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Abstract 

Background Exposure to repetitive head impacts (RHI) in American football players can lead to cognitive impairment 
and dementia due to neurodegenerative disease, particularly chronic traumatic encephalopathy (CTE). The pathogno‑
monic lesion of CTE consists of perivascular aggregates of hyper‑phosphorylated tau in neurons at the depths of cor‑
tical sulci. However, it is unclear whether exposure to RHI accelerates amyloid‑β (Aβ) plaque formation and increases 
the risk for Alzheimer’s disease (AD). Although the Aβ neuritic plaques characteristic of AD are observed in a minor‑
ity of later‑stage CTE cases, diffuse plaques are more common. This study examined whether former professional 
and college American football players, including those with cognitive impairment and dementia, have elevated neu‑
ritic Aβ plaque density, as measured by florbetapir PET. Regardless of cognitive and functional status, elevated levels 
of florbetapir uptake were not expected.

Methods We examined 237 men ages 45–74, including 119 former professional (PRO) and 60 former college (COL) 
football players, with and without cognitive impairment and dementia, and 58 same‑age men without a history 
of contact sports or TBI (unexposed; UE) and who denied cognitive or behavioral symptoms at telephone screen‑
ing. Former players were categorized into four diagnostic groups: normal cognition, subjective memory impairment, 
mild cognitive impairment, and dementia. Positive florbetapir PET was defined by cortical‑cerebellar average SUVR 
of ≥ 1.10. Multivariable linear regression and analysis of covariance (ANCOVA) compared florbetapir average SUVR 
across diagnostic and exposure groups. Multivariable logistic regression compared florbetapir positivity. Race, educa‑
tion, age, and APOE4 were covariates.

Results There were no diagnostic group differences either in florbetapir average SUVR or the proportion of elevated 
florbetapir uptake. Average SUVR means also did not differ between exposure groups: PRO‑COL (p = 0.94, 95% 
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C.I. = [− 0.033, 0.025]), PRO‑UE (p = 0.40, 95% C.I. = [− 0.010, 0.029]), COL‑UE (p = 0.36, 95% CI = [0.0004, 0.039]). Florbeta‑
pir was not significantly associated with years of football exposure, cognition, or daily functioning.

Conclusions Cognitive impairment in former American football players is not associated with PET imaging of neu‑
ritic Aβ plaque deposition. These findings are inconsistent with a neuropathological diagnosis of AD in individuals 
with substantial RHI exposure and have both clinical and medico‑legal implications.

Trial registration NCT02798185.

Keywords American Football, Amyloid‑β, Concussion, Alzheimer’s disease, Cognitive function, Chronic traumatic 
encephalopathy, Dementia, Florbetapir, Neurodegenerative disease, Positron emission tomography, Repetitive head 
impacts, Subconcussive trauma, Tau, Traumatic brain injury

Background
The routine play of American football involves exposure 
to repetitive head impacts (RHI), including those result-
ing in symptomatic concussions and the more common 
asymptomatic subconcussive trauma [1–3]. This RHI 
exposure can lead to cognitive impairment and dementia 
later in life [4–8], and to the neurodegenerative disease, 
chronic traumatic encephalopathy [9–13] (CTE). CTE is 
currently diagnosed through postmortem neuropatho-
logical evaluation, characterized by the perivascular dep-
osition of hyper-phosphorylated tau (p-tau) in neurons 
(with or without astrocytic involvement) at the depths of 
the cortical sulci, with widespread p-tau deposition and 
neurodegeneration in later stages [9, 14–17]. CTE is a 
unique disease that is distinct from Alzheimer’s disease 
(AD) and other tauopathies; this distinction is based on 
the type and distribution of p-tau deposition [14, 18], 
molecular structure of the tau filament [19, 20], specific 
location and evolution of p-tau isoforms [21, 22], and tau 
phosphorylation sites [23].

Similar to AD and other neurodegenerative diseases 
[24–26], CTE often has concomitant neurodegenera-
tive and aging-related pathologies [27–32]. Although 
amyloid-β (Aβ) diffuse plaques are present in 52% of 
post-mortem CTE cases [33], moderate-to-frequent 
Aβ neuritic plaques, a defining characteristic of AD, are 
found in only 14% of confirmed cases of CTE, predomi-
nantly in older individuals with later stage pathology 
[15]. Results of in vivo amyloid positron emission tomog-
raphy (PET) have been reported in two small studies of 
cognitively impaired former football and other contact 
sport athletes and have not found significantly elevated 
tracer binding compared to asymptomatic controls [34, 
35]. These preliminary studies had several limitations 
(e.g., small sample size, inconsistent sources and levels 
of RHI exposure, limited range of cognitive impairment), 
however, precluding conclusions as to whether cognitive 
impairment and dementia in former American football 
players are associated with Aβ neuritic plaque pathology.

