes included changes from baseline 
to 48  weeks by the Clinician Interview-Based Impres-
sion of Change Incorporating Caregiver Information 
(CIBIC+; range, 0 to 7, with higher scores indicat-
ing greater impairment) [38], the GDS (range, 1 to 7, 
with higher scores indicating greater impairment) 
[39], Montreal Cognitive Assessment (MoCA; nor-
mal ≥ 26/30) [40], Neuropsychiatric Inventory (NPI; 
range, 0 to 120, higher scores reflect greater severity) 
[41] and Activities of Daily Living Scales (ADL: Katz, 
Barthel and Lawton; with lower scores indicating 
greater impairment) [42].

The changes from baseline to 48 weeks in cerebral per-
fusion by single-photon emission computed tomography 
(SPECT), lower cerebral perfusion in the posterior empo-
roparietal regions which is relevant to the physiology of 
AD [43]; volumetric MRI (vMRI) rates of hippocampal 
atrophy which are sensitive markers of neurodegenera-
tion in AD [32–35], and adverse events were additional 
secondary outcomes.

https://rpcec.sld.cu/trials/RPCEC00000232-En
https://rpcec.sld.cu/trials/RPCEC00000232-En
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The clinical outcomes were measured at baseline, 24 
and 48 weeks. Brain perfusion and hippocampal volume 
were measured at baseline and 48 weeks.

SPECT and MRI acquisition
The SPECT and MRI acquisition and analysis are 
included in Methods in Supplement.

Sample size calculation
The sample size for this trial was estimated on the basis 
of comparison of neuroEPO plus and placebo with 
respect to the primary efficacy outcome, the change 

from baseline at 48 weeks in the ADAS-Cog11 score. A 
reduction of at least 3 points between the changes of the 
ADAS-Cog11 total score in the neuroEPO plus vs. the 
placebo group was hypothesized. Therefore, after assum-
ing 20% discontinuation rate, 80% power to achieve sta-
tistical significance at a 2-sided α level of 0.025, the total 
planned enrolled was 114, including 38 participants in 
each group neuroEPO plus (0.5 or 1.0 mg) and placebo.

An interim analysis for futility or efficacy was planned, 
when the first 20 participants of each group were 
included and evaluated at 24  weeks. At that moment, 
a blinded readjustment of the sample size based on the 

Fig. 1 Screening, randomization, and follow-up. Participants who completed at 48 weeks are considered to have completed the trial (per 
protocol population). The modified intention-to-treat population which included participants with at least one dose of neuroEPO plus or placebo 
and a baseline measurement based on randomized treatment. The per protocol population which included subjects who complied 
with the protocol sufficiently (more than 90% of treatment with efficacy outcomes at baseline and at 48 weeks without any major deviation 
of protocol) to ensure that these data would be likely to exhibit the effects of treatment according to the underlying scientific model. Subjects were 
considerate in their randomized group. The safety population included participants who received at least one dose of neuroEPO or placebo. SPECT 
denotes single-photon emission computed tomography
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observed variance was considered. This adjustment was 
necessary and the sample size was increased by 60 (20 
patients by group). The final sample size was 174 (58 
patients by group).

Additional information is provided in Methods in 
Supplement.

Statistical analysis
All analyses were performed using the software programs 
IBM SPSS Statistics for Windows, version 25.0 (Armonk, 
NY: IBM Corp) and R version 3.2.4.

Efficacy analyses
The principal outcome was defined by ADAS-Cog11.

Efficacy analyses (ADAS-Cog11 and CIBIC+) were 
performed in the modified intention-to-treat population 
(mITT, participants with at least one dose of neuroEPO 
plus or placebo and a baseline measurement based on 
randomized treatment).

Secondary efficacy analyses (ADAS-Cog11, CIBIC+, 
GDS, MoCA, NPI, ADL, hippocampal volume, and brain 
perfusion) were performed in the per protocol popula-
tion (PP, subjects who complied with the protocol suffi-
ciently to ensure that these data would be likely to exhibit 
the effects of treatment according to the underlying sci-
entific model).

Goodness-of-fit to the normal distribution was evalu-
ated using the Kolmogorov-Smirnov test. The variables 
used did not meet the above assumption. Therefore, 
they are summarized using the median, as well as the 
95% confidence intervals for the differences with respect 
to the placebo group. Comparisons were made using 
Kruskal-Wallis test and Dunn test for multiple compari-
sons. With the qualitative variables, the dependency rela-
tionship regarding the treatment was studied using the 
chi-square test.

