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Abstract 

Background APOE genotype is the greatest genetic risk factor for sporadic Alzheimer’s disease (AD). APOE4 increases 
AD risk up to 12‑fold compared to APOE3, an effect that is greater in females. Evidence suggests that one‑way APOE 
could modulate AD risk and progression through neuroinflammation. Indeed, APOE4 is associated with higher glial 
activation and cytokine levels in AD patients and mice. Therefore, identifying pathways that contribute to APOE4‑asso‑
ciated neuroinflammation is an important approach for understanding and treating AD. Human and in vivo evidence 
suggests that TLR4, one of the key receptors involved in the innate immune system, could be involved in APOE‑
modulated neuroinflammation. Consistent with that idea, we previously demonstrated that the TLR4 antagonist 
IAXO‑101 can reduce LPS‑ and Aβ‑induced cytokine secretion in APOE4 glial cultures. Therefore, the goal of this study 
was to advance these findings and determine whether IAXO‑101 can modulate neuroinflammation, Aβ pathology, 
and behavior in mice that express APOE4.

Methods We used mice that express five familial AD mutations and human APOE3 (E3FAD) or APOE4 (E4FAD). Female 
and male E4FAD mice and female E3FAD mice were treated with vehicle or IAXO‑101 in two treatment paradigms: 
prevention from 4 to 6 months of age or reversal from 6 to 7 months of age. Learning and memory were assessed 
by modified Morris water maze. Aβ deposition, fibrillar amyloid deposition, astrogliosis, and microgliosis were 
assessed by immunohistochemistry. Soluble levels of Aβ and apoE, insoluble levels of apoE and Aβ, and IL‑1β were 
measured by ELISA.

Results IAXO‑101 treatment resulted in lower Iba‑1 coverage, lower number of reactive microglia, and improved 
memory in female E4FAD mice in both prevention and reversal paradigms. IAXO‑101‑treated male E4FAD mice 
also had lower Iba‑1 coverage and reactivity in the RVS paradigm, but there was no effect on behavior. There 
was also no effect of IAXO‑101 treatment on neuroinflammation and behavior in female E3FAD mice.

Conclusion Our data supports that TLR4 is a potential mechanistic therapeutic target for modulating neuroinflam‑
mation and cognition in APOE4 females.
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Background
APOE (apolipoprotein E) genotype is a major risk fac-
tor for sporadic Alzheimer’s disease (AD), with APOE4 
increasing risk up to 12-fold compared to APOE3 
(reviewed in [1, 2]). Therefore, an important challenge is 
identifying therapeutic targets for APOE4 carriers in AD. 
The role of APOE in AD is complex, as APOE has been 
shown to modulate multiple functions and pathways 
in humans and transgenic mouse models that overpro-
duce amyloid-beta (Aβ) via familial AD mutations (FAD) 
(reviewed in [3, 4]). For example, compared to APOE3, 
APOE4 is associated with higher soluble Aβ levels and 
amyloid plaques, altered metabolism, and neurovascular 
function (reviewed in [3–5]). In addition, increasing evi-
dence suggests that APOE-modulated neuroinflamma-
tion contributes to AD progression [6]. In AD patients, 
compared to APOE3, APOE4 is associated with earlier 
onset of cognitive deficits and increased neuroinflamma-
tion [7–10]. These human data are recapitulated in vivo, 
as APOE4 is associated with greater microgliosis [11–14], 
astrogliosis [13–15], and altered cytokine levels [12, 14, 
16, 17] in FAD mice and in APOE-knock in mice after 
induction of peripheral inflammation. In addition, there 
is greater neuroinflammation in female APOE4 FAD 
mice compared to males [11, 15, 18, 19], consistent with 
higher AD risk and pathology in female APOE4 carri-
ers. Therefore, identifying pathways that contribute to 
APOE4-associated neuroinflammation is an important 
approach for developing AD therapeutics.

Neuroinflammation is complex and involves multi-
ple cell-types, receptors, signaling pathways, cytokines, 
and chemokines. One approach to identify the contri-
bution of neuroinflammatory pathways to AD progres-
sion is to evaluate activity of FDA approved drugs with 
known anti-inflammatory activities such as NSAIDs 
[20]. Although some studies supported that NSAIDs 
may be efficacious as an AD therapeutic, including in 
APOE4 carriers, others have shown no beneficial effects 
[21–23]. Ongoing research is defining if these estab-
lished anti-inflammatories will be beneficial for specific 
patient groups at certain stages of AD and the optimal 
treatment regime. An alternative approach is to deter-
mine if compounds that target pathways modulated by 
APOE4 can impact neuroinflammation and behavior. 
The innate immune system is one of the most highly 
conserved immune responses across plants, drosophila, 
and animals to defend against invading pathogens and is 
also activated by endogenous stress-related molecules. 
Toll-like receptor 4 (TLR4) is a key component of the 
innate immune response is expressed by microglia (and 
to a lesser extent by astrocytes) [24, 25] and is activated 
by lipopolysaccharide (LPS) and other stress-associated 
ligands (reviewed in [26, 27]). Evidence suggests that 

TLR4 could contribute to neuroinflammation in AD. For 
example, there is higher TLR4 expression in AD patients’ 
[28, 29] and FAD mouse brains [29, 30] and single nucle-
otide polymorphisms (SNPs) in TLR4 have been shown 
to modulate AD risk [31–33]. There is also evidence that 
TLR4 is involved in APOE4-associated neuroinflam-
mation. In  vitro, LPS-induced inflammatory response 
is greater with APOE4 compared to APOE3 [14, 16, 17]. 
Furthermore, Aβ-induced cytokine production is greater 
with APOE4 in glial cultures, an effect that is blocked by 
TLR4 antagonists, and expression of TLR4-related genes 
are greater in APOE4-FAD mice [34]. Based on these 
data, it has been proposed that with APOE4, greater 
TLR4 activation in the brain may lead to higher neuroin-
flammatory responses and contribute to behavioral defi-
cits. However, to date, no studies have directly evaluated 
the effect of blocking TLR4 on AD-relevant pathology 
and behavior in mice that express APOE4.

