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Abstract 

Mild cognitive impairment (MCI) is often considered an early stage of dementia, with estimated rates of progres‑
sion to dementia up to 80–90% after approximately 6 years from the initial diagnosis. Diagnosis of cognitive impair‑
ment in dementia is typically based on clinical evaluation, neuropsychological assessments, cerebrospinal fluid (CSF) 
biomarkers, and neuroimaging. The main goal of diagnosing MCI is to determine its cause, particularly whether it 
is due to Alzheimer’s disease (AD). However, only a limited percentage of the population has access to etiological 
confirmation, which has led to the emergence of peripheral fluid biomarkers as a diagnostic tool for dementias, 
including MCI due to AD. Recent advances in biofluid assays have enabled the use of sophisticated statistical mod‑
els and multimodal machine learning (ML) algorithms for the diagnosis of MCI based on fluid biomarkers from CSF, 
peripheral blood, and saliva, among others. This approach has shown promise for identifying specific causes of MCI, 
including AD. After a PRISMA analysis, 29 articles revealed a trend towards using multimodal algorithms that incor‑
porate additional biomarkers such as neuroimaging, neuropsychological tests, and genetic information. Particularly, 
neuroimaging is commonly used in conjunction with fluid biomarkers for both cross-sectional and longitudinal 
studies. Our systematic review suggests that cost-effective longitudinal multimodal monitoring data, representative 
of diverse cultural populations and utilizing white-box ML algorithms, could be a valuable contribution to the devel‑
opment of diagnostic models for AD due to MCI. Clinical assessment and biomarkers, together with ML techniques, 
could prove pivotal in improving diagnostic tools for MCI due to AD.
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Introduction
Mild cognitive impairment (MCI) is defined as a hetero-
geneous clinical syndrome including cognitive impair-
ments of any cognitive function while maintaining 
independence [1]. The prevalence rate of MCI ranges 
from 6% in the population over 60 years of age [2] up to 
25% for ages 80–84 [3]. Importantly, MCI is often con-
sidered a prodromal stage of dementia, especially con-
sidering that neuropathological changes of dementia 
may develop many years before the diagnosis, present-
ing both cognitive and behavioral symptoms previously 
the patients lose their independence [4]. The rates of 
progression of MCI due to Alzheimer’s disease (AD) to 
dementia have been estimated at between 8 and 15% [5, 
6], which increases up to 80–90% after approximately 
6  years [7–12]. Timely diagnosis of MCI is essential for 
identifying patients who are likely to progress to demen-
tia and implementing early interventions to delay the 
pathological progression. Lifestyle interventions for MCI 
in its early stages may help to delay the onset of demen-
tia [13]. Therefore, improving the assessment of MCI, 
including the incorporation of biomarkers in the usual 
clinical diagnostic procedures, could be critical for devel-
oping better diagnostic tools for MCI, particularly in 
determining its cause. Currently, much of the research on 
MCI has focused on MCI due to AD. Thus, incorporating 
biomarkers into clinical diagnosis procedures may help 
identify patients who are likely to develop AD and facili-
tate earlier intervention.

Biomarkers in MCI
Biomarkers are objective measures that evaluate normal 
biological processes, pathological processes, or pharma-
cological responses to therapeutic interventions [14]. In 
the field of AD, neuroimaging and cerebrospinal fluid 
(CSF) protein analysis are the most widely used biomark-
ers [15]. Neuroimaging biomarkers include magnetic res-
onance imaging (MRI) to evaluate brain atrophy [16–18], 
positron emission tomography (PET) with F18-fluoro-
deoxyglucose (FDG) to measure glucose metabolism in 
different regions of the brain showing neuronal loss and 
neurodegeneration [19–22], and PET with tracers to 
detect amyloid-beta (Aβ) and Tau proteins in  vivo [23–
25]. CSF protein analysis of Aβ and Tau in their total and 
phosphorylated forms is also a validated biomarker for 
AD [26]. These biomarkers play a crucial role in the early 
and accurate diagnosis of AD, enabling earlier interven-
tion and improving patient outcomes.

Fluids biomarkers
Peripheral biomarkers are of great interest because 
they are less invasive, less expensive, and more accessi-
ble. These types of biomarkers include molecules such 