It was planned that if the probability of the fulfilled the 
hypothesis at 24  weeks was small P(Ɵ>2) < 0.1 (Ɵ is the 
final distribution of the difference in the ADAS-Cog11 
score neuroEPO plus – placebo), the evaluation of the 
hypothesis will be postponed to 48  weeks. After the 
interim analysis, the previous criteria were satisfied and 
the hypothesis was evaluated at 48 weeks.

Sensitivity analyses
Considering that the condition of the patients deterio-
rates over time, as a sensitivity analysis, two imputation 
methods for the missing data were proposed for the pri-
mary variable (ADAS-Cog11) and secondary variable 
(CIBIC+). The methods were as follows (1) regression 
analysis and (2) analysis with the worst response (missing 

values were considered as “non-responder” with an 
increase in the value of the initial score by 5 and 10 units 
for ADAS-Cog11 at 24 and 48 weeks, respectively, and 7 
units for CIBIC+).

Adverse events
Safety was evaluated in the safety population, partici-
pants who received at least one dose of neuroEPO plus 
or placebo. Safety evaluations included monitoring of 
adverse events, vital signs, physical examinations and 
clinical laboratory variables. Adverse events were col-
lected from the first administration of study drug until 
the patient’s final visit in the study and were summarized 
according to event frequency by treatment assignment. 
Frequency distributions by treatments were estimated. 
No safety monitoring of the MRI data was done.

Results
Trial population and baseline characteristics
A total of 355 participants were screened at two sites in 
Cuba from September 2017 through August 2019. In total, 
174 patients (mean age, 74.0  years; 121 [71.2%] women) 
were enrolled and 85% completed the trial: 50 (86.2%) in 
the neuroEPO plus 0.5 mg, 49 (84.5%) in the neuroEPO 
plus 1.0 mg, and 49 (84.5%) in the placebo group (Fig. 1).

The majority of patients screened, but not enrolled, 
were the result of severe stage, non-Alzheimer dementia, 
no informed consent, and sporadic treatment with ace-
tylcholinesterase inhibitors (AChEIs)/memantine. The 
most common primary reasons for treatment withdrawal 
were voluntary discontinuation (10 patients, 5.74%) and 
protocol non-adherence (9 patients, 5.17%) (Fig. 1). Base-
line characteristics are summarized by treatment groups 
(n = 170) (Table 1). These characteristics were similar to 
what has been observed in population studies involving 
persons with Alzheimer’s disease.

As seen in the Table 1, the groups are balanced and are 
similar in their characteristics. The percentage of APOE4 
non-carrier subjects in the control group, compared to 
those treated, may draw attention. However, the apparent 
imbalance observed is not significant (P = 0.206).

Primary outcome
The adjusted median change from baseline in the ADAS-
Cog11 score at 48 weeks was −3.0 (95% CI, −4.3 to −1.7) 
in the 0.5 mg neuroEPO plus group, −4.0 (95% CI, −5.9 
to −2.1) in the 1.0  mg neuroEPO plus group, and 4.0 
(95% CI, 1.9 to 6.1) in the placebo group. Difference vs. 
placebo was 7.0 points (95% CI, 4.5 to 9.5) in the 0.5 mg 
neuroEPO plus group, P = 0.000, and 8.0 points (95% 
CI, 5.2 to 10.8) in the neuroEPO plus 1.0  mg, P = 0.000 
(Fig. 2A and Table 2).
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The clinical significance was evaluated considering 
4-point change in ADAS-Cog score. The 49.1 and 58.9% of 
neuroEPO plus 0.5 mg and 1.0 mg, respectively decreased 
ADAS-Cog11 values in ≥ 4 units (difference, 47.4 (95% CI, 
34.0 to 60.8) in neuroEPO plus 0.5 mg; P = 0.000 and 57.2 
(95% CI, 43.8 to 70.5) in neuroEPO plus 1.0 mg; P = 0.000). 
The 86% of placebo-treated patients increased ADAS-
Cog11 values in ≥ 2 units (Fig. S1, Supplement).

Sensitivity analyses showed similar results in PP popu-
lation and mITT using regression models and the worst 
response (Fig. S2, Supplement).