The goal of this study was to determine whether TLR4 
antagonism can modulate neuroinflammation, Aβ 
pathology, and behavior in mice that express APOE4. To 
address this goal, we used a novel small molecule TLR4 
antagonist IAX0-101, which we have previously shown 
to inhibit Aβ-induced cytokine release in APOE4-mixed 
glial cells [34]. Therefore, we treated mice that express 
APOE4 (E4FAD) and overproduce Aβ with IAXO-101 
in prevention and reversal paradigms and evaluated 
the impact on neuroinflammation, Aβ pathology, and 
behavior.

Methods
Animals and study design
All experiments follow the University of Illinois at Chi-
cago Animal Care Committee protocols. EFAD mice 
express five familial AD mutations and human APOE 
 (5xFAD+/-/hAPOE+/+) as described in [35]. EFAD mice 
were generated from Tg6799, the 5xFAD mouse strain 
that produced the highest amount of Aβ42. In Tg6799 
5xFAD mice, Aβ40 levels also increase with age but rise 
more slowly and are substantially lower than for Aβ42 in 
young mice [36]. The prevention (PVT) treatment para-
digm was designed to begin at 4 months, at early stages 
of AD pathology, including amyloid deposition and neu-
roinflammation, and end at 6 months when pathology is 
significant [35]. The reversal (RVS) treatment paradigm 
begins at 6 months and ends at 7 months, capturing the 
previously observed age-associated increase in pathology 
[37].

Drug formulation and treatment
IAXO-101, a synthetic Cluster of differentiation 14 
(CD14)/TLR4 antagonist nano-formulated in Lipodisq™, 
was provided by Innaxon Biosciences (Tewkesbury, UK). 
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Lipodisq™ drug formulations are lipid-based nano-sized 
(10-40 nm) monodisperse, discoidal nanoparticles, also 
referred to as native nano-discs or styrene maleic acid 
lipid particles [38]. EFAD mice were administered either 
IAXO-101 in Lipodisq™ nano-formulation or a vehicle 
(empty Lipodisq™ nano-formulation) using subcuta-
neous injections at 10  mg/kg for three times per week. 
The nano-formulated IAXO-101 was provided as a ster-
ile, endotoxin-tested, 4  mg/ml aqueous stock solution, 
diluted just prior to use in sterile, endotoxin-free water 
[38, 39]. Treatments for the mice were randomized 
within cage and across groups. All investigators were 
blinded for treatment and analysis. Body weights were 
measured prior to each injection to determine dose and 
monitor for any treatment-related weight changes.

Behavioral analysis and tissue harvest
All behavioral data were recorded and analyzed with 
ANY-maze video tracking software (Stoelting Co, 
Wood Dale, IL USA). In the week prior to sacrifice, 
mouse behavior was tested using a modified Morris 
water maze protocol with acquisition trials consist-
ing of 4 × 1  min trials/day for 5 consecutive days with 
latency to the platform recorded for each trial. A sin-
gle probe trial was run on day 6 with the platform 
removed, and the readouts included latency to platform 
and latency to target quadrant (previously described 
[40–42]). After the probe trial, the mice were anesthe-
tized with ketamine/xylazine and perfused with phos-
phate-buffered saline. Then, the brains were removed 
and dissected at the midline to produce two hemi-
brains, one each for immunohistochemical and bio-
chemical analysis (previously described in [35, 42]).

Immunohistochemical analysis
Serial sagittal brain sections (35 μm thick, 280 μm apart) 
from EFAD mice were all stained for fibrillar amyloid 
deposition via Thio-S and immunostained for Aβ deposi-
tion, astrogliosis, and microgliosis (previously described 
[11, 14, 35]), with anti-mouse or anti-rabbit Alexa-fluor 
secondary antibodies. A list of all the antibodies used in 
this study is provided in Additional file  2. The stained 
sections were imaged at × 10 magnification with a Zeiss 
Fluorescence microscope and analyzed for area covered 
by Thio-S, MOAB-2, GFAP, S100β, C3, Iba-1, and Clec7a 
in the cortex (CX) and hippocampus (HP) using ImageJ. 
The regions included for analysis are outlined in Fig. S1A 
(CX = 1; HP = 2 + 3) and close-up images of CX and HP 
at × 20 for all immunostainings performed are presented 
in Additional file  1 (Figs. S8-S15). Immunostaining sig-
nals from both cortical and hippocampal regions were 
quantified by investigators blinded to treatment, APOE 
genotype, and sex within paradigm. For morphological 

analysis of microglia, 8 sub-regions within the CX were 
imaged at × 40, and the total number of microglia within 
each frame was classified as type 1 or type 2/3 (Fig. S1B) 
[43].

Sequential protein extraction fractions and ELISAs (Aβ, 
apoE, and IL‑1β)
Frozen cortices dissected from the mouse hemi-brains 
were homogenized using a three-step extraction protocol 
producing soluble (Tris-buffered saline: TBS), non-ionic 
detergent (TBS + 1%Triton X-100: TBSX), and insolu-
ble (neutralized formic acid: FA) [44]. Total protein in 
the TBS and insoluble extracts was quantified using the 
Bradford assay [44]. Soluble Aβ42, apoE, and interleu-
kin-1 beta (IL-1β) were measured by ELISA following 
the manufacturer’s instructions, while insoluble Aβ42 
and apoE were measured in insoluble fraction (previously 
described [12, 35, 44, 45]). A list of all the antibodies used 
is provided in Additional file 2.

Statistical analysis
GraphPad Prism 9 (for Mac, GraphPad Software, La 
Jolla, CA) was used for statistical analyses. For all statis-
tical tests, p < 0.05 was considered significant. Data was 
plotted as scatter bar graphs, with the mean and stand-
ard error of the mean (SEM). Morris water maze acqui-
sition phase data and body weights were analyzed by 
repeated measured two- or three-way ANOVA, followed 
by Tukey’s post hoc tests. All other data were analyzed by 
unpaired Student’s t-test. See Additional file 3 for details 
on n sizes and statistical comparisons.

