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Abstract 

Background To enable successful inclusion of electroencephalography (EEG) outcome measures in Alzheimer’s dis-
ease (AD) clinical trials, we retrospectively mapped the progression of resting-state EEG measures over time in amy-
loid-positive patients with mild cognitive impairment (MCI) or dementia due to AD.

Methods Resting-state 21-channel EEG was recorded in 148 amyloid-positive AD patients (MCI, n = 88; dementia due 
to AD, n = 60). Two or more EEG recordings were available for all subjects. We computed whole-brain and regional 
relative power (i.e., theta (4-8 Hz), alpha1 (8-10 Hz), alpha2 (10-13 Hz), beta (13-30 Hz)), peak frequency, signal variabil-
ity (i.e., theta permutation entropy), and functional connectivity values (i.e., alpha and beta corrected amplitude enve-
lope correlation, theta phase lag index, weighted symbolic mutual information, inverted joint permutation entropy). 
Whole-group linear mixed effects models were used to model the development of EEG measures over time. Group-
wise analysis was performed to investigate potential differences in change trajectories between the MCI and demen-
tia subgroups. Finally, we estimated the minimum sample size required to detect different treatment effects (i.e., 50% 
less deterioration, stabilization, or 50% improvement) on the development of EEG measures over time, in hypothetical 
clinical trials of 1- or 2-year duration.

Results Whole-group analysis revealed significant regional and global oscillatory slowing over time (i.e., increased 
relative theta power, decreased beta power), with strongest effects for temporal and parieto-occipital regions. Disease 
severity at baseline influenced the EEG measures’ rates of change, with fastest deterioration reported in MCI patients. 
Only AD dementia patients displayed a significant decrease of the parieto-occipital peak frequency and theta signal 
variability over time. We estimate that 2-year trials, focusing on amyloid-positive MCI patients, require 36 subjects 
per arm (2 arms, 1:1 randomization, 80% power) to detect a stabilizing treatment effect on temporal relative theta 
power.

Conclusions Resting-state EEG measures could facilitate early detection of treatment effects on neuronal function 
in AD patients. Their sensitivity depends on the region-of-interest and disease severity of the study population. Con-
ventional spectral measures, particularly recorded from temporal regions, present sensitive AD treatment monitoring 
markers.
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Background
Alzheimer’s disease (AD) is diagnosed in vivo by abnor-
malities on core biomarkers, including  amyloid-beta 
(Aβ) deposition, pathologic tau, and neurodegeneration. 
The disease is a continuum, spanning preclinical, mild 
cognitive impairment (MCI), and dementia stages  [1]. 
The worldwide population of AD dementia patients is 
anticipated to exceed 150 million by 2050, unless means 
of delay, prevention, or treatment are found [2]. Cur-
rent experimental treatments of AD revolve around 
reversing existing pathology, primarily focusing on Aβ 
removal. Aducanumab (ADUHELM™) and lecanemab 
(Leqembi™) were recently approved for treatment of AD 
in the US, with evidence of cognitive efficacy to be con-
firmed in post-marketing trials. Other promising anti-
amyloid antibodies are currently awaiting FDA approval 
(donanemab) or are under phase 3 investigation (gan-
tenerumab). The advent of these agents is accompanied 
by that of non-pharmacological interventions, such as 
magnetic stimulation of the precuneus [3].

A critical step in designing valid and useful AD clini-
cal trials is selecting appropriate outcome measures. 
Clinical efficacy of an intervention is typically evaluated 
by an assessment of cognition and everyday function-
ing, with growing interest for cognitive and functional 
composite scores [4, 5]. Identifying a successful therapy 
using these measures is difficult in preclinical stages of 
AD, in which the target population has not yet demon-
strated cognitive decline and may not do so in the near 
future. Biomarkers provide a way to evaluate patho-
logic processes, or biological responses to a therapeu-
tic intervention, prior to their clinical presentation. 
Trials that use biomarkers to establish a drug-placebo 
difference are generally much shorter and smaller 
than trials that require demonstration of clinical ben-
efit, due to the low sensitivity of cognitive measures 
[6]. While established in  vivo fluid and neuroimaging 
AD biomarkers mirror molecular and structural brain 
changes associated with the disease [7], high costs and/
or invasiveness make them less suited for serial meas-
urements. Electroencephalography (EEG) biomarkers 
have been proposed as alternative measures to dem-
onstrate the efficacy of novel therapeutics [8, 9]. The 
non-invasive, low-cost neurophysiological technique 
provides a relatively direct measure of neuronal activity 
and synaptic function. The temporal resolution of EEG 
allows for investigation of cortical rhythms during a 

resting-state condition, as well as of quick positive and 
negative voltage peaks in response to cognitive-motor 
events (i.e., event-related potentials). Resting-state EEG 
has the practical advantage that it does not require 
any response by a patient. This allows more severely 
impaired patients, who may not be able to perform 
tasks accurately, to be studied.

Different types of resting-state EEG measures have 
been used to quantify neurophysiological dysfunction 
in AD patients. These can roughly be divided into (i) 
spectral, (ii) functional connectivity, and (iii) entropy 
measures, according to the analytical methodology that 
is employed for computation. Increased relative theta 
power has been reported as early as the preclinical stage 
of AD [10, 11]. Enhanced relative delta power, as well 
as posterior relative alpha and beta power reduction, 
have repeatedly been reported in later stages of the dis-
ease [12–14]. Disrupted communication between brain 
regions is another well-established finding in AD. MCI 
and AD dementia patients show large-scale disruptions 
in functional connections (e.g., a loss of connectivity in 
alpha and beta frequency bands, increased theta band 
connectivity [15–17]) and selective vulnerability of cor-
tical hub regions (i.e., highly connected nodes with a 
central position in the overall organization of a network 
[16, 18–21]). Growing evidence furthermore suggests a 
significant, progressive loss of entropy of neural activity 
over the course of the disease [22–25].

The degree of EEG abnormalities has been shown to 
correlate strongly with cognitive impairment in AD 
patients, in both cross-sectional [26] and longitudinal 
studies [27]. Several measures, including relative power 
[11, 28], the spectral power ratio (delta/theta + alpha/
beta power) [29], spectral coherence [30], and com-
plexity [31], have shown significant associations with 
neuropsychological measures. EEG measures have also 
been shown to be predictive of clinical progression, 
predicting conversion from the preclinical to MCI, or 
from the MCI to dementia stage of AD [10, 11, 32]. This 
association with cognitive and clinical assessments is 
part of what makes EEG measures an interesting target 
for treatment monitoring.