Secondary outcomes
Clinical assessments
The differences between treatment groups and pla-
cebo in the median change from baseline at 48  weeks 
were 3.0 (95%CI, 2.2 to 3.7) in neuroEPO plus 0.5 mg, 
P < 0.001, and 3.0 (95%CI, 2.0 to 3.9) in neuroEPO plus 
1.0  mg, P < 0.001, for CIBIC+; 6.0 (95%CI, 4.7 to 7.3), 
P < 0.005, in neuroEPO plus 0.5 mg and 7.0 (95%CI, 5.4 
to 8.6) in neuroEPO plus 1.0 mg, P < 0.005, for MoCA; 
and 11.0 (95%CI, 6.9 to 15.1), P = 0.005, in neuroEPO 
plus 0.5 mg and 13.0 (95%CI, 8.3 to 17.7) in neuroEPO 

Table 1 Baseline demographics and clinical characteristics in modified intention-to-treat population

The analysis was performed in the modified intention-to-treat population, which included participants with at least one dose of neuroEPO plus or placebo and a 
baseline measurement based on randomized treatment

ApoE Apolipoprotein E, yr Years, No. Number, IR Interquartile range
a Race was determined by the participants
b Scores on the 11-item cognitive subscale of the Alzheimer’s Disease Assessment Scale (ADAS-Cog11) range from 0 to 70, with higher scores indicating greater 
impairment (scores were adjusted for age and formal education)
c Scores on the Global Deterioration Scale (GDS) range from 1 to 7, with higher scores indicating greater impairment

Characteristic NeuroEPO plus
0.5 mg (n = 57)

NeuroEPO plus
1.0 mg (n = 56)

Placebo (n = 57) Total (n = 170)

Age median (IR) — yr 75.0 ± 10.0 73.0 ± 10.0 74.0 ± 14.0 74.0 ± 9.0

Sex — no. (%)

 Female 38 (66.7) 41 (73.2) 42 (73.7) 121 (71.2)

 Male 19 (33.3) 15 (26.8) 15 (26.3) 49 (28.8)

Race — no. (%)a

 White 43 (75.4) 49 (87.5) 53 (93.0) 145 (85.3)

 Black 6 (10.5) 2 (3.6) 0 8 (4.7)

 Mestizo 8 (14.0) 5 (8.9) 4 (7.0) 17 (10.0)

Educational level — no. (%)

 None 12 (21.1) 9 (16.1) 12 (21.1) 33 (19.4)

 Elementary 17 (29.8) 20 (35.7) 15 (26.3) 52 (30.6)

 Junior 9 (15.8) 13 (23.2) 16 (28.1) 38 (22.4)

 Senior 8 (14.0) 13 (23.2) 8 (14.0) 29 (17.1)

 University 11 (19.3) 1 (1.8) 6 (10.5) 18 (10.6)

Time since diagnosis median (IR)— yr 1.0 ± 2.0 1.0 ± 2.0 2.0 ± 1.0 1.0 ± 2.0

ADAS-Cog11  scoreb median ± IR 22.0 ± 12.0 22.5 ± 14.0 23.0 ± 13.0 22.0 ± 12.0

Range 10 to 53 10 to 46 11 to 47 10 to 53

GDS score — no. (%)c

 2 0 1 (1.8) 1 (1.8) 2 (1.2)

 3 31 (54.4) 25 (44.6) 26 (45.6) 82 (48.2)

 4 25 (43.9) 26 (46.4) 27 (47.4) 78 (45.9)

 5 1 (1.8) 4 (7.1) 3 (5.3) 8 (4.7)

Stage — no. (%)

 Mild 37 (64.9) 32 (57.1) 36 (63.2) 105 (61.8)

 Moderate 20 (35.1) 24 (42.9) 21 (36.8) 65 (38.2)

APOE ε status — no. (%)

 No. of participants evaluated (n = 29) (n = 30) (n = 34) (n = 93)
 Carrier 16 (55.2) 16 (53.3) 12 (35.3) 44 (47.3)

 Non-carrier 13 (44.8) 14 (46.7) 22 (64.7) 49 (52.7)
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plus 1.0 mg, P = 0.005, for NPI (Fig. 2B–D and Table 2). 
About GDS, the differences between treatment groups 
and placebo in the percentage change from baseline to 
48  weeks were 19.9 (95%CI, 4.9 to 34.8) in neuroEPO 
plus 0.5 mg, P = 0.005, and 25.7 (95%CI, 11.6 to 40.3) in 
neuroEPO plus 1.0 mg, P = 0.005 (Table 2).