Results
The goal of this study was to evaluate the effect of TLR4 
antagonism on neuroinflammation and other markers 
of AD-relevant pathology in mice that express human 
APOE. To address this goal, we treated EFAD mice from 
4 to 6  months of age (Prevention paradigm; PVT) or 
from 6 to 7 months of age (reversal paradigm; RVS) with 
either vehicle or IAXO-101 (10  mg/kg ~ 0.3  mg/mouse, 
3 subcutaneous injections/week). We used EFAD mice 
as they overproduce  Aβ42 and  express human APOE4 
(E4FAD)  or APOE3. Previous data have demonstrated 
that E4FAD mice have higher levels of astrogliosis, 
microgliosis, and Aβ pathology at 6 months of age com-
pared to E3FAD mice [12, 35]. Therefore, in our preven-
tion paradigm, we treated mice from 4 to 6  months or 
age, and in our reversal paradigm, treatment was from 6 
to 7 months. For TLR4 antagonism, we used IAXO-101, 
as we have previously demonstrated that this compound 
lowers inflammation in  vitro using APOE4 mixed glial 
cultures. IAXO-101 has been used in vivo at doses rang-
ing from 0.06 to 0.3  mg/mouse/day via various routes 
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[46–48], and we therefore selected the higher dose for 
this study (~ 0.3  mg/mouse). There was no difference 
between the body weights of mice treated with vehicle or 
IAXO-101 within a specific cohort (Additional file 1: Fig. 
S7). To evaluate the effects of IAXO-101, we measured 
neuroinflammation (astrogliosis, microgliosis, glial cell 
morphology), Aβ pathology, and behavior in EFAD mice.

PVT paradigm: IAXO‑101 lowers neuroinflammation 
and improves memory in female E4FAD mice
We first focused on whether IAXO-101 could modulate 
neuroinflammation Aβ pathology and behavior in female 
E4FAD mice in a prevention paradigm (PVT). Evidence 
suggests that there is a synergistic effect of APOE4 and 
female sex on both AD risk and pathology in humans 
[49–52] and neuroinflammation in vivo  [37, 41, 53–55]. 
Indeed, female E4FAD mice have higher neuroinflamma-
tion and Aβ pathology compared to male E4FAD mice 
at 6 months of age [15, 19, 56]. Therefore, we considered 
female E4FAD mice were a logical starting point to test if 
TLR4 plays a role in regulating neuroinflammation.

In the brain, glia (astrocytes and microglia) are key 
components of the neuroinflammatory response. Altera-
tions in astrocyte reactivity can be evaluated via quan-
tification of GFAP (Fig. 1A–C), S100β [57], and C3 [58] 
(Fig. S2A-B), which we measured in female E4FAD mice 
by IHC analysis. We did not find any differences in the 
levels of any of those astrocytic markers between vehicle 
and IAXO-101-treated mice. Microglia reactivity can be 
measured through quantification of Iba-1 (Fig.  1D) and 
Clec7a [59] levels (IHC). We found that IAXO-101 treat-
ment resulted in a non-significant trend of lower Iba-1 
coverage levels in the CX (Fig.  1D–E), and ~ 30% lower 
levels in the HP (Fig.  1F). There was also a non-signifi-
cant trend of lower Clec7a coverage in the CX and HP 
with IAXO-101 treatment (Figure S2C). As cortical Iba-1 
was trending lower with IAXO-101, we further evalu-
ated microglial reactivity by calculating the total number 
in eight sub-regions of the CX (Fig. 1G). We found that 
total number of microglia (Iba-1+) was lower number 
with IAXO-101 treatment (Fig. 1H). Microglia states can 
be classified morphologically as resting (small soma, thin 
processes; type 1) or reactive (amoeboid; type 2/3), the 
latter of which is associated with pathological conditions. 
We found that with IAXO-101 treatment, the number of 
resting microglia did not change (Fig. 1I), but the number 
of reactive microglia was lower (Fig. 1J). Further analysis 
revealed that the distribution of microglial subtypes was 
altered by IAXO-101 treatment, with a ~ 5% decrease in 
type 2/3 microglia in IAXO-101 treated mice (Fig.  1K). 
Changes in microglia reactivity are often associated with 
altered cytokine levels, including IL-1β. Consistent with 
lower Iba-1 coverage, IL1-β levels were ~ 25% lower in 

the CX and ~ 60% lower in the HP of IAXO-101-treated 
female E4FAD mice (Fig. 1L, M).

One of the proposed functions of glia in AD, particu-
larly microglia, is to clear Aβ [60, 61]. Therefore, Aβ42 
levels could have been impacted by IAXO-101 treat-
ment, which we measured using biochemical analysis 
(BC, ELISA). Surprisingly, there was no effect of IAXO-
101 treatment on soluble and insoluble A β42 levels 
in the CX and HP (BC; Fig. S3A, B). To confirm that 
IAXO-101 treatment did not modulate extracellular 
Aβ, we performed immunohistochemical (IHC) analy-
sis (MOAB-2) for Aβ (Fig. 1N) and Thio-S staining for 
fibrillar amyloid deposits (Fig.  1Q) in female E4FAD 
mice. IAXO-101 treatment did not impact Aβ depo-
sition (Fig.  1 O, P) or fibrillar amyloid deposits in HP 
(Fig. 1S) but increased fibrillar amyloid deposits in the 
CX (Fig. 1R). We also found that soluble and insoluble 
apoE levels were similar between vehicle- and IAXO-
101-treated mice (Fig. S3C, D).

Since IAXO-101 lowered markers of neuroinflamma-
tion, we next evaluated the potential impact on learning/
memory-relevant using Morris water maze. In the acqui-
sition phase, both groups of mice learned the location 
of the platform, with no differences between treatments 
(Fig. 1T). However, in probe trial (memory), IAXO-101-
treated female E4FAD mice had lower latency to the tar-
get quadrant and platform (Fig. 1U).

In summary, IAXO-101 lowered microglial reactivity 
and IL-1β levels and improved memory in female E4FAD 
mice treated in PVT paradigm.