In the relatively short time span of a clinical trial, 
EEG measures are hypothesized to be more sensitive 
to change than biomarkers obtained from cerebrospi-
nal fluid (CSF), positron emission tomography (PET), 
and magnetic resonance imaging (MRI). Using them as 
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markers of target engagement could therefore poten-
tially reduce the size, duration, and costs of clinical 
trials. Furthermore, as the availability of clinically effi-
cacious medication grows, investigation of its impact 
on brain function will become of increasing interest. 
EEG measures provide an opportunity to study the 
neurophysiological mechanisms underlying thera-
peutic outcomes. At present, the main clinical goal 
of AD clinical trials is a slowing or halting of cogni-
tive decline. Assessment of (stabilizing) treatment 
effects using EEG measures depends on deterioration 
of electrophysiological measures in the placebo group. 
Sample size estimates and power analyses are generally 
based on information from previous research. Avail-
able longitudinal EEG studies in AD patients however 
often lack statistical power due to the use of small 
cohorts [33, 34], do not make use of (recently) estab-
lished diagnostic guidelines (e.g., include amyloid-
negative patients) [32, 33, 35–38], or only report on a 
limited number of EEG measures [39]. A solid under-
standing of the natural course of the EEG in amyloid-
positive patients along the AD continuum is needed to 
help improve clinical trial design and facilitate selec-
tion of the most suitable neurophysiological markers 
for trial implementation.

We modeled the development of a variety of rest-
ing-state EEG measures over time in a large, amy-
loid-positive AD cohort, including patients with MCI 
or dementia (N = 148). Faster rates of change were 
expected for regional (i.e., temporal and parieto-
occipital) than whole-brain measures, considering 
that disruption of local neuronal activity precedes 
the emergence of whole-brain abnormalities. Spec-
tral measures, particularly relative theta power, were 
expected to be most sensitive to change. The devel-
opment of EEG measures over time was compared 
between groups stratified based on baseline disease 
stage (MCI or dementia) to investigate the effect of 
clinical disease severity on the measures’ rates of 
change. Fastest deterioration was expected in non-
demented patients, as the presence of extensive struc-
tural brain changes in AD dementia patients may cause 
the rate of functional decline to slow down or plateau. 
We computed yearly and two-yearly effect sizes for a 
subset of EEG measures that showed significant deteri-
oration over time. These values were used to estimate 
the minimum sample size required to detect different 
treatment effects (i.e., 50% less deterioration, stabiliza-
tion, or 50% improvement) on the development of EEG 
measures over time, in hypothetical clinical trials of 1- 
or 2-year duration.

Methods
Study design and participants
We retrospectively included patients who had been 
evaluated and followed up in the memory clinic of the 
Amsterdam UMC Alzheimer center, or who participated 
in a multicenter AD clinical trial with central EEG analy-
sis at the Amsterdam UMC EEGlab, between October 
15, 2003, and January 1, 2019. All participants provided 
written informed consent for the use of their data for 
research purposes.  Although AD represents a seamless 
disease continuum, patients can be assigned to progres-
sive phases based on physical, cognitive, and functional 
assessments [1]. We differentiated between patients 
with MCI and dementia due to AD based on established 
clinical guidelines [40]. For a detailed description of all 
investigations that were performed as part of our routine 
diagnostic screening, see Van der Flier et al. [41]. Two or 
more EEG recordings were available for all participants. 
Recordings that were heavily contaminated with artifacts 
were excluded from analysis. Follow-up durations shorter 
than 3 months or longer than 3 years are not commonly 
employed in AD clinical trials. We therefore only evalu-
ated follow-up recordings that were obtained within this 
time-frame. All participants were positive for Aβ depo-
sition, as assessed using CSF Aβ42 (cut-off < 813  pg/ml, 
Tijms et al. (2018)) [42] or   [11C] PiB amyloid PET inves-
tigation (the routine PET protocol has been described 
elsewhere [43, 44]). Tau pathology and neurodegenera-
tion were characterized at baseline using CSF p-tau (cut-
off > 52 pg/ml) and t-tau levels (cut-off > 375 pg/ml) [45]. 
Tau and neurodegeneration positive and negative patients 
(T +/- , N +/-) were included in this study. Medial tempo-
ral lobe atrophy (MTA), ranging from 0 (no atrophy) to 4 
(severe atrophy), was rated on coronal T1-weighted MRI 
images. To evaluate the potential effect of pharmacologi-
cal agents (i.e., cholinesterase inhibitors, anti-depressants, 
anti-epileptic drugs, anti-psychotics, benzodiazepines) on 
our findings, medication use was evaluated and scored.

EEG acquisition and pre‑processing
Twenty minutes eyes-closed resting-state EEG data was 
recorded on digital EEG systems from 21 electrodes at 
the positions of the 10–20 system: Fp2, Fp1, F8, F7, F4, 
F3, A2, A1, T4, T3, C4, C3, T6, T5, P4, P3, O2, O1, Fz, 
Cz, Pz. A common or average reference (including all 
electrodes except Fp2/1 and A2/1) was used. Electrode 
impedance was kept below 5  kΩ. Sample frequency 
(200, 250, 256, 500, or 512 Hz) and online filter settings 
(high-pass 0.16 or 0.5, low-pass 70  Hz) varied between 
clinical- and trial-related recording protocols. During 
acquisition, patients and their recordings were monitored 
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by an EEG technician, in order to minimize artifacts and 
prevent drowsiness. Ten 4096-sample (sample frequency 
of 500 or 512 Hz) or 2048-sample (sample frequency of 
200, 250, or 256  Hz) epochs of eyes-closed artifact-free 
data (containing no eye blinks, muscle artifact, slow eye 
movements, or EKG-artifacts) were selected from each 
EEG recording based on visual inspection of the data by 
one of the authors (E.S.).

Analysis and outcome measures
Different types of measures were computed from the 
EEG waveforms, using open access Brainwave software 
(version 0.9.163.26, developed by Professor C.J. Stam, 
http:// home. kpn. nl/ stam7 883/ brain wave. html).

Spectral measures
For each of the 21 electrodes, the relative contribu-
tion (i.e., power) of different frequency bands (i.e., theta 
(4–8 Hz), alpha1 (8–10 Hz), alpha2 (10–13 Hz), and beta 
(13–30  Hz)) to the broadband EEG signal (0.5–48  Hz) 
were calculated using a fast Fourier transform. Delta 
(0.5–4  Hz) and gamma (30–48  Hz) frequencies were 
excluded from analysis because of their respective sen-
sitivity to ocular [46] and electromyogenic artifacts [47, 
48]. In addition, the peak frequency of the power spec-
trum was identified for each electrode as the median fre-
quency between 4 and 13 Hz.

Functional connectivity measures
Functional connectivity refers to the statistical depend-
ence, or ‘inter-relatedness’, between time series of elec-
trophysiological activity in distinct regions of the brain. 
We estimated connectivity strength using different 
techniques:

The amplitude envelope correlation (AEC) [49–51] is 
a measure of amplitude-based connectivity between two 
time series. The linear correlation coefficient between the 
power envelopes of two time series was computed and 
normalized between 0 and 1, with 0.5 indicating no func-
tional connectivity. To correct for the effects of volume 
conduction, we made use of pairwise orthogonalization 
in two directions (i.e., X to Y and Y to X) prior to AEC 
estimation [15, 49]. The AEC values (i.e., the correlation 
between the orthogonalized envelopes) for both direc-
tions were averaged, resulting in corrected AEC (AEC-c) 
values.

The phase lag index (PLI) [52] provides an estimate of 
phase-based connectivity between two time series. If no 
phase synchronization exists between two time series, 
the distribution of their phase differences is expected 
to be flat. Any deviation from this flat distribution indi-
cates phase synchronization. The PLI is an asymmetry 
index for this distribution. Its values range between 

0 and 1, with 0 indicating no connectivity and 1 refer-
ring to perfect phase locking. The measure is invariant 
against the presence of common sources (i.e., volume 
conduction), as it discards phase differences that center 
around 0 mod π.