Here, we report findings from the Diagnostics, Imag-
ing, and Genetics Network for the Objective Study 

and Evaluation of Chronic Traumatic Encephalopathy 
(DIAGNOSE CTE) Research Project, a multi-center, 
8-year study funded by the National Institute of Neu-
rological Disorders and Stroke (NINDS). A detailed 
description of the study design, procedures, and sample 
(including detailed inclusion and exclusion criteria) has 
been previously reported [36]. The aim of the cross-sec-
tional study reported herein was to assess neuritic amy-
loid plaque density, as measured by florbetapir PET, in 
former professional and college football players across 
the spectrum of cognitive functioning (unimpaired, sub-
jective memory complaints, mild cognitive impairment 
[MCI], and dementia), and in same-age asymptomatic 
men without exposure to RHI. Based on results of previ-
ous small studies [34, 35], and because deposition of neu-
ritic plaques is not a common or early neuropathological 
finding in American football players [15, 33]—even in 
those with memory impairment and mild dementia—we 
hypothesized that florbetapir uptake would not be ele-
vated in the former players compared to unexposed con-
trols and that florbetapir uptake would not be associated 
with length of RHI exposure or to cognitive impairment 
or dementia.

Methods
Sample
The DIAGNOSE CTE Research Project includes 120 
former professional American football players (PRO), 
60 former college football players (COL), and 60 same-
age men without a history of playing football or other 
RHI exposure (i.e., unexposed [UE]). All participants 
were male and 45–74  years old. Three participants did 
not receive florbetapir PET due to dose failure at the 
manufacturer. Therefore, the sample for this study con-
sisted of 237 men, including 119 PRO, 60 COL, and 58 
asymptomatic UE. PRO participants played a minimum 
of 12 years of organized football, including ≥ 3 in college 
and > 3 seasons in the National Football League (NFL). 
COL participants played organized football for ≥ 6 years, 
with  ≥3  years at the college level, and had no contact/
collision sports involvement following college. UE 
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participants had no history of participation in contact/
collision sports or combat military service. At telephone 
screening, all UE participants denied cognitive, mood, or 
behavioral symptoms; functional dependence; history of 
concussion or traumatic brain injury (TBI); or preexist-
ing psychiatric disorders. Data were collected between 
September 2016 and February 2020. All participants pro-
vided written informed consent.

Diagnostic classification
Specific tests, variables, and cutoff scores for this study 
were determined a priori to group participants into one 
of four categories: cognitively normal (CN), subjective 
memory complaints (SMC), mild cognitive impairment 
(MCI), and dementia (DEM) across the cognitive con-
tinuum [37]. The algorithm used for this categorization 
is detailed in the Supplementary Material (Additional File 
1). Participants who did not fall within any of the four 
diagnoses (n = 18) were excluded from analyses involving 
diagnostic grouping but included in other analyses. The 
Test of Memory Malingering (TOMM) [38] was used to 
detect suboptimal effort on neurocognitive tests. For all 
analyses other than exposure group differences (i.e., PRO, 
COL, UE), participants with a TOMM trial 2 score ≤ 45 
(n = 11, 1 missing) were excluded.

Florbetapir PET acquisition and evaluation
Florbetapir doses at the four DIAGNOSE performance 
evaluation sites were requested through and provided at 
no cost by Avid Radiopharmaceuticals (Philadelphia, PA, 
USA). Quality control and imaging calibration proce-
dures were completed prior to study initiation by Invicro 
(Needham, MA, USA). PET imaging involved a 10-min 
acquisition (10 frames, 1  min in length each) following 
a 370 MBq (10 mCi) bolus injection of florbetapir. Fifty 
minutes after injection, a second 15-min scan was done 
(acquired in 3 × 5-min frames). Images were uploaded 
to Invicro for quality control checks. Cortical-cerebellar 
florbetapir standardized uptake value ratios (SUVR) were 
calculated as published elsewhere [39, 40]. A positive 
florbetapir PET scan was defined by an average cortical 
SUVR of 1.10 or greater (centiloid values > 24.3), equiva-
lent to moderate-to-frequent neuritic Aβ plaques [41]. A 
negative PET scan was defined by an SUVR < 1.10, indi-
cating sparse-to-no neuritic amyloid plaques.