RVS paradigm: IAXO‑101 lowers neuroinflammation 
and Aβ pathology and improves memory in female E4FAD 
mice
An important component of AD research is under-
standing the extent that targeting a particular function 
or pathway can modulate pathology and cognition at 
advanced stages of the disease. Therefore, we next deter-
mined the impact of TLR4 antagonism on neuroinflam-
mation and behavior at an age of significant Aβ pathology 
[19], by treating female E4FAD from 6 to 7 months of age 
with either vehicle or IAXO-101. Although not signifi-
cant, GFAP (Fig.  2A–C) and S100β (Fig. S4A) coverage 
was trending lower with IAXO-101 treatment, with no 
effect on C3 (Fig. S4B). IAXO-101 lowered Iba-1+ micro-
glia coverage by ~ 40% in the CX (Fig.  2D, E) and ~ 15% 
in the HP (Fig. 2D, F). Consistent with this observation, 
we found that IAXO-101 also lowered Clec7a + micro-
glia coverage by 20% in the CX (p = 0.09) and HP (Fig. 
S4C). Subsequent morphological analysis revealed that 
IAXO-101 treatment was associated with lower number 
of total number of microglia (Fig. 2H, J), no change in the 
number of resting microglia (Fig. 2I), and a lower number 
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Fig. 1 PVT paradigm: IAXO‑101 lowers neuroinflammation and improves memory in female E4FAD mice. Female E4FAD mice were treated 
with IAXO‑101 or vehicle from 4 to 6 months of age; PVT paradigm. A Representative image of mouse brains immunostained for GFAP (green, 
scale bars: 1000 μm). Treatment did not impact the percentage of area covered by GFAP in the B cortex (CX) [t(13.46) = 0.5080, p > 0.5] or the C 
hippocampus (HP) [t(13.79) = 0.1996, p > 0.5]. D Microglia Iba‑1 coverage (green, scale bars: 1000 μm). IAXO‑101 treatment appeared to lower 
the percentage area covered by Iba‑1 in the E CX [t(7.998) = 1.909, p = 0.093] and the F HP [t(7.259) = 2.608, p < 0.05]. G Higher power magnification 
images of Iba‑1 in the CX (green, scale bars: 50 μm). IAXO‑101 treatment H resulted in a lower number of total microglia [t(9.809) = 0.5045, p = 0.05], 
and I did not affect type 1 microglia; however, J resulted in a lower number of type 2/3 microglia. K Percentage of type 1 and 2/3 microglia [type 
1: t(10.81) = 1.456, p > 0.1; type 2/3: t(10.03) = 0.5080, p < 0.05]. Levels of IL‑1β were lower with IAXO‑101 treatment in the L CX [t(9) = 2.297, p < 0.05] 
and M the HP [t(9) = 2.499, p < 0.05]. N Representative images of Aβ immunostaining (red, scale bars: 1000 μm). There was no effect of IAXO‑101 
on Aβ levels in the O CX [t(8.644) = 1.680, p > 0.1] and the P HP [t(13.86) = 1.031, p > 0.1]. IAXO‑101 treatment increased fibrillar amyloid (Q green, 
scale bars: 1000 μm) in the R CX [t(6.953) = 2.608, p < 0.05] with no effect in the S HP [t(11.47) = 1.317, p > 0.1]. In the Morris water maze test, 
IAXO‑101 treatment T had no effect on the learning/acquisition [2‑way ANOVA‑days: F(3.111,40.45) = 11.93, p < 0.0001; treatment: F(1,13) = 1.011, 
p = 0.333]; however, U in the memory/probe trial resulted in lower latency to quadrant and platform [target quadrant: t(7.513) = 2.528, p < 0.05; 
platform: t(6.604) = 2.388, p = 0.05. Data are expressed as mean ± S.E.M. All data analyzed by Student’s t‑test, except in Morris water maze acquisition 
trials (two‑way repeated measures ANOVA). * p < 0.05. See Additional file 3 for n sizes and statistical analysis



Page 6 of 15Balu et al. Alzheimer’s Research & Therapy          (2023) 15:181 

Fig. 2 RVS paradigm: IAXO‑101 lowers neuroinflammation and Aβ pathology and improves memory in female E4FAD mice. Female E4FAD mice 
were treated with IAXO‑101 or vehicle from 6 to 7 months of age; RVS paradigm. A Representative image of mouse brains immunostained for GFAP 
(green, scale bars: 1000 μm). IAXO‑101 treatment did not affect the percentage of area covered by GFAP in the B cortex (CX) [t(13.71) = 0.9136, 
p > 0.5] or the C hippocampus (HP) [t(9.278) = 1.448, p > 0.5]. D Microglia Iba‑1 coverage (green, scale bars: 1000 μm). IAXO‑101 treatment lowered 
Iba‑1 coverage in the E CX [t(7.345) = 4.671, p < 0.01] and the F HP [t(8.823) = 2.309, p < 0.05]. G Higher power magnification images of Iba‑1 in the CX 
(green, scale bars: 50 μm). IAXO‑101 treatment H resulted in a lower number of total microglia [t(9.995) = 3.870, p < 0.001], and I did not affect type 
1 microglia; however, J resulted in a lower number of type 2/3 microglia. K Percentage of type 1 and 2/3 microglia [type 1: t(9.998) = 0.2848, p > 0.1; 
type 2/3: t(9.793) = 4.073, p < 0.001]. Levels of IL‑1β did not change with IAXO‑101 treatment in the L CX [t(12.18) = 1.039, p > 0.1] and M the HP 
[t(7.979) = 0.928, p > 0.1]. N Representative images of Aβ immunostaining (red, scale bars: 1000 μm). IAXO‑101 treatment lowered Aβ levels in the O 
CX [t(13.53) = 2.040, p = 0.06] and the P HP [t(11.46) = 2.294, p < 0.05]. IAXO‑101 treatment lowered fibrillar amyloid (Q green, scale bars: 1000 μm) 
in the R CX [t(10.13) = 2.056, p = 0.06] and in the S HP [t(8.520) = 3.725, p < 0.01]. In the Morris water maze test, IAXO‑101 treatment T had no effect 
on the learning/acquisition [2‑way ANOVA‑days: F(2.907,34.89) = 3.204, p < 0.05; treatment: F(1,12) = 2.807, p = 0.1197]; however, U in the memory/
probe trial resulted in lower latency to quadrant and platform [target quadrant: t(8.663) = 1.7, p = 0.1248; platform: t(8.991) = 2.462, p < 0.05]. 
Data are expressed as mean ± S.E.M. All data analyzed by Student’s t‑test, except in Morris water maze acquisition trials T (two‑way repeated 
measures ANOVA). * p < 0.05. See Additional file 3 for n sizes and statistical analysis
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of reactive microglia (Fig.  2J) and ~ 5% lower distribu-
tion of type 2/3 microglia (Fig. 2K). Surprisingly, we did 
not detect any changes in IL1-β levels in female E4FAD 
mice (Fig.  2L, M). IAXO-101 treatment also resulted in 
lower levels of Aβ plaques (Fig. 2N–P) and fibrillar amy-
loid deposits (Fig.  2Q–S), in both the CX and the HP, 
but no changes in Aβ (Fig. S3E, F) or apoE levels by BC 
analysis (Fig. S2G, H). At the behavioral level, IAXO-101 
improved memory in the Morris water maze (Fig. 2T, U). 
Overall, in a RVS paradigm, IAXO-101 treatment low-
ered neuroinflammation and Aβ pathology and improved 
memory in female E4FAD mice.