A single AEC-c and PLI value was obtained for each 
of the 21 electrodes, by averaging over its 20 pair-wise 
connectivity values. This value indicates the average con-
nectivity strength between that electrode and the rest of 
the brain. This corresponds to the notion of “weighted 
degree” or “node strength” in graph theory.

Entropy measures
Single channel
Variability of each EEG time series was quantified using 
the permutation entropy (PE) [53]. The continuous EEG 
signal recorded from each electrode was transformed 
into a sequence of discrete symbols. Next, the Shannon’s 
information entropy of the symbol probability distribu-
tion was computed. High entropy values indicate a flat or 
uniform symbol probability distribution (i.e., high signal 
variability), whereas low entropy values indicate a more 
bell-shaped curve (i.e., low signal variability).

Functional connectivity
The weighted symbolic mutual information (wSMI) [54] 
evaluates the extent to which two time series present 
nonrandom joint fluctuations. To quantify the informa-
tion shared between two time series, the continuous 
signals are first transformed into sequences of discrete 
symbols (as is done to compute the PE). The joint prob-
ability of each pair of symbols gives the SMI, with high 
values indicating strong coupling. To correct for potential 
common-source artifacts, the weights of pairs of identical 
or opposite-sign symbols in the joint probability matrix 
are set to zero.

The joint permutation entropy (JPE) [55] integrates 
information on local signal variability (as reflected by 
the PE) and interregional coupling (as reflected by the 
wSMI). Again, the continuous signals are transformed 
into sequences of discrete symbols. This time, connec-
tivity is defined as the Shannon’s information entropy 
of the joint probability matrix. To facilitate comparison 
to more conventional connectivity measures, we report 
inverted JPE  (JPEinv) values, so that higher values cor-
respond to stronger coupling. Note that measures based 
on a symbolic representation of the EEG time series (i.e., 
PE, wSMI and  JPEinv) require the choice of parameter 
settings, such as symbol size n and time-delay τ. In the 
present study, we made use of n = 4 and τ = 1. For more 
information on the role of these parameters in entropy 
computations and validation of the selected settings, see 
Scheijbeler et al. [55].

http://home.kpn.nl/stam7883/brainwave.html
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The investigated EEG outcome measures are presented 
in Table  1. We computed global (i.e., whole-brain) and 
regional averages (i.e., temporal—A2, A2, T4, T3, T6, 
T5 and parieto-occipital – P4, P3, O2, O1, Pz) for rela-
tive power, PE, AEC-c, PLI, wSMI, and  JPEinv. The peak 
frequency of the power spectrum was computed over 
parieto-occipital sensors only. The AEC-c was computed 
in the alpha and beta band and the PLI in the theta band 
because of the reproducibility of these metrics infinding 
differences between AD dementia patients and cogni-
tively healthy controls [15, 56]. The PE, wSMI, and  JPEinv 
were computed in the theta band [55], resulting in 31 
measures of interest.

Statistical analysis
Group differences of demographic variables
Group differences for each demographic variable at base-
line were assessed between the MCI and AD dementia 
subgroups using χ2 tests for categorical variables and 
Kruskal–Wallis tests for continuous variables.

Development of EEG measures over time
Development over time was analyzed using linear mixed 
models (LMMs). A LMM adjusts for the dependency of 
the repeated observations within a subject by modelling 
variability among individuals and including both fixed 
and random effects. The simplest form of a LMM only 
allows the intercepts to vary across subjects. In addition 
to a random intercept, it is possible that development 
over time varies across individuals, as reflected by a ran-
dom slope. Model fit of “random intercept” and “random 
intercept and slope” models was compared using like-
lihood ratio tests. The best, or, in the case of similar fit, 

the simplest model, was used to analyze the development 
over time for the outcome variables of interest.

We first modeled the linear development of EEG meas-
ures over time within the whole cohort. Time, our covari-
ate of interest, was included as a continuous variable in 
months. Its values reflect follow-up time between EEG 
recordings and were therefore unequally spaced in time. 
A separate LMM was built for each EEG outcome meas-
ure (Table 1, n = 31).

To analyze the differences in development over time 
between subgroups, we stratified subjects based on 
baseline disease stage (i.e., MCI, AD dementia). To 
mimic real-life conditions in the context of clinical trial 
design, we modeled the course of EEG measures with-
out including knowledge on future clinical progression. 
We modeled and compared the development of the EEG 
outcome measures over time between groups by add-
ing Time, Group, and Time*Group interaction variables 
to the model. Again, a separate LMM was built for each 
measure of interest. To investigate whether sex, age, or 
medication use influenced the (difference between the) 
development of the groups over time, we performed 
both crude and covariate adjusted analysis. We report 
regression coefficients with 95% confidence intervals. A 
p-value < 0.05 was considered statistically significant. Due 
to the exploratory nature of the study, adjustment for 

Table 1 EEG measures of interest

PE Permutation entropy, AEC-c Corrected amplitude envelope correlation, PLI 
Phase lag index, wSMI Weighted symbolic mutual information, JPEinv Inverted 
joint permutation entropy

Region Measure Frequency band

Global, parieto-occipital, 
temporal

Relative power Theta

Alpha1

Alpha2

Beta

AEC-c Alpha

Beta

PLI Theta

PE Theta

wSMI Theta

JPEinv Theta

Parieto-occipital Peak frequency -

Table 2 Baseline demographic and clinical characteristics

SD Standard deviation, MMSE Mini mental state examination, IQR Inter-
quartile range, MTA Medial temporal lobe atrophy, Aβ + Amyloid beta positive, 
as measured by cerebrospinal fluid Aβ42 concentration or [15] C-labeled 
Pittsburgh Compound-B positron emission topography examination, AEDs Anti-
epileptic drugs
** p < .01, *** p < .001

MCI AD dementia Total

N 88 60 148

Age, years (mean, SD) 70.7 
(7.2)**

66.9 (8.2) 69.2 (7.8)

Sex (male/female) 46/42 31/29 77/71

MMSE (median, IQR) 27 (3)*** 24 (5) 26 (4)

MTA score (median, IQR)

 Left hemisphere 2 (2) 1 (2) 2 (2)

 Right hemisphere 2 (1) 2 (2) 2 (2)

Aβ + (nn, CSF Aβ42/  [11C] PiB-PET) 88/0 57/3 145/3

Phosphorylated tau (n, CSF 
p-tau +/-)

46/4 33/8 79/12

Total tau (n, CSF t-tau +/-) 44/6 33/8 77/14

Medication use (n/%)

 Anticholinergics 4 (5%) 6 (10%) 10 (7%)

 Antidepressants 9 (10%) 5 (8%) 14 (9%)

 AEDs 1 (1%) 3 (5%) 4 (3%)

 Antipsychotics 1 (1%) 1 (2%) 2 (1%)

 Benzodiazepines 3 (3%) 5 (8%) 8 (5%)
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multiple comparisons was not performed. Details of the 
LMM analyses are included in Additional file 1.