With respect to ADL, there was not an important 
variation at week 48. Most patients did not change their 
initial functional status. However, in the Lawton scale, 

neuroEPO plus-treated patients maintained the same 
median value (6.0 ± 4.0), whereas patients in the placebo 
group decreased the median value by 1 point (5.0 ± 3.0), 
Table S1, Supplement.

Cerebral perfusion
The sub-study of cerebral perfusion involved only 28 par-
ticipants, 25 (89.3%) completed the trial: 11 (44%) neu-
roEPO plus 0.5 mg, 5 (20%) neuroEPO plus 1.0 mg, and 9 

A ADAS-Cog11 B CIBIC +

C MoCA D NPI

Fig. 2 Primary and secondary outcomes from baseline to 48 weeks. Panels A and B show results in the modified intention-to-treat population 
(0.5 mg: n = 57; 1 mg: n = 56; Pb: n = 57). Panels C and D show results in the per protocol population (0.5 mg: n = 50; 1 mg: n = 49; Pb: n = 49). 
Panel A shows the results for the primary outcome, the score on the 11-item cognitive subscale of the Alzheimer’s Disease Assessment Scale 
(ADAS-Cog11; range, 0 to 70, with higher scores indicating greater impairment). Panels B, C, and D show the results for the secondary outcomes. 
Panel B shows results for the change from baseline in the score on the Clinician Interview-Based Impression of Change Incorporating Caregiver 
Information (CIBIC+; range 0 to 7, with higher scores indicating greater impairment). Panel C shows results for the change from baseline 
in the score on the Montreal Cognitive Assessment (MoCA; normal ≥ 26/30, with lower scores indicating greater impairment). Panel D shows results 
for the change from baseline in the score on the Neuropsychiatric Inventory (NPI; range 0 to 120, higher scores reflect greater severity). 95% CIs 
for median changes were calculated (data was not approximated by normal distribution)
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Table 2 Clinical outcomes from baseline to 48 weeks

Scores on the 11-item cognitive subscale of the Alzheimer’s Disease Assessment Scale (ADAS-Cog11) range from 0 to 70, with higher scores indicating greater 
impairment (scores were adjusted for age and formal education). Scores on the Clinician’s Interview Based Impression of Change Incorporating Caregiver Information 
(CIBIC+) range from 0 to 7, with higher scores indicating greater impairment. Scores on the Global Deterioration Scale (GDS) range from 1 to 7, with higher scores 
indicating greater impairment. Scores on the Montreal Cognitive Assessment (MoCA) ≥ 26/30 normal. Scores on the Neuropsychiatric inventory (NPI) range from 0 to 
120, higher scores reflect greater severity

No. Number, IR Interquartile range, CI Confidence interval
a The analysis was performed in the modified intention-to-treat population (worst scenario, increase of 10 and 7 points at week 48 in ADAS-Cog11 and CIBIC+ 
respectively), which included participants who received at least one dose of neuroEPO or placebo and who had a baseline assessment
b The analysis was performed in the per protocol population, which included subjects who complied with the protocol sufficiently (more than 90% of treatment with 
efficacy outcomes at baseline and at 48 weeks without any major deviation of protocol) to ensure that these data would be likely to exhibit the effects of treatment 
according to the underlying scientific model. Subjects were considerate in their randomized group

Outcomes NeuroEPO plus
0.5 mg

NeuroEPO plus
1.0 mg 

Placebo

Primary efficacy outcome
 Change from baseline to 48 weeks in the ADAS-Cog11 score

  No. of participants  evaluateda 57 56 57

  Adjusted median change −3.0 −4.0 4.0

  Adjusted absolute median difference vs. placebo (95% CI) 7.0 (4.5 to 9.5) 8.0 (5.2 to 10.8)

  P value vs. placebo 0.000 0.000

Secondary efficacy outcomes
 Change from baseline to 48 weeks in the CIBIC+ score

  No. of participants  evaluateda 57 56 57

  Median change −1.0 −1.0 2.0

  Absolute median difference vs. placebo (95% CI) 3.0 (2.2 to 3.7) 3.0 (2.0 to 3.9)

  P value vs. placebo 0.000 0.000

  Change — no. (%)