PVT paradigm: IAXO‑101 has no effect on specific 
neuroinflammatory and behavioral readouts in male 
E4FAD mice
In general, data supports that the combination of female 
sex and APOE4 induces a strong neuroinflammatory 
phenotype in FAD-mice. However, male E4FAD mice 
also have greater neuroinflammation and Aβ pathology 
compared to male E3FAD mice at 6  months of age [11, 
15, 19, 35]. Therefore, we evaluated whether the ben-
eficial effect of IAXO-101 in lowering neuroinflamma-
tion also applied to male E4FAD mice in the same PVT 
paradigm (4 to 6 months treatment). There was no effect 
of IAXO-101 treatment on neuroinflammatory mark-
ers including GFAP (Fig.  3A–C) and Iba-1 coverage 
(Fig. 3D–F), total number of microglia (Fig. 3G, H), num-
ber of resting (Fig.  3I) and reactive microglia (Fig.  3J), 
distribution of microglial subtypes (Fig.  3K), and IL1-β 
levels (Fig. 3L, M). We also did not detect any changes in 
fibrillar amyloid or Aβ levels (Fig. 3N–S, Fig. S2I, J), apoE 
levels (Fig. S3K, L), or learning/memory (Fig. 3T, U) after 
IAXO-101 treatment. Thus, in contrast to female E4FAD 
mice, IAXO-101 treatment did not result in any benefi-
cial effects on our readouts in male E4FAD mice in a PVT 
paradigm.

RVS paradigm: IAXO‑101 treatment lowered Iba‑1 
coverage but had no effect on Aβ pathology and behavior 
in male E4FAD mice
One possible explanation for a lack of an effect of IAXO-
101 in PVT paradigms in male E4FAD mice is that at 
early stages/ages of pathology the contribution of TLR4 
to neuroinflammation and/or behavioral function is 
minimal. To explore this concept, we next evaluated the 
effect of TLR4 antagonism on behavior in male E4FAD 
mice at ages of more advanced Aβ levels and higher neu-
roinflammation. There are age-dependent increases in Aβ 
pathology and neuroinflammation in male E4FAD mice 
from 4 to 6 months of age [35]. Therefore, we next deter-
mined whether IAXO-101 treatment from 6 to 7 months 
of age was beneficial in male E4FAD mice. IAX0-101 did 

not affect GFAP coverage (Fig. 4A–C). However, IAXO-
101 treatment reduced Iba-1 coverage by ~ 50% the CX 
(Fig. 4D, E) and ~ 25% in the HP (Fig. 4D, F). In addition, 
compared to vehicle, IAXO-101 treatment resulted in a 
lower number of total microglia (Fig.  4G, H) and lower 
percentage of reactive microglial subtypes (Fig.  4I–K) 
without modulating IL-1β levels (Fig. 4L, M). There was 
no effect of IAXO-101 on Aβ levels (Fig. S3O, P, Fig. 4N-
S), apoE levels (Fig. S3M, N), or learning and memory 
(Fig. 4T, U). Thus, in general, the effect of IAXO-101 in 
male E4FAD mice may be limited to lowering neuroin-
flammatory markers without affecting Aβ pathology or 
cognition.

PVT/RVS paradigm: IAXO‑101 had no effect in female 
E3FAD mice
Our data suggested that IAXO-101 is more beneficial in 
female E4FAD mice than males, particularly for micro-
glia, which raised the question of whether TLR4 antag-
onism would be beneficial for female APOE3 carriers. 
Indeed, neuroinflammation, including microglial number 
and morphology, has been shown to be higher in females 
in rodents [62] and humans [63]. Therefore, we tested if 
IAXO-101 affected the levels of neuroinflammation in 
female E3FAD mice in both PVT and RVS paradigms. 
We found that IAXO-101 did not affect neuroinflam-
mation (PVT: Fig. S5A-F; RVS: Fig. S6A-F), Aβ or apoE 
levels (PVT: Fig. S5G-J; RVS: Fig. S6G-J) or learning and 
memory (PVT: Fig. S5K, L; RVS: Fig. S6K, L) in female 
E3FAD mice. Therefore, unlike female APOE4 mice, 
IAXO-101 was not effective at mitigating pathology and 
behavior in female E3FAD mice.