Effect‑ and sample size calculation
Effect sizes (measured as d) of the strongest whole-group 
and group-wise LMM results were computed per month 
using the formula below [57]. Yearly and two-yearly effect 
sizes were linearly estimated.

*Varslope was set to zero for models that only included a 
random intercept on subject level.

In the context of a clinical trial, different treatment 
effects on EEG outcome measures are imaginable. In a 
stabilizing scenario (1), a treatment effectively halts the 
progression of EEG abnormalities over time. Treatment 
effectiveness in this scenario corresponds to d, as com-
puted from the LMM results. A treatment can also slow 
down the rate of deterioration of EEG outcome measures, 
which we will refer to as a “less deterioration” scenario 
(2). This second scenario results in a smaller treatment 
effect size than the stabilizing scenario. Finally, deteriora-
tion of EEG outcome measures (e.g., oscillatory slowing) 
may be reversed by a treatment. Improvement of the EEG 
measures in the active group results in a larger treatment 
effect size than would be observed in a stabilizing sce-
nario (3).

We estimated minimum sample sizes required to 
detect different treatment effects (i.e., 50% less deterio-
ration, stabilization, or 50% improvement) on EEG out-
come measures in hypothetical clinical trials of 1- or 
2-year duration, with EEG measurements taken at base-
line and end-of-treatment. This was done using G*Power 
software [58] at 0.05 to 99% power, for a one-sided two-
sample t-test, with a type I error (α) of p < 0.05. A bal-
anced design was assumed.

Results
Baseline characteristics
Eighty-eight amyloid-positive MCI and 60 AD dementia 
subjects were included in this study. Table 2 summarizes 
the baseline demographic and clinical characteristics of 
the study population. The mean age of subjects with MCI 
was 70.7  years (SD 7.2). This was significantly higher 
than the mean age of AD dementia subjects (66.9 years, 
SD 8.2) (p < 0.01). We report significantly higher median 
MMSE scores (available for 143 subjects at baseline) for 
the MCI (27, IQR 3) than the AD dementia group (24, 
IQR 5) (p < 0.001). For a more comprehensive overview of 
neuropsychological test scores of the participants at base-
line, see Table S1 & S2 in Additional file 2. Sex ratio and 

d =
Difference between themeans (β)

varintercept + varslope∗ + varresidual

MTA scores (n = 84) did not differ significantly between 
groups at baseline. CSF p-tau and t-tau levels were avail-
able for 91 patients.

Baseline comparisons of global EEG measures and 
the parieto-occipital peak frequency between the MCI 
and AD dementia subgroups are displayed in Fig. 1. The 
MCI group had significantly lower global relative theta 
power (p < 0.01) and higher relative alpha1 power values 
(p < 0.05) compared to the AD dementia group (Fig. 1A, 
B). The groups did not differ significantly with respect to 
the remaining measures. Mean (SD) values for all meas-
ures are reported in Additional file 2 (Table S3).

Follow‑up characteristics
Participants underwent 2 to 4 EEG recordings within a 
follow-up period of 2.6 to 35.5 months (Table 3). Reasons 
for follow-up included clinical (re-)evaluation, screening 
for potential inclusion in a clinical trial, or participation 
in a clinical trial (as control subject). The MCI group had 
a longer median follow-up time (11.0 months (range 2.6 
– 34.8)) than the AD dementia group (5.9 months (range 
2.8 – 35.5)). This difference was however not statistically 
significant.

EEG measures’ development over time
Whole‑group LMM
The whole-group LMM analysis revealed significant 
regional and global oscillatory slowing over time in our 
Aβ + AD cohort (N = 148), with strongest effects for 
regional measures. We found a significant increase in 
parieto-occipital, temporal, and global relative theta 
power, as well as a significant decrease in parieto-occip-
ital, temporal and global relative beta power (Fig. 2A-C) 
and parieto-occipital peak frequency (Fig. 2D) over time. 
Although we report no significant longitudinal changes 
in functional connectivity strength and signal variabil-
ity on whole-group level, estimates of regression coef-
ficient β indicate a downward trend in parieto-occipital, 
temporal, and global AEC-c alpha and beta and  JPEinv 
theta connectivity, as well as PE theta. PLI theta and 
wSMI theta connectivity exhibit a consistent positive 
trend across all regions. Regression coefficients and 95% 
confidence intervals are reported in Table 4. Regression 
coefficient β reflects the change in outcome measure per 
month. For visualization purposes, only significant esti-
mates are plotted in Fig. 2.

Group‑wise LMM
Group-wise LMM analysis was performed to investi-
gate potential differences in the development of EEG 
measures over time between patients in different stages 
of AD. Tables  5, 6  and 7 present the regression coeffi-
cients and 95% confidence intervals of the Time effects 
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Fig. 1 A-K Baseline comparisons of global EEG measures and the parieto-occipital peak frequency between Aβ + MCI and AD dementia patients. 
A-D Global relative theta, alpha1, alpha2, and beta power. E Parieto-occipital peak frequency in Hz. F Global permutation entropy (PE) theta. G-H 
Corrected amplitude envelope correlation (AEC-c) alpha and beta. I Phase lag index (PLI) theta. J Weighted symbolic mutual information (wSMI) 
theta. K Inverted joint permutation entropy  (JPEinv) theta. * p < .05, **p < .01

Table 3 Follow-up characteristics

MCI AD dementia Total

Reason for follow-up (n)

 Clinical follow-up 46 18 64

 Clinical trial – screening phase 5 24 29

 Clinical trial – control condition 37 18 55

Number of EEG recordings (median, range) 2 (2–4) 2 (2–3) 2 (2–4)

Total follow-up time, months (median, range) 11.0 (2.6 – 34.8) 5.9 (2.8 – 35.5) 7.2 (2.6 – 35.5)
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for each group (i.e., MCI and AD dementia). None of the 
EEG measures showed significant Time*Group interac-
tions. Note that regression coefficient β of the interaction 
effects indicates the difference in Time effect between 
the MCI and AD dementia subgroups. We report a neg-
ligible effect on the rates of change of the investigated 
EEG measures by the addition of sex, age, and medica-
tion use covariates to the LMMs (see Additional file  2, 
Table  S4-6), and therefore make use of the uncorrected 
results in the remainder of the paper.

Electrophysiological deterioration was most prominent 
in MCI subjects, reflected by significant development 
of 6 EEG measures over time (Fig. 3A-F). Similar to the 
whole-group analysis, strongest effects were reported 
for regional measures (Tables 5 and 6). We found a sig-
nificant increase in parieto-occipital, temporal, and 
global relative theta power (Fig.  3A-C), while a signifi-
cant decrease was demonstrated for parieto-occipital, 
temporal, and global relative beta power (Fig.  3D-F). 
The AD dementia group showed a significant decrease 

of the parieto-occipital peak frequency and tempo-
ral PE theta over time. The direction of reported effects 
for the remaining measures was largely similar across 
groups (Tables 5, 6 and 7). We report a downward trend 
(although not significant) in parieto-occipital, temporal, 
and global AEC-c beta, relative alpha2 power and PE 
theta, as well as a positive trend in PLI theta connectivity. 
Global and temporal alpha1 power and  JPEinv connectiv-
ity decreased in both groups, whereas wSMI theta con-
nectivity increased over time.

