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Abstract 

The glymphatic system is a crucial component in preserving brain homeostasis by facilitating waste clearance 
from the central nervous system (CNS). Aquaporin-4 (AQP4) water channels facilitate the continuous interchange 
between cerebrospinal fluid and brain interstitial fluid by convective flow movement. This flow is responsible 
for guiding proteins and metabolites away from the CNS. Proteinopathies are neurological conditions character-
ized by the accumulation of aggregated proteins or peptides in the brain. In Alzheimer’s disease (AD), the deposi-
tion of amyloid-β (Aβ) peptides causes the formation of senile plaques. This accumulation has been hypothesized 
to be a result of the imbalance between Aβ production and clearance. Recent studies have shown that an extended 
form of AQP4 increases Aβ clearance from the brain. In this mini-review, we present a summary of these findings 
and explore the potential for future therapeutic strategies aiming to boost waste clearance in AD.
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Background
Translation is a critical biological process that entails the 
conversion of genetic information encoded in messen-
ger RNA (mRNA) into functional proteins. Traditionally, 
eukaryotic mRNA was thought to be inherently mono-
cistronic, denoting that each mRNA molecule codes for 
a single protein sequence. Recent advances in ribosome 
sequencing and proteomics research have challenged the 
traditional view of protein translation, revealing a more 
complex translational landscape [1–4]. It is notable that 
assumptions regarding protein translation are deeply 
ingrained in proteomics research, as protein databases 
are built upon these assumptions and do not encom-
pass the entirety of the human proteome. We recently 

reviewed microproteins and dual-coding properties of 
mRNA in neurobiology and their potential involvement 
in neurodegenerative disorders [5]. For example, tran-
scripts coding for prion protein (PrP), A2A adenosine 
receptor (A2AR), ataxin-1, and FUS encode an additional 
protein besides the reference protein [6–9]. Notably, the 
alternatively translated proteins can serve distinct func-
tions. For instance, two proteins translated from the 
same FUS mRNA have distinct functions but also both 
contribute to FUS-mediated motor neuron toxicity [9]. 
The aforementioned proteins have distinct amino acid 
sequences due to translation in a different reading frame 
or in untranslated regions of mRNA. A better-known 
phenomenon of diversity at the protein level is protein 
isoforms. Protein isoforms are typically defined as pro-
teins translated from alternatively spliced transcripts. 
However, shorter or longer versions of a protein with dis-
tinct functionality can also be translated from the same 
transcript. For instance, a shorter version of the protein 
peripherin is co-expressed with the reference protein, 
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due to in-frame translation initiation occurring down-
stream of the presumed start codon [10]. This isoform is 
involved in the process of filament network formation. 
Recent studies describe the discovery of an extended 
version of the protein aquaporin-4 (AQP4X), expressed 
in rat, mice, and human [11, 12]. The translation ini-
tiation occurs at the same start codon as the reference 
protein aquaporin-4 (AQP4), but in some occasions, 
the elongation does not stop at the stop codon resulting 
in an extended version of the protein. Hence, this iso-
form is not formed due to polycistronic features of the 
DNA or mRNA but due to regulatory aspects of protein 
translation.

Amyloid‑beta clearance via the glymphatic system
Alzheimer’s disease (AD) is characterized by amyloid-
beta (Aβ) deposits and hyperphosphorylated tau tangles 
within the brain. To maintain brain homeostasis, various 
clearance systems exist to eliminate extracellular Aβ from 
the central nervous system, including the glymphatic 
pathway [13]. AQP4, which is located perivascular on 
astrocyte endfeet, plays a vital role in proper functioning 
of the glymphatic system (Fig. 1) [14].