Discussion
Neuroinflammation mediated by microglia is increas-
ingly recognized as an important component of AD 
pathogenesis. However, the role of microglia function in 
AD is complex and is dependent on many factors includ-
ing activation state and disease stage. For example, it 
has been proposed that moderately activated micro-
glia are neuroprotective in the early stages of AD, while 
chronically activated microglia may be detrimental in 
later stages (reviewed in [64–66]). Genetic AD risk fac-
tors and sex may also impact the extent that microglia 
are beneficial, neutral, or detrimental for cognitive func-
tion in AD. Our study supports that reducing microglial 
neuroinflammation is particularly or specifically ben-
eficial for improving memory in female APOE4 carriers. 
Although there are limitations (see below), the implica-
tion is that neuroinflammation may contribute to higher 
risk and progression of AD found in APOE4 females. 
Consistent with this concept, human data demonstrate 
that compared to APOE3, female APOE4 AD patients 
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Fig. 3 PVT paradigm: IAXO‑101 has no effect on specific neuroinflammatory and behavioral readouts in male E4FAD mice. Male E4FAD mice were 
treated with IAXO‑101 or vehicle from 4 to 6 months of age; PVT paradigm. A Representative image of mouse brains immunostained for GFAP 
(green, scale bars: 1000 μm). Treatment did not impact the percentage of area covered by GFAP in the B cortex (CX) [t(10.68) = 0.1806, p > 0.5] 
or the C hippocampus (HP) [t(9.084) = 1.503, p > 0.1]. D Microglia Iba‑1 coverage (green, scale bars: 1000 μm). IAXO‑101 treatment had no effect 
on percentage area covered by Iba‑1 in the E CX [t(9.765) = 0.9540, p > 0.1] and the F HP [t(9.829) = 0.3946, p > 0.5]. G Higher power magnification 
images of Iba‑1 in the CX (green, scale bars: 50 μm). IAXO‑101 treatment H had no effect on number of total microglia I type 1 microglia, J type 2/3 
microglia, K distribution of microglial subtypes [total: t(11.98) = 1.226, p > 0.1], type 1: t(10.73) = 0.09, p > 0.5; type 2/3: t(10.86) = 1.567, p > 0.1] or levels 
of IL‑1β in the L CX [t(11) = 0.6826, p < 0.5] and M the HP [t(12) = 1.095, p > 0.1]. N Representative images of Aβ immunostaining (red, scale bars: 
1000 μm). There was no effect of IAXO‑101 on Aβ levels in the O CX [t(11.38) = 1.171, p > 0.1] and the P HP [t(9.549) = 0.7235, p > 0.1] or in fibrillar 
amyloid (Q green, scale bars: 1000 μm) in the R CX [t(11.45) = 1.07, p > 0.1] and the S HP [t(11.69) = 1.543, p > 0.1]. In the Morris water maze test, 
IAXO‑101 treatment T had no effect on the learning/acquisition [2‑way ANOVA‑days: F(3.266,45.72) = 4.532, p < 0.01; treatment: F(1,14) = 1.056, 
p = 0.322] and U in the memory/probe trials [target quadrant: t(10.74) = 0.9724, p > 0.1; platform: t(11.48) = 0.004, p > 0.5]. Data are expressed 
as mean ± S.E.M. All data analyzed by Student’s t‑test, except in Morris water maze acquisition trials (two‑way repeated measures ANOVA). * p < 0.05. 
See Additional file 3 for n sizes and statistical analysis
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Fig. 4 RVS paradigm: IAXO‑101 treatment lowered Iba‑1 coverage but had no effect on Aβ pathology and behavior in male E4FAD mice. 
Male E4FAD mice were treated with IAXO‑101 or vehicle from 6 to 7 months of age; RVS paradigm. A Representative image of mouse brains 
immunostained for GFAP (green, scale bars: 1000 μm). Treatment did not impact the percentage of area covered by GFAP in the B cortex (CX) 
[t(11.16) = 0.6788, p > 0.5] or the C hippocampus (HP) [t(13.87) = 0.1201, p > 0.5]. D Microglia Iba‑1 coverage (green, scale bars: 1000 μm). IAXO‑101 
treatment lowered percentage area covered by Iba‑1 in the E CX [t(8.742) = 4.186, p < 0.05] and the F HP [t(9.993) = 2.253, p < 0.5]. G Higher power 
magnification images of Iba‑1 in the CX (green, scale bars: 50 μm). IAXO‑101 treatment H lowered number of total microglia I but did not affect 
type 1 microglia [total: t(9.035) = 2.497, p < 0.05; type 1: t(10.00) = 0.3145, p > 0.5]. However, IAXO‑101 treatment lowered J type 2/3 microglia [type 
2/3: t(8.845) = 4.032, p > 0.1] and modified the K distribution of microglial subtypes. Surprisingly, there was no effect of IAXO‑101 on the levels 
of IL‑1β in the L CX [t(9.835) = 0.177, p > 0.5] and M the HP [t(5.356) = 1.348 p > 0.1]. N Representative images of Aβ immunostaining (red, scale bars: 
1000 μm). There was no effect of IAXO‑101 on Aβ levels in the O CX [t(7.636) = 0.8443, p > 0.1] and the P HP [t(12.63) = 1.643, p > 0.1] or in fibrillar 
amyloid (Q green, scale bars: 1000 μm) in the R CX [t(9.761) = 10.558, p > 0.5] and the S HP [t(13.47) = 0.2563, p > 0.5]. In the Morris water maze test, 
IAXO‑101 treatment T had no effect on the learning/acquisition [2‑way ANOVA‑days: F(2.774,38.84) = 6.170, p < 0.01; treatment: F(1,14) = 0.064, 
p > 0.5] and U in the memory/probe trials [target quadrant: t(8.075) = 0.035, p > 0.5; platform t(7.641) = 1.134, p > 0.1]. Data are expressed 
as mean ± S.E.M. All data analyzed by Student’s t‑test, except in Morris water maze acquisition trials (two‑way repeated measures ANOVA). * p < 0.05. 
See Additional file 3 for n sizes and statistical analysis
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have earlier onset of cognitive deficits (reviewed in [67]) 
and increased neuroinflammation, including increased 
activation of microglia and secretion of cytokines [7–
10]. Similarly, in mice, greater impairment in learning/
memory and neuroinflammation is seen in females com-
pared to males in multiple FAD mouse models [68–72], 
with APOE4 exacerbating these effects [11, 15, 19]. Thus, 
collectively, the combination of female sex and APOE4 
may produce an environment that specifically results in 
greater microglial inflammatory respond that leads to 
greater cognitive dysfunction in AD.