EEG measures sensitive to change
Table  8 displays the subset of EEG measures that was 
included in the second part of the study. The EEG meas-
ures most sensitive to change in the whole-group LMM 
analysis included temporal relative theta and beta power 
and the parieto-occipital peak frequency. For the group-
wise LMM analysis, this included temporal relative theta 
power and parieto-occipital relative beta power for MCI 

Fig. 2 A-D Estimated trajectories and 95% confidence intervals for EEG measures in Aβ + AD patients (MCI and AD dementia). Significant 
whole-group estimates are visualized (p < .05). A-C Parieto-occipital, temporal, and global relative theta and beta power. D Parieto-occipital peak 
frequency in Hz
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patients and the parieto-occipital peak frequency and 
temporal PE theta for AD dementia patients.

Longitudinal effect sizes
To effectively compare the relative sensitivity to 
change of the EEG measures, yearly and two-yearly 
whole-group and group-wise effect sizes were com-
puted from the LMM results. The largest longitudi-
nal effect size was reported for temporal relative theta 
power (1 year: d = 0.23, 2 years: d = 0.45), followed by 
the parieto-occipital peak frequency (1  year: d = 0.15, 
2  years: d = 0.30) and temporal relative beta power 

(1  year: d = 0.12, 2  years: d = 0.24). Larger effect sizes 
were reported for the individual MCI (1 year: tempo-
ral relative theta power d = 0.30, parieto-occipital beta 
power d = 0.14, 2 years: temporal relative theta power 
d = 0.60, parieto-occipital beta power d = 0.28) and AD 
dementia subgroups (1  year: parieto-occipital peak 
frequency d = 0.23, temporal PE theta d = 0.11, 2 years: 
parieto-occipital peak frequency d = 0.45, temporal PE 
theta d = 0.22). Effect sizes for different treatment sce-
narios (i.e., 50% less deterioration and 50% improve-
ment) are displayed in Table  S7 & S8 in Additional 
file 2.

Table 4 Results of the whole-group LMM analysis performed to evaluate change in EEG measures over time (in months) in Aβ + AD 
patients (MCI and AD dementia). Regression coefficients (β) and 95% confidence intervals (CI) are reported

AEC-c Corrected amplitude envelope correlation, PLI Phase lag index, PE Permutation entropy, wSMI Weighted symbolic mutual information, JPEinv Inverted joint 
permutation entropy

*p<.05, **p<.01, ***p<.001
a Random intercept on subject level
b Random intercept and random slope on subject level

Region Measure Frequency band β 95% CI p‑value

Parieto-occipital Relative power Thetab 1.4E-03 7.3E-04 2.2E-03  < .001***

Alpha1a -2.9E-04 -1.4E-03 8.5E-04 0.61

Alpha2a -2.6E-04 -1.3E-03 7.8E-04 0.62

Betaa -8.1E-04 -1.4E-03 -2.3E-04  < .01**

Peak frequency -a -1.5E-02 -2.4E-02 -6.8E-03  < .001**

AEC-c Alphaa -7.5E-05 -4.2E-04 2.7E-04 0.67

Betaa -9.3E-05 -2.2E-04 3.7E-05 0.16

PLI Thetaa 2.0E-04 -2.0E-04 6.0E-04 0.33

PE Thetaa -9.7E-05 -2.7E-04 7.4E-05 0.27

wSMI Thetaa 5.0E-05 -7.8E-05 1.8E-04 0.44

JPEinv Thetaa -5.3E-05 -1.6E-04 5.3E-05 0.32

Temporal Relative power Thetaa 1.7E-03 9.2E-04 2.4E-03  < .001***

Alpha1a -4.5E-04 -1.1E-03 2.5E-04 0.21

Alpha2a -3.8E-04 -8.3E-04 6.5E-05 0.09

Betaa -7.1E-04 -1.2E-03 -2.4E-04  < .01**

AEC-c Alphaa -9.8E-05 -4.2E-04 2.2E-04 0.55

Betaa -3.6E-05 -1.6E-04 9.0E-05 0.57

PLI Thetaa 1.3E-04 -2.3E-04 4.9E-04 0.49

PE Thetaa -1.6E-04 -3.2E-04 -3.6E-08 0.05

wSMI Thetaa 7.4E-05 -4.5E-05 1.9E-04 0.22

JPEinv Thetaa -8.4E-05 -1.7E-04 5.3E-06 0.07

Global Relative power Thetab 1.5E-03 8.6E-04 2.2E-03  < .001***

Alpha1a -4.6E-04 -1.3E-02 3.4E-04 0.26

Alpha2a -3.1E-04 -9.2E-04 3.0E-04 0.32

Betaa -5.4E-04 -1.0E-03 -4.6E-05  < .05*

AEC-c Alphaa -9.2E-05 -4.1E-04 2.3E-04 0.57

Betaa -5.8E-05 -1.8E-04 6.2E-05 0.34

PLI Thetaa 1.5E-04 -1.9E-04 5.0E-04 0.38

PE Thetaa -1.3E-04 -2.8E-04 2.8E-05 0.11

wSMI Thetaa 6.5E-05 -5.4E-05 1.8E-04 0.28

JPEinv Thetaa -5.5E-05 -1.6E-04 4.7E-05 0.29
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Sample size calculations
We estimated the number of participants required to 
demonstrate different treatment effects on the develop-
ment of EEG outcome measures over time in hypotheti-
cal clinical trials of 1- or 2-year duration. For a 1-year 
trial, including both MCI and AD dementia patients, the 
minimum sample size per arm required to detect a stabi-
lizing effect on progression of temporal relative theta, the 
parieto-occipital peak frequency, and temporal relative 
beta power at 80% power was 235, 551, and 860, respec-
tively. For trials with a duration of 2  years, these esti-
mates decreased by a factor of four to 62, 139, and 216 
(Fig. 4, Table 9).

Stratification based on disease severity at baseline 
revealed differences in the development of EEG meas-
ures over time between MCI and AD dementia patients 
(Fig. 3, Tables 5, 6 and 7). Not all EEG measures showed 
significant change over time in each group. Figure 5 and 

Table  10 display sample size estimates for hypothetical 
trials that would specifically target MCI (Fig.  5A, B) or 
AD dementia patients (Fig.  5C, D). Minimum required 
sample sizes are substantially lower for trials focusing 
on a single disease stage. To reliably assess a stabilizing 
treatment effect in MCI patients in a 2-year trial, the 
minimum required sample size per arm would be 36 or 
159 for temporal relative theta power and parieto-occipi-
tal relative beta power, respectively. The parieto-occipital 
peak frequency and temporal PE theta are most sensi-
tive to change in AD dementia patients. Two-year AD 
dementia trials should include a minimum of 62 or 257 
patients per arm to detect a stabilizing treatment effect 
on the respective measures. As expected, required sam-
ple sizes are substantially larger for treatments that slow 
down (rather than stabilize) the rate of deterioration of 
EEG, whereas required sample sizes are smaller for treat-
ments that reverse deterioration (Tables 9 and 10).