Statistical analysis
Power calculations, based on reports of using florbeta-
pir to assess amyloid burden in AD dementia, MCI, 
and normal aging [42], indicate that 35 participants per 
group would result in 80% power to detect a significant 
group difference in average SUVR of at least 0.15 (MCI 
and CN SUVR = 1.2 vs 1.05). For exposure analyses, 

the PRO and COL groups were combined. Multivari-
able linear regressions were conducted for comparison 
of florbetapir SUVR and its association with exposure. 
Multivariable logistic regressions were conducted for 
group comparisons of florbetapir positivity. For bivariate 
analyses, t-tests were used for florbetapir SUVR and chi-
square tests for florbetapir positivity. The following vari-
ables were controlled for in all models: age, race, years 
of education, and APOE ε4 genotype (carrier vs. non-
carrier). Statistical significance was set at a more liberal 
P < 0.05 to reduce type 2 error because of the hypothe-
sized nonsignificant results. Statistical analyses were con-
ducted using R version 4.00.

Results
A flow diagram depicting the sampling of subjects, diag-
nostic status, and inclusion in data analyses is provided 
in Fig.  1. Participant characteristics by exposure group, 
including clinical ratings and cognitive test scores, APOE 
ε4 genotype, and florbetapir average SUVR and percent 
positive, are summarized in Table 1. There were no sig-
nificant differences between the exposure groups in the 
proportion of positive amyloid PET scans or in the con-
tinuous florbetapir average SUVR by age range or expo-
sure group (Supplementary Table  1, Additional File 1). 
Post hoc analysis comparing pairs of exposure groups 
found that the mean value of florbetapir average SUVR 
did not differ between PRO and COL (− 0.01 p = 0.95, 
95% CI [− 0.033, 0.025]), PRO and UE (0.02 p = 0.41, 95% 
CI [− 0.010, 0.029]), and COL and UE (0.02 p = 0.36, 95% 
CI [0.0004, 0.039]) (Table  2). There was no significant 
association between florbetapir average SUVR and total 
years of football or with measures of cognition and daily 
functioning (Supplementary Table 2, Additional File 1).

Among all former football players (with adequate 
TOMM performance), there were 17 CN, 70 SMC, 44 
MCI, and 18 DEM. None of the CN group had an ele-
vated florbetapir SUVR. There were 9 SMC (13%), 2 MCI 
(5%), and 2 DEM (11%) with elevated florbetapir SUVRs. 
Both participants in the DEM group with positive flor-
betapir scans were former college players though they 
differed in age and the number of years they played foot-
ball. One was in the age range of 45 to 54 years and played 
for over a decade. The other was between 65 to 74 years 
old but played for less than one decade. Conversely, 16 of 
the 18 former football players in the DEM group did not 
have elevated florbetapir. Five of them were in the COL 
group and 11 in the PRO, across the age spectrum. Spe-
cific ages of participants are not reported to protect con-
fidentiality. The smoothed density plot in Fig. 2 shows the 
scaled frequency distribution of florbetapir SUVR in each 
diagnostic group.
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Fig. 1 Study flow chart illustrating participant recruitment and allocation to repetitive head impact exposure groups and diagnostic groups 
for data analyses. Abbreviations: RHI, repetitive head impacts; CMD, Complaints‑Memory‑Dementia algorithmic grouping; CN, cognitively normal; 
SMC, subjective memory complaint; MCI, mild cognitive impairment; DEM, dementia; SUVR, standard uptake value ratio; NA, not applicable; 
TOMM, Test of Memory Malingering, CMD algorithmic approach for diagnostic grouping: Presence or absence of subjective cognitive complaints, 
C ± (C + defined by Cognitive Complaint Index [memory items] self‑report score > 16); presence or absence of objective memory impairment, 
M ± (M + defined by NAB List Learning Test Delayed Recall T score ≤ 35); presence or absence of dependence in daily functioning, D ± (D + defined 
as Functional Activities Questionnaire score ≥ 9)
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A one-way ANCOVA was conducted to estimate 
diagnostic group differences among football players 
(n = 149) on the continuous florbetapir average SUVR 
variable and found no significant between-group dif-
ferences. Tukey post hoc comparisons found a global 
F-value of 0.94, p = 0.43 (Table 3).