The concept that APOE4 and female sex synergistically 
impact neuroinflammation to impair cognition raises the 
important discussion of the underlying mechanisms. In 
general, apoE4 has been proposed to alter cellular func-
tion in different ways [73]. At the structural level, apoE 
isoforms differ by two amino acids at position 112 and 
158, which affects protein folding and is thought to result 
in changes to lipidation (apoE4 < apoE3) stability and 
levels (apoE4 < apoE3) [74, 75]. These structural changes 
are proposed to induce differences apoE availability, dis-
tribution, aggregation, receptor binding affinities and 
signaling that modulates peripheral inflammation (via 
macrophages and other immune cells), cerebrovascular 
function (via endothelial cells, pericytes and astrocytes), 
Aβ levels, lipid trafficking, and neuron function directly 
(reviewed in [3, 76–79]). Therefore, the impact of APOE 
on other cell types could indirectly impact glial morphol-
ogy/activation. In addition, apoE can be produced by 
microglia to impact their activity. For example, microglia 
expressing APOE4 has altered immune responses and 
metabolism in  vitro [18, 80, 81], and selective ablation 
of microglial apoE4 in a tauopathy mouse model blocks 
brain atrophy [82, 83]. Thus, collectively APOE4 could 
indirectly and directly results in higher potential for 
microglia reactivity to be exacerbated by female sex.

The underlying mechanisms of how female sex impacts 
AD progression is unclear. One proposed mechanism 
is that loss of sex hormones at menopause results in 
greater AD susceptibility. Indeed, ovariectomy results in 
behavioral impairments and accelerated aging [84–86] in 
women as well as in rodents [87, 88]. Importantly, ova-
riectomy results in greater neuroinflammation in rodents 
including microglial activation [87–91]. Therefore, as 
estrogen demonstrates anti-inflammatory activity via the 
estrogen receptors, the loss of estrogen may promote a 
microglial response [92]. In addition to direct effects on 
microglia, the loss of estrogen also modulates AD pathol-
ogy, as in general, Aβ deposition is increased in women 
during the menopausal transition [93, 94], in post-mor-
tem brains of ovariectomized women [95], and in brains 
of ovariectomized rodents with some conflicting results 
in FAD mice (discussed in [96]). Thus, menopause could 

indirectly and directly modulate microglial activation 
in a way that is particularly pronounced with APOE4 
carriers. However, in our study, mice were not ovariec-
tomized, suggesting a different mechanism of action for 
how female sex and APOE4 impacted glial activation. In 
general, there are sex differences in microglial numbers, 
function, and response to an acute/chronic insult and age 
without menopause mimics [62, 97], including in APOE4 
FAD mice [11, 34]. Thus, one potential explanation is 
with APOE4, there is greater age-dependent changes 
in sex hormones or their receptors that influence the 
inflammatory state of microglia, thereby modulating its 
function. Alternatively, the difference between sex hor-
mones and immune-related genes on the X chromosome 
may result in higher age-related neuroinflammation 
(reviewed in [98–101]). Future studies could focus on 
understanding in more detail the precise mechanism(s) 
though which sex and APOE4 increase neuroinflamma-
tion and microglial activation.

Our data supports a specific role of TLR4 in modulat-
ing neuroinflammation and cognition in APOE4 females. 
Data from human, in  vivo and mouse studies have led 
to the idea that blocking TLR4 is a potential AD thera-
peutic strategy albeit in a non-APOE4 context. Several 
single nucleotide polymorphisms (SNPs) in TLR4 have 
been associated with modulating AD risk in humans. 
For example, the G coding variant of rs4986790(A/G) 
[31, 32] and the C variant of rs11367(G/C) in TLR4 
is associated with decreased AD risk [102]. Consist-
ent with a detrimental role of TLR4 in AD, in vitro and 
ex vivo studies supports that these variants reduce TLR4 
activation, resulting in attenuation of proinflamma-
tory signaling [103, 104]. Several minor alleles of TLR4 
SNPs (rs10759930, rs1927914, rs1927911, rs12377632) 
were also found to increase the risk of AD [33], although 
their function is yet to be understood. Further evidence 
for a role of TLR4 in AD include that levels of LPS [105] 
and TLR4 expression are increased in the brains of AD 
patients [28, 29] and FAD mice [29, 30]. In addition, Aβ 
has been shown to activate TLR4 resulting in reactive 
oxygen species production in microglia in vitro [106], and 
deletion of the TLR4 co-receptor CD14 resulted in lower 
amyloid plaques in vivo [107]. An important question for 
further study is whether SNPs in TLR4, TLR4 expression 
data, and in vitro functional data are modulated by APOE 
and sex in AD-relevant context. In terms of APOE alone, 
LPS (TLR4 agonist) induces APOE-specific neuroinflam-
matory markers in multiple tissues (APOE4 > APOE3) 
in  vivo [14, 108], ex  vivo [108], and in  vitro [109] with 
an inconsistent sex effect [110]. In terms of female sex, 
TLR4 expression is greater in multiple tissues in females 
than males in human and rodents [110], and the estro-
gen receptor may impact TLR signaling [92]. Potentially, 
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therefore, the combination of APOE and female sex may 
specifically result in altered TLR4-mediated neuroin-
flammation to impact cognition.