Table 5 Results of the group-wise LMM analysis performed to evaluate change in parieto-occipital EEG measures over time (in 
months) in Aβ + MCI or AD dementia patients. Regression coefficients (β) and 95% confidence intervals (CI) of the Time effects are 
reported. Estimates for the Group*Time interaction effects, as well as estimates adjusted for age, sex and medication use are presented 
in Additional file 2 (Table S4)

AEC-c Corrected amplitude envelope correlation, PLI Phase lag index, PE Permutation entropy, wSMI Weighted symbolic mutual information, JPEinv Inverted joint 
permutation entropy

*p<.05, **p<.01, ***p<.001
a Random intercept on subject level
b Random intercept and random slope on subject level

Region Measure Frequency band Disease stage β 95% CI p‑value

Parieto-occipital Relative power Theta MCIb 1.6E-03 8.3E-04 2.3E-03  < .001***

AD  dementiab 8.7E-04 -2.0E-04 1.9E-03 0.12

Alpha1 MCIa 3.8E-04 -1.1E-03 1.9E-03 0.62

AD  dementiaa -1.2E-03 -3.0E-03 5.2E-04 0.17

Alpha2 MCIa -1.3E-04 -1.5E-03 1.2E-03 0.86

AD  dementiaa -4.5E-04 -2.0E-03 1.1E-03 0.58

Beta MCIa -1.0E-03 -1.8E-03 -2.7E-04  < .01**

AD  dementiaa -5.0E-04 -1.4E-03 3.9E-04 0.27

Peak frequency - MCIa -1.0E-02 -2.1E-02 1.2E-03 0.08

AD  dementiaa -2.3E-02 -3.6E-02 -9.6E-03  < .001***

AEC-c Alpha MCIa -1.5E-04 -6.1E-04 3.1E-04 0.53

AD  dementiaa 2.1E-05 -5.1E-04 5.5E-04 0.94

Beta MCIa -7.1E-05 -2.4E-04 9.9E-05 0.41

AD  dementiaa -1.2E-04 -3.2E-04 7.5E-05 0.22

PLI Theta MCIa 1.9E-04 -3.4E-04 7.2E-04 0.48

AD  dementiaa 2.1E-04 -4.1E-04 8.3E-04 0.50

PE Theta MCIa -2.4E-05 -2.5E-04 2.0E-04 0.84

AD  dementiaa -2.0E-04 -4.6E-04 6.4E-05 0.14

wSMI Theta MCIa -1.8E-05 -1.9E-04 1.5E-04 0.83

AD  dementiaa 1.4E-04 -5.2E-05 3.4E-04 0.15

JPEinv Theta MCIa 7.6E-07 -1.4E-04 1.4E-04 0.99

AD  dementiaa -1.3E-04 -2.9E-04 3.6E-05 0.13
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Discussion
This retrospective longitudinal EEG study demonstrates 
significant deterioration of global, parieto-occipital, and 
temporal resting-state EEG measures over time (includ-
ing relative theta, beta power, theta band signal vari-
ability, and peak frequency) in Aβ + patients with MCI 
or dementia due to AD. Effects were measurable after a 
period as short as 1 month. We provide support for the 
inclusion of EEG outcome measures in AD clinical tri-
als, as their fast rate of deterioration may facilitate early 
detection of treatment effects on neuronal function. 
EEG measures’ sensitivity to change depended on the 
region-of-interest and the disease severity of subjects. 
The effect of baseline age, gender, and medication use 
on the development of the EEG measures over time was 
deemed negligible based on covariate adjusted analysis. 
When designing a trial with 1-year follow-up, the esti-
mated sample size per arm (with two arms and 1:1 rand-
omization, at 80% power) required to detect a stabilizing 
treatment effect on temporal relative theta power and 
parieto-occipital relative beta power in MCI patients was 

139 or 632, respectively. For a 2-year follow-up period, 
these numbers were reduced to 36 or 159 MCI patients 
per arm. When a treatment is expected to slow down 
(rather than stabilize) the deterioration of EEG measures, 
it is advisable to set up a more conservative trial with 
larger sample sizes. Conversely, if a treatment is hypoth-
esized to reverse deterioration of EEG measures, smaller 
sample sizes can be considered.

Our results are in line with previous studies reporting 
spectral EEG measures as most consistent for monitor-
ing AD progression [59] and response to interventions in 
AD clinical trials [60, 61]. In agreement with our hypoth-
esis, most prominent effects were localized in temporal 
regions, with highest sensitivity for relative theta power. 
This is consistent with earlier findings [13, 14, 35, 62].

Disease severity at baseline influenced EEG meas-
ures’ rates of change, with fastest deterioration reported 
in MCI subjects. The MCI group showed significant 
development over time for 6 EEG measures, including 
parieto-occipital, temporal, and global relative theta and 
beta power. AD dementia patients showed a significant 

Table 6 Results of the group-wise LMM analysis performed to evaluate change in temporal EEG measures over time (in months) 
in Aβ + MCI or AD dementia patients. Regression coefficients (β) and 95% confidence intervals (CI) of the Time effects are reported. 
Estimates for the Group*Time interaction effects, as well as estimates adjusted for age, sex, and medication use are presented in 
Additional file 2 (Table S5)

AEC-c Corrected amplitude envelope correlation, PLI Phase lag index, PE Permutation entropy, wSMI Weighted symbolic mutual information, JPEinv Inverted joint 
permutation entropy

*p<.05, **p<.01, ***p<.001 
a Random intercept on subject level
b Random intercept and random slope on subject level

Region Measure Frequency band Disease stage β 95% CI p‑value

Temporal Relative power Theta MCIb 2.2E-03 1.2E-03 3.1E-03  < .001***

AD  dementiab 8.2E-04 -3.1E-04 2.0E-03 0.16

Alpha1 MCIb -3.7E-04 -1.3E-03 5.6E-04 0.44

AD  dementiab -6.0E-04 -1.7E-03 5.0E-04 0.30

Alpha2 MCIa -2.5E-04 -8.4E-04 3.4E-04 0.41

AD  dementiaa -5.7E-04 -1.3E-03 1.1E-04 0.10

Beta MCIa -8.0E-04 -1.4E-03 -1.8E-04  < .05*

AD  dementiaa -5.8E-04 -1.3E-03 1.5E-04 0.12

AEC-c Alpha MCIa -1.6E-04 -5.8E-04 2.7E-04 0.47

AD  dementiaa -2.2E-05 -5.1E-04 4.7E-04 0.93

Beta MCIa -2.5E-05 -1.9E-04 1.4E-04 0.77

AD  dementiaa -5.2E-05 -2.5E-04 1.4E-04 0.60

PLI Theta MCIa 1.1E-04 -3.7E-04 5.8E-04 0.66

AD  dementiaa 1.5E-04 -4.0E-04 7.1E-04 0.59

PE Theta MCIa -9.2E-05 -3.0E-04 1.2E-04 0.39

AD  dementiaa -2.5E-04 -4.9E-04 -7.6E-06  < .05*

wSMI Theta MCIa 1.5E-05 -1.4E-04 1.7E-04 0.85

AD  dementiaa 1.5E-04 -2.8E-05 3.4E-04 0.10

JPEinv Theta MCIa -5.0E-05 -1.7E-04 6.7E-05 0.40

AD  dementiaa -1.3E-04 -2.7E-04 6.9E-06 0.06
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decrease of the parieto-occipital peak frequency and 
temporal PE theta. We do not report significant Time x 
Group effects (Additional file  2, Table  S4-6), indicating 
that the development of EEG measures over time did not 
differ significantly between groups.