Studies using infused radiolabeled Aβ1-40 indicate that 
AQP4-knockout mice exhibit a 55% lower Aβ clearance 

rate than wild-type mice [15]. Moreover, in an amyloid-
beta precursor protein/presenilin 1 (APP/PS1) trans-
genic mouse model for AD, AQP4-knockout mice show 
a reduced Aβ clearance rate of 25–50% compared to 
transgenic mice without AQP4-knockout [16]. The AQP4 
levels in cerebrospinal fluid are higher in neurodegenera-
tive dementia, but the perivascular localization of AQP4, 
which is elemental to proper functioning of the glym-
phatic system, is disrupted in AD [17, 18]. Several studies 
indicate that the isoforms exhibit divergent subcellular 
localizations: the AQP4X isoform is predominantly asso-
ciated with astrocytic endfeet proximate to vasculature, 
whereas the canonical AQP4 is situated in the paren-
chyma, distanced from the vascular structures [11, 12]. 
This suggests that the translation of the extended isoform 
could potentially improve waste clearance from the CNS. 
AQP4X is translated inherently, but the stoichiometry 
between AQP4 and AQP4X is disrupted in gliosis and, 
more specifically, the AQP4X/AQP4 ratio was found to 
be decreased in AD in APP/PS1 transgenic mice mod-
els [11, 19]. In an effort to increase the readthrough rate 
using apigenin and sulphaquinoxaline, and thus increase 
the translation of AQP4X, an increase in Aβ clearance 
was observed [19]. These findings suggest that promot-
ing waste clearance could be a valuable tool for slowing 

Fig. 1 Amyloid-beta clearance via the glymphatic system. Aquaporin-4 (AQP4) water channels facilitate the continuous interchange 
between cerebrospinal fluid and brain interstitial fluid by convective flow movement. These water channels are positioned on the endfeet 
of astrocytes situated at the outer layer of the artery and vein. The glymphatic flow guides proteins, such as amyloid-beta, and metabolites 
to the perivenous space via AQP4 water channels, thus promoting their efficient elimination from the central nervous system outside the brain
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down disease progression in AD. Further research is nec-
essary to determine the clinical potential of this approach 
in long term studies evaluating plaque formation and 
cognitive function. The application of clustered regu-
larly interspaced short palindromic repeats (CRISPR) 
and CRISPR-associated protein 9 (Cas9) gene-editing 
technology presents a potential alternative strategy for 
future implementation [20]. However, it should be noted 
that this approach may result in the complete cessation of 
the translation of canonical AQP4, while both isoforms 
might be required for maintaining brain health. Addi-
tionally, it would be valuable to evaluate if the clearance 
is specific for Aβ or if this strategy also has potential for 
other proteinopathies. For instance, α-synuclein build-
up is associated with synucleinopathies such as Parkin-
son’s disease (PD), dementia with Lewy bodies (DLB), 
and multiple system atrophy (MSA), but accumulating 
evidence also suggests its involvement in the pathophysi-
ology of AD [21]. To evaluate this paradigm would par-
ticularly be of interest since the decreased expression of 
AQP4 in a PD mice model showed accelerated deposition 
of α-synuclein [22, 23].

Therapeutic strategies for AD, such as aducanumab 
and lecanemab, rely on antibodies that target Aβ or Aβ 
protofibrils. Furthermore, there has been recent inter-
est in microglial activation as a therapeutic strategy to 
slow down Aβ accumulation and tau deposition [24]. 
Aβ-targeting antibodies have shown potential in neu-
tralizing Aβ, suggesting a path for enhanced clearance. 
Once activated, microglia appear primed to efficiently 
phagocytose and degrade these antibody-tagged aggre-
gates [25]. Enhancing waste clearance mechanisms, 
such as the glymphatic system, might not only slow the 
amyloid aggregation process but might also aid in the 
effective spread of antibodies within the brain tissue 
due to improved glymphatic flow. The potential synergy 
between waste clearance mechanisms and Aβ-targeting 
antibodies remains an intriguing avenue for future thera-
peutic strategies in AD.

Conclusions
The enhancement of waste clearance from the brain via 
the glymphatic system is a novel therapeutic approach 
for AD. While the definitive clinical implications of 
AQP4, AQP4X, and the glymphatic system are yet to be 
ascertained, this avenue suggests a potential direction 
for future therapeutic exploration. These findings also 
suggest that promoting waste clearance holds prom-
ise for slowing down protein accumulation in other 
proteinopathies.
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