Discussion
RHI exposure from American football has been associ-
ated with later-life cognitive impairment and dementia 
[4–8], and results of autopsy studies suggest that repeti-
tive brain trauma causes, in part, the neurodegenerative 
disease, CTE [12, 43]. However, because there are cur-
rently no validated in vivo biomarkers for CTE pathology, 

Table 1 Demographics and descriptive data

Continuous variables compared with T-test or analysis of variance (for normally distributed data) or Mann–Whitney U or Kruskal–Wallis tests (for non-normally 
distributed data). Significant analysis of variance post-hoc pairwise group comparisons examined with Student–Newman–Keuls test. Categorical variables compared 
with chi-square or Fischer’s exact tests

Abbreviations: MoCA Montreal Cognitive Assessment, NAB Neuropsychological Assessment Battery, SUVR standardized uptake value ratio, NA not applicable
a PRO = UE > COL
b PRO = UE < COL
c PRO = COL < UE
d PRO = COL > UE
e PRO < COL < UE
f ApoE genotyping unavailable for 10 participants (5 PRO, 1 COL, 4 UE)

Characteristic Former professional 
football players (PRO) 
(n = 119)

Former college 
football players (COL) 
(n = 60)

Unexposed 
(UE) (n = 58)

P value

Age, mean (SD), years 59.0 (7.8) 53.5 (7.7) 59.5 (8.3)  < 0.001a

Age by decade, n (%) within exposure group

 45–54 42 (35.3) 44 (73.3) 22 (37.9)  < 0.01

 55–64 46 (38.7) 9 (15.0) 14 (24.1)

 65–74 31 (26.1) 7 (11.7) 22 (37.9)

Body Mass Index, mean (SD) kg/m2 32.0 (4.5) 33.8 (4.8) 30.7 (4.4) 0.001b

Education, mean (SD), years 16.6 (1.1) 17.1 (1.9) 17.3 (3.5) 0.07

Racial Identity, No. (%)

 American Indian or Alaska Native 0 (0.0%) 0 (0.0%) 0 (0.0%) 0.003

 Black or African‑American 52 (43.7%) 11 (18.3%) 24 (41.5%)

 Native Hawaiian or Other Pacific Islander 0 (0.0%) 0 (0.0%) 1 (1.7%)

 White 65 (54.6%) 48 (80.0%) 33 (56.9)

 Multiracial 2 (1.7%) 1 (1.7%) 0 (0.0%)

Ethnicity, No. (%)

 Hispanic or Latino 3 (2.5%) 0 (0.0%) 0 (0.0%) 0.433

 Not Hispanic or Latino 116 (97.5%) 60 (100.0%) 58 (100%)

Total years of football, mean (SD), years 18.0 (3.4) 11.5 (2.5) NA  < 0.001

Years of NFL participation, mean (SD), years 7.4 (2.7) NA NA NA

Age of first exposure to football, mean (SD), years 11.6 (2.8) 10.2 (2.6) NA 0.002

Yrs between end of football play and baseline, mean (SD), years 28.8 (8.5) 31.5 (8.1) NA 0.043

MoCA total, mean (SD) T score 39.3 (13.3) 42.0 (12.5) 49.0 (9.9)  < 0.001c

Cognitive Complaint Index, mean (SD) raw score 32.8 (13.0) 31.4 (12.8) 13.7 (2.2)  < 0.001d

Cognitive Complaint Index above cut (> 16), No. (%) 100 (84.0%) 52 (86.7%) 7 (12.1%)  < 0.001

NAB List Learning Test Delayed Recall, mean (SD) T score 36.1 (11.7) 41.38 (13.7) 45.6 (12.5)  < 0.001e

NAB List Learning Delayed Recall T score impaired (≤ 35), No. (%) 63 (53.9%) 21 (35.0%) 13 (22.4%)  < 0.001

Functional Activities Questionnaire ‑Informant, mean (SD) total score 3.9 (5.7) 2.97 (5.0) 0.18 (0.5)  < 0.001d