Underlying mechanisms
A growing body of evidence suggests that large-scale 
circuit and network function are affected by a neuronal 
excitation/inhibition (E/I) imbalance in AD (for a recent 
review, see [63]). Neuronal hyperactivity has been dem-
onstrated in early stages of AD, both in animal mod-
els (using in  vivo calcium imaging, [64, 65] and human 
EEG data (using spike detection, [66]). There is substan-
tial evidence that soluble Aβ is crucial for this increase 
in neuronal activity [67, 68]. Soluble tau has on the other 
hand  been associated with the silencing of neuronal 
activity. The presence of neurofibrillary tangles has been 
linked to changes in the number and morphology of den-
dritic spines in pyramidal cells of AD patients. Consid-
ering that dendritic spines are fundamental structures 

in memory, learning, and cognition, this is thought to 
be a key event in AD pathogenesis [69]. Abnormal spec-
tral power and functional connectivity within the alpha 
and delta-theta frequency ranges have previously been 
shown to be differentially associated with Aβ and tau 
accumulations in patients with AD [70, 71]. Microscale 
hyperactivity has moreover been linked to the large-scale 
oscillatory slowing of M/EEG signals that is observed 
in AD patients, using a whole-brain computational net-
work model [72]. The increase of relative theta power 
and decrease of relative beta power that we report in 
this study may be indirect measures of (Aβ-mediated) 
hyperactivity of pyramidal cells and/or interneuron dys-
function. This raises the question whether measures 
that quantify the E/I ratio of neuronal oscillations more 
directly could be more sensitive to change than conven-
tional spectral measures. The validity of available EEG 
E/I ratio measures (e.g., functional E/I balance [73], fit-
ting oscillations and one over f (“FOOOF”) [74]) however 
remains to be evaluated in further studies. The density of 
Aβ deposits and neurofibrillary tangles is known to vary 

Table 7 Results of the group-wise LMM analysis performed to evaluate change in global EEG measures over time (in months) in 
Aβ + MCI or AD dementia patients. Regression coefficients (β) and 95% confidence intervals (CI) of the Time effects are reported. 
Estimates for the Group*Time interaction effects, as well as estimates adjusted for age, sex and medication use are presented in 
Additional file 2 (Table S6)

AEC-c Corrected amplitude envelope correlation, PLI Phase lag index, PE Permutation entropy, wSMI Weighted symbolic mutual information, JPEinv Inverted joint 
permutation entropy

*p<.05, **p<.01, ***p<.001
a Random intercept on subject level
b Random intercept and random slope on subject level

Region Measure Frequency band Disease stage β 95% CI p‑value

Global Relative power Theta MCIb 1.8E-03 1.1E-03 2.6E-03  < .001***

AD  dementiab 9.3E-04 -4.6E-05 1.9E-03 0.07

Alpha1 MCIb -2.4E-04 -1.3E-03 7.8E-04 0.64

AD  dementiab -9.9E-04 -2.2E-03 1.8E-04 0.10

Alpha2 MCIa -1.9E-04 1.0E-03 6.2E-04 0.64

AD  dementiaa -4.8E-04 -1.4E-03 4.6E-04 0.32

Beta MCIa -7.0E-04 -1.3E-03 -5.1E-05  < .05*

AD  dementiaa -3.2E-04 -1.1E-03 4.3E-04 0.40

AEC-c Alpha MCIa -1.7E-04 -5.9E-04 2.5E-04 0.42

AD  dementiaa 1.3E-05 -4.7E-04 5.0E-04 0.96

Beta MCIa -3.4E-05 -1.9E-04 1.2E-04 0.67

AD  dementiaa -9.1E-05 -2.7E-04 9.3E-05 0.33

PLI Theta MCIa 1.3E-04 -3.2E-04 5.8E-04 0.58

AD  dementiaa 1.8E-04 -3.5E-04 7.0E-04 0.50

PE Theta MCIa -5.5E-05 -2.6E-04 1.5E-04 0.60

AD  dementiaa -2.3E-04 -4.6E-04 1.2E-05 0.06

wSMI Theta MCIa 2.9E-06 -1.5E-04 1.6E-04 0.97

AD  dementiaa 1.5E-04 -3.3E-05 3.3E-04 0.11

JPEinv Theta MCIa -5.6E-06 -1.4E-04 1.3E-04 0.93

AD  dementiaa -1.2E-04 -2.8E-04 3.4E-05 0.12
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Fig. 3 A-F Estimated trajectories and 95% confidence intervals for EEG measures in Aβ + MCI or AD dementia patients. Significant group-wise 
estimates are visualized (p < .05). A-C Parieto-occipital, temporal, and global relative theta power, MCI (yellow). D-F Parieto-occipital, temporal, 
and global relative relative beta power, MCI. G Parieto-occipital peak frequency (in Hz), AD dementia (blue). H Temporal permutation entropy (PE) 
theta, AD dementia

Table 8 Subset of EEG measures most sensitive to change

Analyzed subjects Region Measure Frequency band

Whole-group Temporal Relative power Theta, beta

Parieto-occipital Peak frequency -

MCI Temporal Relative power Theta

Parieto-occipital Relative power Beta

AD dementia Parieto-occipital Peak frequency -

Temporal Permutation entropy Theta
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across cortical regions and disease stages [75–77]. Stud-
ies correlating EEG measures with PET maps of Aβ and 
tau accumulation may provide an explanation for the 
regional- and group-differences demonstrated in this 
study.

Sample size considerations
On whole-group level, largest effect sizes were reported 
for temporal relative theta and beta power and the pari-
eto-occipital peak frequency. Temporal relative theta and 
parieto-occipital relative beta power exhibited largest 
effect sizes in MCI patients. AD dementia subjects dis-
played largest effect sizes for the parieto-occipital peak 
frequency and temporal PE theta. Corresponding sample 
sizes estimates were substantially lower for hypotheti-
cal trials focusing on a single disease stage than for trials 
including MCI and AD dementia patients. Clinical trials 
of phases 2 and 3 typically include 100 to 300 and 300 to 

3000 patients in each patient group [78]. Our results sug-
gest that EEG outcome measures are appropriate for tri-
als of this size, particularly when outcome measures are 
tailored to the patient group under investigation (MCI or 
AD dementia). If these findings are replicated, they might 
even lower the minimum number of required trial par-
ticipants. We did not differentiate between converters 
and non-converters in the MCI group. During the design 
stage of a clinical trial, information on future clinical 
progression of its participants is unknown. We therefore 
provided sample size estimates for groups categorized 
based on baseline diagnosis only.