The implication of our findings is that targeting neuro-
inflammation is a potential AD therapeutic approach; for 
certain high-risk groups, however, current human stud-
ies are conflicted. To date, most data is derived from epi-
demiological studies, and a few clinical trials focused on 
established drugs with known anti-inflammatory proper-
ties. One class is NSAIDs that inhibit COX1 and 2 activi-
ties. Epidemiological and in  vivo studies indicated that 
non-steroidal anti-inflammatory drugs (NSAIDs) lower 
AD risk and pathology (reviewed in [111, 112]). How-
ever, NSAIDs have not been found efficacious in some 
AD clinical trials [20]. In addition, a recent re-analysis 
of the NSAID epidemiological data in an ADNI data-
set revealed that although some NSAIDs are associated 
with decreased AD prevalence, they did not affect cog-
nitive decline in AD patients [21]. A second drug used 
to evaluate neuroinflammation as an AD target is par-
acetamol that has unknown and likely pleiotropic mecha-
nisms of action. For example, paracetamol is used for its 
anti-pyretic, anti-inflammatory, and analgesic actions 
that may be mediated through lowering prostaglandin 
levels, inhibiting COX, altering cannabinoid signaling, 
and also blocking neuronal sodium channels [113]. Par-
acetamol has been shown to lower AD prevalence; how-
ever, whether the beneficial effects of paracetamol in AD 
are due to effects on inflammation or other mechanisms 
is unclear [21]. In addition to further understanding the 
mechanism of action of anti-inflammatories, there are 
several important considerations for clinically targeting 
neuroinflammation in AD. One is that neuroinflamma-
tion is complex and recognition of pathogens or dan-
ger-associated molecules occurs in multiple cell types, 
through a large array of receptors that produce an equally 
complex signaling and functional response. Thus, tar-
geted one specific pathway may not alone be sufficient to 
improve all aspects of neuroinflammation in AD. There-
fore, a detailed understanding of how different pathways 
contribute to any proposed detrimental neuroinflam-
matory phenotype in AD, including which aspects are 
more proximal to neuronal dysfunction, is important for 
interpreting clinical trial data. A second is that whether 
an inflammatory mediator or receptor is beneficial or 
detrimental for AD progression may depend on the 
stage of disease. For example, it has proposed that anti-
inflammatories may be efficacious as a prophylactic treat-
ment for APOE4 carriers to prevent AD [21]. A third, as 
highlighted by our study, is that the contribution of neu-
roinflammation to neural dysfunction may be depend-
ent on risk factors (e.g., sex, APOE genotype, lifestyle, 
other genetic or environmental factors). Perhaps future 

studies in larger heterogenous populations could provide 
an explanation for determining whether NSAIDs have a 
greater impact in specific groups.

Limitations
There are limitations in the extent that we can conclude 
TLR4 and/or neuroinflammation specifically contributes 
to neural dysfunction in female APOE4 mice. In fact, 
studies have shown that microglial activation and neu-
roinflammation are greater with APOE4 than APOE3 in 
males using APOE knock in mice [14, 114–116], FAD 
mice [11, 15, 43], and AD patients [117, 118]. Indeed, it 
is important to note that we found that IAXO-101 low-
ered microglial number and reactivity in older male 
E4FAD mice, although performance in the Morris water 
maze test was not affected. The contribution of TLR4 
to microglial activation maybe dependent on age and/
or Aβ pathology, which is why IAXO-101 modulated 
microglia number/reactivity when treatment occurred 
in older rather than younger male E4FAD mice. The lack 
of a behavioral benefit in male E4FAD mice as opposed 
to female E4FAD mice with IAXO-101 treatment could 
be due multifactorial factors. For example, there could 
be the same age-dependent consideration as for micro-
glial activation within males, such that beneficial effects 
in behavior would have been observed if treatment had 
continued for longer. Alternatively, the contribution of 
microglia to performance in Morris water maze perfor-
mance may be greater in females than males. Further-
more, a more comprehensive set of behavioral tests along 
with expanded markers of neuron function may have 
revealed that IAXO-101 was beneficial in E4FAD male 
mice. In addition, APOE3-FAD also shows age-depend-
ent increases in glial activation and cognitive impairment 
[19, 40]. Therefore, future studies could explore if TLR4, 
neuroinflammation, and/or microglia activity are more 
proximal to behavioral dysfunction in older male E4FAD, 
female E3FAD, and male E3FAD mice. Such studies could 
reveal if there are different optimal treatment windows 
for targeting neuroinflammation within each APOE 
genotype and sex combination or support specificity for 
female APOE4 carriers.

Our study was a proof-of-concept design centered on 
TLR4 antagonism. However, TLR4 may not be the main 
contribution to inflammation for all APOE genotypes and 
sexes. For example, there is the possibility that TLR4 acti-
vation is more pronounced in female APOE4 mice, but 
other inflammatory pathways are important for APOE4 
male mice or APOE3 mice. Indeed, sex hormones and X 
chromosome genes can differentially regulate TLR4 [98, 
99, 119] and testosterone decreases expression and func-
tion of pro-inflammatory cytokines [120]. In addition, 
as mentioned above, different inflammatory pathways 
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may be important at different ages/stages of pathology. 
Therefore, identifying how APOE genotype, sex, and age 
impact the neuroinflammatory phenotype, including spe-
cific pathways, is important for ultimately advancing our 
mechanistic understanding of neuroinflammation in AD.

There were also experimental limitations surrounding 
the way that we targeted TLR4. One aspect is the dose of 
IAXO-101, which we selected based on previous publica-
tions; however, we did not conduct detailed PK studies to 
determine brain and plasma levels. Therefore, IAXO-101 
levels in the plasma and brain may have been different 
for each group of mice, such as higher in female E4FAD 
mice, which may explain the beneficial effects. In addi-
tion, IAXO-101 inhibits TLR4 activation by two mecha-
nisms: sequestering LPS by forming stable co-aggregates 
or competing with LPS for binding to CD14 and myeloid 
differentiation factor 2 [121]. This mechanism of action is 
based on LPS; however, it is unclear what pathways lead 
to TLR4 activation in female E4FAD mice. Thus, another 
approach would be to use competitive inhibitors of TLR4 
and/inhibitors of TLR4 signaling down-stream. There is 
also the question of whether there are cell type specific 
functions of TLR4. TLR4 is expressed by virtually every 
cell in the body that could have opposed or synergistic 
functions. In fact, both activating and inhibiting TLR4 
has been shown to decrease AD-related pathology in 
FAD mice with opposing effects on neuroinflammation 
[122, 123]. Therefore, evaluating the cell type-specific 
functions of TLR4 in EFAD mice using detailed mecha-
nistic readouts for neuroinflammation, neuron function, 
and behavior as well as plasma biomarkers is important 
for fully evaluating TLR4 as a therapeutic target in AD.

Conclusion
Our study demonstrates that the TLR4 antagonist IAXO-
101 improves memory and reduced neuroinflammation 
with minimal effects of Aβ pathology in female APOE4 
mice. Thus, TLR4 inhibition is a potential therapeutic 
approach for AD, particularly in female APOE4 carriers. 
In addition, these results support stratification of preclin-
ical and clinical studies that target neuroinflammation by 
APOE, sex, and treatment window.
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