ApoE ε4 genotype carriers, No. (%)f 33 (28.6%) 20 (33.9%) 11 (20.4%) 0.27

Florbetapir average SUVR ≥ 1.10, No. (%) 10 (8.4%) 7 (11.7%) 3 (5.2%) 0.44

Florbetapir mean (SD) average SUVR 1.00 (0.09) 0.99 (0.10) 0.98 (0.09) 0.30
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and because the clinical presentation of CTE is often 
similar to that of AD, the differential diagnosis of indi-
viduals with substantial RHI exposure and later-life cog-
nitive and functional impairment can be difficult [44]. 
Moderate-to-frequent Aβ neuritic plaques are scarce in 
CTE [15]. Florbetapir brain PET imaging is approved 
by the US Food and Drug Administration for estimating 
Aβ neuritic plaque density for cognitively impaired adult 
patients being evaluated for AD and other causes of cog-
nitive decline [45]. A negative florbetapir PET indicates 
sparse-to-no neuritic plaques and is inconsistent with a 

neuropathological diagnosis of AD. The use of florbetapir 
and other amyloid PET imaging in clinical settings results 
in changes in the clinical management of patients, in gen-
eral, and in changes in etiologic diagnosis from AD to 
non-AD in patients with negative scans [46, 47].

In this study, we found that most former professional 
and college football players, ages 45–74  years, with and 
without cognitive impairment or dementia, did not 
have in  vivo amyloid PET evidence of AD. There were 
no exposure group differences nor cognitive impair-
ment group differences in florbetapir average SUVR. 
Moreover, there were no differences between the three 
exposure groups (PRO, COL, UE) in the proportion of 
elevated SUVR. Finally, there were no significant associa-
tions between florbetapir average SUVR and total years 
of football or clinical measures. Our findings are consist-
ent with previous preliminary studies [34, 35] and pro-
vide strong support that the cognitive impairment and 
dementia experienced by many former professional and 
college American football players are not associated with 
amyloid deposition typical of AD.

The percentage of former football players with positive 
amyloid PET in this study, across all cognitive impair-
ment groups, was markedly lower than published preva-
lence estimates [48, 49]. In our CN, SMC, MCI, and DEM 
groups, the percentage of amyloid PET positivity was 
0%, 13%, 5%, and 11%, respectively. In contrast, the most 

Table 2 Comparisons of florbetapir average SUVR between 
exposure groups

Abbreviations: PRO former professional football players, COL former college 
football players, UE unexposed control group
a One-way ANOVA, post hoc Tukey analysis based on the studentized range 
distribution. P-values were adjusted, controlling for age, education, race, and 
APOEe4 status

Comparison 
by level of 
exposure

Estimate (95% CI) Std. error t  valuea P-value

PRO‑COL  − 0.01 (− 0.033, 
0.025)

0.02  − 0.31 0.95

PRO‑UE 0.02 (− 0.010, 0.029) 0.02 1.28 0.41

COL‑UE 0.02 (0.0004, 0.039) 0.02 1.36 0.36

Fig. 2 Density map of the mean florbetapir PET average SUVR in former American football players by diagnostic group. Diagnostic groups: C‑M‑D‑, 
cognitively normal (CN); C + M‑D‑, subjective memory complaint (SMC); C + M + D‑, mild cognitive impairment (MCI); C + M + D + , dementia (DEM). Y 
axis = number of subjects. X axis = average SUVR scores. Elevated florbetapir is defined by an average SUVR of 1.10 or greater



Page 7 of 13Stern et al. Alzheimer’s Research & Therapy          (2023) 15:166  

recent prevalence estimates of amyloid PET positivity for 
60-year-old men (based on pooled data from 85 Amyloid 
Biomarker Study cohorts) are as follows: normal cogni-
tion = 17.6% (95% CI 13.8–22.3); subjective cognitive 
decline = 19.6% (95% CI 14.1–26.5); MCI = 39.2% (95% 
CI 32.5–46.4); and clinical AD dementia = 88.4% (95% 
CI 84.5–91.5) [48]. It is unclear why these former foot-
ball players do not have amyloid PET evidence of AD, 
the most common cause of cognitive impairment and 
dementia in aging. That is, is there a potential mecha-
nism that would reduce or prevent Aβ neuritic plaques in 
individuals with extensive RHI exposure? Animal mod-
els have shown that there is microglial activation with a 
sustained inflammatory response during and following 
repetitive mTBI [50–53], but before p-tau pathology [54]. 
In a postmortem study of young contact sport athletes, 
an increased number of activated microglia, positively 
associated with CTE severity, has been reported [55]. It 
is possible that such a primed inflammatory response has 
a differential effect on amyloid and tau aggregate forma-
tion, preventing or delaying the formation of Aβ neuritic 
plaque, but accelerating and promoting p-tau neurofibril-
lary inclusions. Additional research is needed to examine 
this and other potential mechanisms.