   Improvement 40 (70.2) 39 (69.6) 0

   No change 13 (22.8) 8 (14.3) 1 (1.8)

   Worsening 4 (7.0) 9 (16.1) 56 (98.2)

 Change from baseline to 48 weeks in the GDS score

  No. of participants  evaluatedb 50 49 49

  Change — no. (%)

   No increase 45 (90.0) 47 (95.9) 34 (69.4)

   Increase 5 (10.0) 2 (4.1) 15 (30.6)

  Difference vs. placebo (95% CI) 19.9 (4.9 to 34.8) 25.7 (11.6 to 40.3)

  P value vs. placebo < 0.005 < 0.005

 Change from baseline to 48 weeks in the MoCA

  No. of participants  evaluatedb 50 49 49

  Median change 3.0 4.0 −3.0

  Median difference vs. placebo (95% CI) 6.0 (4.7 to 7.3) 7.0 (5.4 to 8.6)

  P value vs. placebo < 0.005 < 0.005

 Change from baseline to 48 weeks in the NPI

  No. of participants  evaluatedb 50 49 49

  Median change −4.0 −6.0 7.0

  Absolute median difference vs. placebo (95% CI) 11.0 (6.9 to 15.1) 13.0 (8.3 to 17.7)

  P value vs. placebo < 0.005 < 0.005

 Change from baseline to 48 weeks in the perfusion on the temporoparietal region

  No. of participants  evaluatedb 11 5 9

  Change — no. (%)

   Improvement 7 (63.6) 2 (40.0) 0 (0)

   No change 3 (27.3) 2 (40.0) 7 (77.8)

   Worsening 1 (9.1) 1 (20.0) 2 (22.2)
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(36%) placebo. At baseline, all subjects showed evidence 
of low cerebral perfusion. At 48  weeks, 63.6% of neu-
roEPO plus 0.5 mg, 40% of neuroEPO plus 1.0 mg, and 
22.2% of placebo group improved their global cerebral 
perfusion. These results were not significant, P = 0.345, 
possibly due to the small sample size (Table S2, Supple-
ment). However, in the temporoparietal region, none of 
the placebo group improved whereas 9 subjects of neu-
roEPO plus groups  had an improvement of their cerebral 
perfusion, P < 0.016) (Table  2). The Figs. S3-1, S3-2 and 
S3-3,  Supplement show SPECT sequences of 6 subjects 
before and after treatment.

Volumetric MRI
Ninety-eight subjects completed the study: 35 (35.7%) 
neuroEPO plus 0.5  mg, 31 (31.6%) neuroEPO plus 
1.0  mg, and 32 (32.7%) placebo. At baseline, the hip-
pocampal (HC) volume measured by MRI was adjusted 
by estimating the total intracranial volume (eTIV) and 
it was 2.06 ×  10−3 (95% IC 1.99 to 2.23) for the left HC 
and 2.10 ×  10−3 (95% IC 2.02 to 2.17) for the right HC. At 
48 weeks, the HC volume was 1.99 (95% IC 1.91 to 2.06) 
in the case of the left HC and 2.04 ×  10−3 (95% IC 1.96 to 
2.12) for the right HC. The HC volume by group is pre-
sented in the Table S3, Supplement.

For the three groups at 48  weeks, vMRI showed a 
decrease in the hippocampal volume. The three groups 
had a similar global percentage of change: −3.40, −3.26, 
and −3.32 in the case of neuroEPO plus 0.5 mg, 1.0 mg, 
and placebo, respectively, P < 0.98 (Table  S4, Supple-
ment). There was no difference seen between groups, 
possibly given the cohort size.

The analysis of HC volume perceptual change vs. 
ADAS-Cog11 initial value for individual subjects (Fig. 
S4, Supplement) showed a correlation between the pro-
gression of HC atrophy and the initial cognitive status of 
the patient, only in the placebo group (P = 0.0053). The 
magnitude of the percent change at 48 weeks was simi-
lar in the treated groups without significant differences 
(P = 0.61 and P = 0.19 to neuroEPO plus 0.5 and 1.0 mg, 
respectively).

Adverse events
Eleven patients (6.5%) had adverse events: 5 (8.8%), 3 
(5.4%), and 3 (5.3%) in the neuroEPO plus 0.5 mg, 1.0 mg, 
and placebo group, respectively.