The role of EEG outcome measures in AD clinical trials
Finding tools with sufficient sensitivity to detect drug-
placebo differences in pre-dementia stages of AD is chal-
lenging. EEG measures however appear to be sensitive 
to change in early stages of disease. They could play an 

Fig. 4 A-B Statistical power as a function of sample size (Aβ + MCI and AD dementia). The minimum required sample size per arm was estimated 
at 0.05 to 99% power for 1-year (A) and 2-year (B) trial duration. Effect sizes for EEG outcome measures were computed based on significant 
whole-group LMM results (Table S7, Additional file 2)

Table 9 Required sample sizes (per arm) to detect different treatment effects on EEG outcome measures in Aβ + AD patients (MCI and 
AD dementia) in a hypothetical trial of 1- or 2-year duration, at 80% power

Subjects Region Frequency band Measure Sample size (50% 
less deterioration)

Sample size 
(stabilization)

Sample size (50% 
improvement)

1 year 2 years 1 year 2 years 1 year 2 years

Whole‑group (MCI 
and AD dementia)

Temporal Theta Relative power 1023 235 235 62 108 28

Parieto-occipital - Peak frequency 2525 551 551 139 257 62

Temporal Beta Relative power 3436 860 860 216 383 102
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Fig. 5 A-D Statistical power as a function of sample size (Aβ + MCI or AD dementia patients). The minimum required sample size per arm 
was estimated at 0.05 to 99% power for 1-year (A, C) and 2-year (B, D) trial duration. Effect sizes for EEG outcome measures were computed based 
on significant group-wise LMM results (Table S8, Additional file 2)

Table 10 Required sample sizes (per arm) to detect different treatment effects on EEG outcome measures in Aβ + MCI or AD 
dementia patients, in a hypothetical trial of 1- or 2-year duration, at 80% power

Subjects Region Frequency band Measure Sample size (50% 
less deterioration)

Sample size 
(stabilization)

Sample size (50% 
improvement)

1 year 2 years 1 year 2 years 1 year 2 years

MCI Temporal Theta Relative power 551 139 139 36 62 17

Parieto-occipital Beta Relative power 2525 632 632 159 282 71

AD dementia Parieto-occipital - Peak frequency 1023 235 235 62 108 28

Temporal Theta PE 3436 1023 1023 257 429 115
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important role in early stages of drug development, for 
instance by demonstrating target engagement. In drug 
development programs, a proof-of-concept (POC) Phase 
2a study is typically performed to help a drug developer 
make a “Go/NoGo” decision based on the efficacy perfor-
mance of a medical agent. POC can be based on a clinical 
response, a biomarker response or a combination of both 
types of outcome measures. So far, no biomarker has 
been granted surrogate status in AD drug development 
[6]. This means that proof of target engagement (i.e., bio-
marker changes induced by a therapy) does not guarantee 
clinical benefit at a later stage. Nevertheless, biomarker 
outcomes are important to understand the biological 
impact of an agent. EEG outcome measures could pro-
vide insight into (rescued or restored) circuit-level func-
tion. Moreover, a candidate treatment and its Phase 3 
program can be de-risked by acquiring a set of biomark-
ers and clinical measures that support its potential effec-
tiveness. Target engagement markers that are currently 
employed in AD clinical trials (i.e., fluid, imaging) are 
obtained using invasive and/or expensive techniques. 
EEG outcome measures could be a cost-effective, non-
invasive alternative to demonstrate target engagement.

Strengths
This study presents one of the largest and most compre-
hensive longitudinal EEG analyses in amyloid-positive 
AD patients to date. We provide recommendations for 
the design of future AD trials in which EEG measures 
will be used as secondary endpoints. In contrast to ear-
lier longitudinal EEG studies [32, 33, 35–38], diagnoses 
were based on recent diagnostic guidelines and extensive 
diagnostic screening. We employed linear mixed effects 
models to model the development of a large variety of 
global and regional EEG measures over time. LMMs are 
known for their ability to handle missing data points and 
variable measurement schedules between individuals and 
are therefore highly valuable when analyzing a clinical 
dataset [79]. Our findings also emerged after controlling 
for baseline age, sex, and medication use, adding to their 
validity.

Limitations
As discussed in the "Underlying mechanisms" sec-
tion, the presence of AD pathology is associated with 
changes in neuronal activity, which consequently affect 
EEG measures. All AD patients included in this study 
were positive for amyloid deposition. The extent of tau 
pathology and neurodegeneration (as assessed using cer-
ebrospinal fluid p-tau and t-tau levels) however varied 
between patients (see Table 1) and was not characterized 
for the full cohort. This likely contributed to increased 
variability in the development of EEG measures over 

time among patients. Our results are not consistent with 
studies reporting changes in functional connectivity 
strength over time in AD patients [15, 32]. This includes a 
decrease in alpha and beta band AEC-c in temporal and 
parietal regions [80] and increased theta band PLI [81]. 
We also do not report significant differences in global 
alpha 2 and beta power, PE theta, AEC-c alpha and beta, 
PLI theta, wSMI theta and  JPEinv theta between MCI 
and AD dementia patients at baseline, as was previously 
reported in cross-sectional studies [14, 15, 54, 55]. These 
discrepancies may be explained by a potential selection 
bias in the clinical part of our dataset. While EEG record-
ing is part of the standardized diagnostic work-up of our 
center [41], it is not a routine examination during fol-
low-up visits. Clinicians may request an additional EEG 
recording in  situations where there is uncertainty about 
a patients’ diagnosis, or when aberrant symptoms or 
progression profiles are observed. As a result, our clini-
cal cohort may be somewhat atypical compared to the 
general Alzheimer population, also reflected by the high 
age of MCI compared to AD dementia subjects at base-
line. When LMM analysis was performed for the subset 
of patients that participated in a clinical trial (n = 55) (see 
Additional file  2, Table  S9), reported effect sizes were 
considerably larger. This suggests that the well-controlled 
patient inclusion process of clinical trials may further 
reduce the minimum sample size required to detect 
a treatment effect on EEG outcome measures. In the 
future, we aim to (re)perform longitudinal EEG analysis 
within the context of AD clinical trials. Including a larger 
number of subjects with structured follow-up visits will 
improve longitudinal estimates and will allow for a bet-
ter comparison of the development of EEG measures 
between patients in different disease stages. Analyzing 
data from more than two time-points for each subject 
would also allow potential non-linear aspects of change 
to be captured. Moreover, we wish to evaluate the poten-
tial value of combined (e.g., Hub Disruption Index [82], 
Pathological Oscillatory Slowing Index [83]), and less 
conventional EEG outcome measures for longitudinal 
effect monitoring in AD clinical trials.

Conclusion
The presented findings indicate that EEG measures, par-
ticularly spectral power, are promising secondary end-
points for AD interventions. They are sensitive to change 
over a short time period and have complementary value 
to neuroimaging biomarkers, by providing a more direct 
measurement of neurotransmission and synaptic activity. 
The selection of EEG outcome measures should be guided 
by the targeted disease stage (i.e., MCI or AD dementia). 
Based on our sample size estimations, EEG measures have 
potential to reduce the size, duration, and therefore costs 
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of clinical trials, particularly for those aimed at slowing 
disease progression in MCI due to AD. Our study con-
tributes to improved trial design, by enabling informed 
decision-making regarding the appropriate sample size 
for interpreting EEG results. Additional longitudinal stud-
ies are needed to validate these findings and to relate EEG 
measures more extensively to clinical and cognitive out-
comes, ideally within the context of a clinical trial.
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