Strengths
This study has several advantages. Unlike previous 
reports, this study had a relatively large sample size and 
was well-powered to detect statistical differences if they 
existed. Our sample was not limited to former profes-
sional football players, but also included former college 
football athletes who never played professional football 
or any other contact sport after college. The sample of 
football players includes participants across the spectrum 
of cognitive impairment. Participants in the UE group 
had no history of playing contact sports, combat military 
experience, or concussion/TBI. Importantly, the sample 

of former NFL players includes 44% Black-identified par-
ticipants, which is representative of the approximately 
40% Black former players in this age group who played 
during the era our sample would have played (1967–
1996). Moreover, the UE group had a similar representa-
tion of Black-identified participants (42%).

Limitations
This study also has limitations. Due to a lack of power, it 
is possible that we are not detecting early focal amyloid 
deposits [56]. Hence, conceivably, a higher proportion of 
participants were unaccounted for progressive amyloid 
pathology. Longitudinal studies of cognitively unaffected 
participants and elevated amyloid accumulation have 
indicated that elevation in baseline amyloid level is asso-
ciated with a risk for cognitive decline, suggesting a pre-
clinical stage of Alzheimer’s disease [57, 58]. Because this 
is a cross-sectional study, evolving amyloid deposition 
indicating incipient AD neuropathologic changes can-
not be estimated in individuals below the cut-off point. 
Future prospective cohort studies may benefit from opti-
mal threshold corrections [59]. By design, in addition to 
no RHI exposure, the UE “control” group had no com-
plaints of cognitive, mood, or behavioral impairment 
at telephone screening. Although the UE group may be 
appropriate for some analyses aimed at biomarker devel-
opment and validation, its inclusion in other types of 
analyses may not be appropriate because of the inabil-
ity to disentangle the exposure history from the clini-
cal presentation [36]. Additionally, although histories of 
mood or sleep disorders could affect cognitive and func-
tional measures, we did not include them in the diagnos-
tic classification algorithm used in this study, nor were 
they included as covariates. The PRO group had a similar 
age and race composition as the UE group. However, the 
COL group was significantly younger and included fewer 
Black participants than either the PRO or UE groups. 
Although age and race were both used as covariates in 
all analyses, there still may have been an impact on the 
findings due to these differences. Similar to almost all 
research in this area, this study only involved men who 
played American football. Future studies should include 
women and individuals with other sources of RHI expo-
sure (e.g., former soccer and rugby players, combat mili-
tary veterans, and victims of intimate partner violence). 
The number of participants who met the criteria for the 
dementia classification was relatively small. Future stud-
ies may benefit from including a larger number of former 
football players with dementia. Finally, the classification 
of participants into the MCI and DEM groups is limited 
by being based solely on an algorithm using cutoff scores 
on specific tests, and not based on a clinical evaluation or 
adjudicated through a consensus diagnostic conference.

Table 3 Comparisons of differences in florbetapir average SUVRs 
between pairs of diagnostic groups in all former football players

One-way ANCOVA was performed to assess differences in the four diagnostic 
groups after controlling the linear effect of covariates by using regression 
analysis. F = 0.94, p = 0.43

Abbreviations: CN cognitively normal, SMC subjective memory complaints, MCI 
mild cognitive impairment, DEM dementia