The incidence of death was 1.8% in the neuroEPO plus 
0.5 mg group and 1.8% in the placebo group. No deaths 
were considered by the investigators to be related to 
neuroEPO plus. Numbness in the upper right member 
was the only adverse events related with neuroEPO plus 
0.5 mg (Table 3).

The incidence of serious adverse events was 5.3% in the 
neuroEPO plus 0.5 mg group and in the placebo group. 
In the neuroEPO plus 0.5  mg group, 1 participant with 
bronchopneumonia, deep venous thrombosis, and pul-
monary embolism subsequently died. In the placebo 
group, 1 participant with vomiting, dehydration, and 
bronchopneumonia subsequently died.

The most commonly reported serious adverse events 
were bronchopneumonia (1.8% in the neuroEPO plus 
0.5 mg and in the placebo group), pulmonary embolism 
(1.8% in the neuroEPO plus 0.5 mg group), deep venous 
thrombosis (1.8% in the neuroEPO plus 0.5  mg group), 
vomiting (1.8% in the placebo group), and dehydration 
(1.8% in the placebo group).

There were 21 adverse events, 10 in neuroEPO plus 
0.5  mg, 5 in neuroEPO plus 1.0  mg, and 7 in placebo 
group. The most common adverse events were vomiting 
(1.8% each in neuroEPO plus 0.5 mg, 1.0 mg, and in pla-
cebo) and bronchopneumonia (1.8% in neuroEPO plus 
0.5  mg and in placebo group). The overall incidence of 
adverse events was similar in the three groups (Table 3).

Treatment discontinuation due to adverse events was 
reported just in the two deceased subjects.

NeuroEPO plus produced no clinically relevant 
changes in laboratory tests, specifically no clinically 
important hemoglobin variation was detected and no 
difference between groups were observed at 48  weeks 
(Table S5 and Fig. S5, Supplement). Besides, no clinically 
relevant changes on physical examination or in vital signs 
were observed.

The benefit-risk analysis showed striking evidence in 
favour of the benefit. The odds were greater than 400 for 
neuroEPO plus groups indicating that the probability of 
benefit is greater than the probability of risk; for placebo, 
the odds was greater than 70 (Fig. S6, Supplement).

Discussion
In this phase 2–3 trial, neuroEPO plus groups slowed the 
Alzheimer’s clinical syndrome progression, based on the 
ADAS-Cog11 score, compared with placebo and across 
secondary clinical outcomes including CIBIC+, GDS, 
MoCA, NPI, and cerebral perfusion.

NeuroEPO plus treatment resulted in a clinically 
meaningful benefit (considered as the minimum of a 
clinically important effect of 4 points in the primary end 
point of the ADAS-Cog11 score) [44]. This trial used a 
definition of meaningful within patient change (MWPC) 
[45] based on the proposal of the panel of experts from 
the FDA: minimum of a clinically important effect of 4 
points in the ADAS-Cog score [44]. In this trial, consid-
ering the ITT population worst scenario, 54% of the neu-
roEPO plus-treated patients decreased the ADAS-Cog11 
scores in more than 4 units, suggesting some levels of 
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restoration of the cognitive function. On the other hand, 
71.9 and 68.1% of the subjects from neuroEPO plus 0.5 
and 1.0  mg, respectively, stabilized the ADAS-Cog11 
scores (Fig. S1, Supplement). This is an important find-
ing, because to control the disease and delay progression 
are the primary objectives of current AD drug develop-
ment pipeline.

Additionally, 69.9% of the patients receiving neuroEPO 
plus improved the CIBIC+ while 98.2% of the placebo 
patients worsened the CIBIC+ score. Furthermore, an 
estimated 92.9% of participants receiving neuroEPO plus 
groups had no change in the GDS at 48  weeks (no dis-
ease progression), compared with 69.4% of participants 
receiving placebo.

In our trial, the adjusted absolute difference in the 
changes between the neuroEPO plus groups and placebo 
group goes far beyond the initial hypothesis.

The potential benefit of anti-Aβ drugs to cognition in 
AD remains under active debate [46, 47], despite the fact 
that discrete benefits have been observed in clinical trials 

developed with anti-amyloid drugs [3, 4, 6–8], that is 
encouraging and justify the conduct of new clinical trials.

Perhaps this discrete benefit is due to the fact that 
these drugs have been directed at a single target. Some-
thing similar happens with other previously registered 
medications [48]. In our case, non-clinical studies have 
shown that neuroEPO plus has an effect on different 
therapeutic targets and this could explain our results 
[23–26].

NeuroEPO plus treatment shows good results for 
both moderate and mild stage (Table  S6 and Fig. S7, 
Supplement). This is unprecedented, because to achieve 
some control of moderate-stage disease, with the cur-
rently available drugs, is very difficult [49]. Besides, 
disappointing clinical trials over the last several years 
have led to a growing consensus on the need to inter-
vene earlier in the disease process, prior to the onset 
of any clinical symptoms. In this sense, our results 
showed better effect in mild patients, suggesting that an 
earlier use of neuroEPO plus could be more beneficial. 

Table 3 Summary of adverse events (AEs) by treatment group

The analysis was performed in the safety population, which included participants who received at least one dose of neuroEPO or placebo

 AEs Adverse events, No. Number

Event NeuroEPO plus
0.5 mg (n = 57)

NeuroEPO plus
1.0 mg (n = 56)

Placebo (n = 57)

Overview of AE — no. (%)
 Participants with any AE 5 (8.8) 3 (5.4) 3 (5.3)

 AE related to neuroEPO plus or placebo 1 (1.8) 0 0

 Serious AE 3 (5.3) 0 3 (5.3)

 Death (not related to treatment) 1 (1.8) 0 1(1.8)

 Participants with ≥ 1 serious AE 1 (1.8) 0 1(1.8)

AE that occurred in either group
 Bronchopneumonia 1(1.8) 0 1(1.8)

 Pulmonary embolism 1 (1.8) 0 0

 Numbness upper right member 1 (1.8) 0 0

 Bronchopneumonia 1 (1.8) 0 0

 Fall down 0 0 1(1.8)

 Headache 1 (1.8) 0 0

 Nasal congestion 1 (1.8) 0 0

 Constipation 1 (1.8) 0 0

 Dehydration 0 0 1(1.8)

 Pain due to fall down 0 0 1(1.8)

 Flu status 0 1 (1.8) 0

 Hypertension 0 1 (1.8) 0

 Hematoma due to fall down 0 0 1 (1.8)

 Urinary sepsis 0 1 (1.8) 0

 Irritability 0 0 1 (1.8)

 Palpitations 1 (1.8) 0 0

 Deep venous thrombosis 1 (1.8) 0 0

 Vomiting 1 (1.8) 1 (1.8) 1 (1.8)

 Diarrhea 0 1 (1.8) 0
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However, the clinical effect in the moderate stage is 
important and perhaps could be further consolidated 
with a longer period of neuroEPO plus treatment or its 
combination with some other therapies.

In our patient set, the frequency of subject with APOE 
ε4 allele positive was lower than the reported in litera-
ture for patients with a definitive diagnostic of AD (47% 
vs. greater than 60%) [8, 46] and the most frequent APOE 
genotype was ε3/ε3 with 44 subjects (47.3%). These 
results are similar to other studies carried out in the 
Cuban population [50–55]. On the other hand, emerg-
ing research has shown racial and ethnic variations in 
the magnitude of association between the APOE ε4 
allele and the risk of developing AD [50]. In our trial, the 
majority of subjects (allele 4 carriers and non-carriers) 
treated with neuroEPO plus responded to the treatment, 
whereas the majority of subjects (APOE4 carriers and 
non-carriers) in the placebo group worsened. Therefore, 
being a carrier or not of allele 4 did not influence in the 
results of the study. There was no dependence between 
the response to treatment and the APOE genotype, even 
though the percentage of genotyped individuals is rela-
tively small (Table S7, Supplement).

Cerebral perfusion measured by SPECT is a non-inva-
sive image diagnosis method used to evaluate functional 
parameters of brain and is typically reduced in Alzheimer 
patients. Flow reduction in the posterior temporopari-
etal regions is particularly relevant [43]. After 48  weeks 
of treatment, 9 (56.3%) participants from the neuroEPO 
plus groups improved their perfusion in all cerebral lob-
ules, including the temporoparietal region, and 2 (22.2%) 
participants from the placebo group improved their cer-
ebral perfusion just in the frontal lobe [56].

At baseline, the HC volume measured by MRI was sig-
nificantly lower (P = 0.000) than Cam-CAN database for 
healthy individuals [57]. This result correlated with the 
pattern observed in AD subjects [32–35].