Group comparison Coefficient Sigma T P

CN‑SMC 0.05 0.03 1.86 0.24

CN‑MCI 0.02 0.03 0.82 0.84

CN‑DEM 0.05 0.03 1.69 0.33

SMC‑MCI  − 0.03 0.02  − 1.50 0.43

SMC‑DEM 0.01 0.02 0.25 0.99

MCI‑DEM 0.03 0.03 1.27 0.57
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Clinical implications
CTE is a neuropathological diagnosis. Although other 
neurodegenerative diseases, such as AD, are also 
defined by their neuropathological characteristics, the 
development of sensitive and specific in vivo neuroim-
aging and fluid biomarkers over the past two decades 
has resulted in improved clinical diagnostic accuracy 
and early detection of underlying neuropathology [60, 
61]. The clinical disorder associated with CTE is trau-
matic encephalopathy syndrome (TES). The NINDS 
consensus diagnostic criteria for TES include a pro-
visional level of certainty for underlying CTE p-tau 
pathology [44]. However, biomarkers are not included 
in those criteria because biomarker development for 
CTE had not reached sufficient maturity to be included. 
Until there are sensitive and specific biomarkers for 
CTE pathophysiology, a clinical “diagnosis by exclu-
sion”—similar to older diagnostic criteria for “Alzhei-
mer’s disease” [62, 63]—may be appropriate in some, 
but not all, circumstances. For example, if a 65-year-old 
former NFL player presents with significant and pro-
gressive cognitive decline (including episodic memory 
impairment and executive dysfunction), no neuropsy-
chiatric symptoms, and mild-moderate dementia, 
meeting all NINDS consensus criteria for TES with a 
probable level of certainty for CTE pathology [44]; has 
no evidence for another cause of his clinical presenta-
tion other than AD or CTE; and has a negative amyloid 
PET, it may be appropriate for the clinician to sus-
pect that CTE is the underlying cause of the patient’s 
dementia. In this case, the negative biomarker for AD 
neuritic plaque would be used to inform the diagnosis 
by exclusion, as previously suggested [31].

A history of “head injury” is commonly included in 
lists of important risk factors for AD. Although earlier 
studies indicated a possible increased risk for demen-
tia from a single moderate-to-severe TBI [64], more 
recent studies have not found postmortem evidence 
of AD pathology in individuals with previous TBI [65]. 
The lack of evidence of AD pathology following TBI has 
been demonstrated by in  vivo amyloid PET studies of 
older community-dwelling volunteers [66] and cogni-
tively impaired military veterans [67]. Additional stud-
ies have indicated that TBI history increases the risk for 
non-AD dementia [68] and is associated with non-AD 
pathologies at postmortem examination [65, 69, 70]. 
There is a clinical and pathological distinction between 
AD pathology and TBI-related neurodegeneration. 
Thus, patients with delayed cognitive and functional 
decline following a moderate-to-severe TBI may not 
have AD as the sole cause of their dementia [71, 72].

Medico‑legal implications
There are potential medico-legal implications of the 
results of this study, including those associated with 
the highly publicized NFL “Concussion Settlement” 
[73]. This class action settlement provides substantially 
higher monetary compensation to former players with a 
diagnosis of AD than for players with similar cognitive 
impairment and dementia but without an AD diagnosis. 
For example, a 62-year-old former player who receives 
a DSM-5 diagnosis of Major Neurocognitive Disorder 
due to probable AD by a settlement-qualified neurologist 
who does not order a florbetapir PET would be eligible 
for compensation of $950,000 [73]. However, if the same 
patient were to have a florbetapir amyloid PET as part of 
the evaluation and the results were negative (i.e., incon-
sistent with a neuropathological diagnosis of AD [45]), 
the neurologist would likely not make the probable AD 
diagnosis, and therefore, the player would be eligible for 
compensation of only $290,000. That is, the retired player 
who was given the less precise diagnosis of probable AD 
made without the florbetapir PET would receive substan-
tially more compensation. The compensation criteria for 
the NFL settlement may need to be modified based on 
new medical/scientific findings, including findings that 
cognitive impairment and dementia in many former NFL 
players may be caused by non-AD neuropathology.

Conclusion
In this study from the DIAGNOSE CTE Research Pro-
ject, we did not find evidence of elevated Aβ neuritic 
plaque density as measured by florbetapir PET imaging 
in former professional and college football players, with 
and without cognitive and functional impairment. These 
findings suggest that AD is not the cause of the former 
players’ cognitive decline and dementia. Additional stud-
ies are needed to clarify the extent to which cognitive 
impairment in former football players and persons with 
a history of repetitive head impacts is related to other 
neuropathological changes, including CTE. Until sensi-
tive and specific biomarkers for CTE p-tau pathology 
are available, a diagnosis of TES dementia “consistent 
with CTE” could be considered in older individuals with 
a substantial history of RHI exposure, progressive cogni-
tive decline, and functional impairment who have nega-
tive amyloid PET imaging.
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