Changes in vMRI showed that the HC volume was inde-
pendent of the ADAS-Cog11 score at baseline. However, 
the finding that the magnitude of the percent change was 
significant at 48 weeks in the placebo group is important, 
and additional trials with a larger sample size and over a 
longer period of time are needed to evaluate this aspect.

NeuroEPO plus treatment shows a very good safety 
profile, especially when compared with other drugs 
approved for the treatment of AD, where a greater num-
ber of adverse events, many of them serious, have been 
reported [48, 58–60].

Oral administration of AChEIs (donepezil, galan-
tamine, and rivastigmine) increases gastrointestinal 
adverse effects, such as abdominal pain, nausea, vom-
iting, diarrhea, and poor appetite. Also, older adults 
treated with AChEIs are at greater risk of cardiovascular 

side effects such as sinoatrial and atrioventricular block, 
severe sinus bradycardia, and QT interval prolongation 
with torsades de pointes [61].

Some gastrointestinal and nervous system side effects 
such as nausea, vomiting, diarrhea, anorexia, dizziness, 
depression, and headache were observed with the use of 
memantine [48].

Anti-Aβ drugs cause MRI-detectable ARIA. These 
side effects are often clinically silent or are associated 
with non-life threating symptoms such as migraine 
that resolve over 3–4 months of treatment suspension. 
In severe cases, ARIA may require hospitalization and 
some patients interrupt treatment. A meta-analysis 
revealed the potential for anti-Aβ therapies to com-
promise long-term brain health by accelerating brain 
atrophy [47, 59–61].

In our trial, the majority of adverse events reported, 
were mild and no related with neuroEPO plus treatment. 
The drug was well tolerated and no serious related events 
were reported. NeuroEPO plus is a derivative of EPO, 
which is known to cause hematological toxicity. During 
trial, the behavior of the hematological parameters was 
carefully evaluated. Hemoglobin slightly decreased over 
time in the three groups, but within the normal values, 
with no statistically significant differences between the 
groups or over time. Therefore, intranasal administration 
of neuroEPO plus did not cause any sign of hematologi-
cal toxicity. These safety results are consistent with previ-
ous clinical trials [27–29].

Limitations
This study has some limitations. The sample size was rel-
atively small. The data collection was done for 48 weeks. 
The cerebral perfusion was evaluated in a reduced num-
ber of patients. The trial was conducted during the 
COVID-19 pandemic and encountered obstacles includ-
ing missed doses, delayed assessments, and intercurrent 
illnesses. There are no pharmacokinetic studies in AD 
subjects. However, evidence for the presence of neu-
roEPO plus in the CSF has been observed when neu-
roEPO plus was administered in subjects with SCA2 [27]. 
In non-clinical studies, it was observed that only 0.026% 
is absorbed. Therefore, extrapolating to humans, the sub-
ject would be receiving 20 and 40  mU/mL for 0.5 and 
1.0 mg, respectively [26]. Pharmacokinetic study will be 
performed in AD subjects, once radiolabeled neuroEPO 
plus is achieved to differentiate from endogenous EPO, 
which is very difficult. The trial did not include molecu-
lar biomarkers for the definitive diagnosis of AD. The 
clinical trial began in 2017. The trial used the NIA-AA 
2011 diagnostic criteria, where the use of biomarkers 
was not mandatory [31]. In 2018, the NIA-AA and FDA 
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recommended the use of biomarkers for the diagnosis 
of AD in the framework of research. Still, they acknowl-
edged that, in current medical practice, the diagnosis is 
frequently only clinical since access to biomarkers is not 
easy and their use is expensive [30].

Additional trials of neuroEPO plus include a 78-week 
phase 3 comparing neuroEPO plus vs. donepezil or the 
combination, where the clinical diagnosis will be com-
plemented with the determination of β-amyloid in CSF 
(RPCEC number, RPCE00000409) and a 104-week phase 
3 long-term extension trial (RPCEC00000410) in mild-
to-moderate Alzheimer’s disease patients.

Conclusions
In patients with mild-to-moderate Alzheimer’s clinical 
syndrome, neuroEPO plus reduced ADAS-Cog11 score, 
without related serious adverse events. NeuroEPO plus 
was approved using the accelerated approval pathway, 
by the Cuban Regulatory Authority, sanitary register 
number B-22-016-N07-C. Longer trials are warranted 
to determine the efficacy and safety of neuroEPO plus in 
early Alzheimer’s disease.
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