as proteins, peptides, nucleic acids, microRNAs (miR-
NAs), lipids, and metabolites which can be detected in 
several biological fluids such as plasma, serum, urine, 
saliva, exosomes, or cellular components [27, 28]. Aβ 
proteins in their 42 amino acid form, which form amy-
loid plaques,total tau (T-Tau), which reflects the intensity 
of neurodegeneration; and phosphorylated tau (p-Tau), 
which correlates with the production of neurofibril-
lary tangles, are measured in CSF, and they are cur-
rently validated as diagnosis support in AD [15]. Despite 
the advances in biomarker research, no validated bio-
markers are available for the diagnosis of MCI due to 
AD. Some studies showed lower concentrations of Aβ 
(Aβ1–40, Aβ1–42, and Aβ1–42/Aβ1–40 ratio) in CSF 
of MCI patients compared to healthy controls, reflecting 
higher brain Aβ concentrations and progressive cogni-
tive impairment [29–34]. Furthermore, the detection of 
total and phosphorylated Tau (p-Tau) in CSF samples has 
also been used to diagnose MCI and AD with at least 85% 
sensitivity and 80% specificity, indicating neuronal dam-
age and predicting progression from MCI to AD [35]. 
The combination of Aβ1–42 and Tau has demonstrated 
a high sensitivity of 95% and specificity of 83% in predict-
ing the progression of MCI to AD [36].

Although blood levels of Aβ and tau have been evalu-
ated as potential biomarkers for cognitive impairment, 
their concentrations are lower in blood compared to 
CSF, making their detection more challenging. Addi-
tionally, studies investigating Aβ42 and Tau levels in 
subjects with cognitive impairment have produced 
inconsistent results [37].

Recent research has focused on neurofilament light 
chain (NfL) as a potential biomarker for neurodegen-
erative diseases, including AD [38–43]. Studies have 
shown that plasma levels of NfL are significantly higher 
in patients with AD and MCI compared to controls [44] 
and are associated with cognitive and neuroimaging 
features [45–47]. Another potential blood biomarker is 
microRNAs (miRNAs), which play a role in regulating 
gene expression in the brain [48, 49]. However, validation 
studies are needed before miRNAs can be used clinically 
as a biomarker for MCI [50].

Genetics in MCI due to AD
Autosomal dominantly inherited forms of AD are present 
early in life; however, most early cases do not show a clear 
pattern of inheritance (2–10%); however, genetic predis-
position to non-Mendelian inheritance of AD is high, 
with an estimated heritability of 80% [51]. Three genes 
including amyloid precursor protein (APP), presenilin 1 
(PSEN1), and PSEN2 with fully penetrant mutations have 
been discovered as a cause of autosomal dominant AD, 
accounting for 5–10% of the occurrence of early AD. In 
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addition to the above, the ε4 allele of the apolipoprotein 
E (ApoE) gene was identified as a strong risk factor for 
both early- and late-onset AD, where heterozygous car-
riers of the ε4 allele have an estimated threefold risk of 
developing AD and 15-fold risk in homozygous carriers 
of this allele [52–57]. In addition, at least 21 genetic risk 
loci have been identified in genome-wide association 
studies (GWAS) and mass sequencing that demonstrate 
how complex and multifactorial AD is in genetic terms 
[58, 59].

Machine learning for medical diagnosis
Machine learning (ML) algorithms have been proposed 
as a promising tool to integrate multiple biomarkers for 
early detection, diagnosis, and prediction of dementia. 
ML models can analyze large amounts of data and iden-
tify complex patterns that may not be visible to human 
experts. Furthermore, ML algorithms can integrate data 
from different sources such as neuroimaging, genetics, 
and clinical data to develop models that can accurately 
predict the onset and progression of dementia [60–62]. 
Studies have shown that ML algorithms can improve the 
accuracy of dementia diagnosis and prediction compared 
to traditional methods based on single biomarkers [63].

ML can also help clinicians develop personalized treat-
ment plans based on the individual patient’s biomarker 
profile and disease stage. By analyzing patterns in data 
from imaging, genetic, and biomarker assays, ML algo-
rithms can identify the best treatment options and 
predict the effectiveness of specific interventions for indi-
vidual patients. This can help improve the accuracy and 
effectiveness of treatment, potentially leading to better 
outcomes and improved quality of life for patients with 
Alzheimer’s disease and other forms of dementia [64].

In general terms, ML algorithms allow robust enquir-
ies on many datasets to find patterns and relationships 
among the data [65]. There are some variations of how 
to define the types of ML algorithms but commonly they 
can be divided into categories according to their pur-
pose and the main categories are the following: super-
vised learning, unsupervised learning, semi-supervised 
learning, and reinforcement learning [66]. Utilizing ML 
in large-scale data analysis, and taking into account the 
Four V’s of big data: volume, velocity, variety, and verac-
ity [67, 68], is revolutionizing the production of scientific 
knowledge, by enabling novel and highly efficient ways of 
designing and evaluating research [69]. It is important to 
point out that this efficiency is given by the optimization 
of the use of resources to collect massive quality data in 
medical and healthcare contexts [70]. To the extent that 
the processes involved in the massive generation of sci-
entific data are strategically optimized, as a consequence, 
ML analyzes and models acquire greater versatility and 

are potentially more scalable in their development and 
continuous improvement [71]. In that sense, one of the 
interests of developing ML research strategies using fluid 
biomarkers data is related to exploring ways of adjust-
ing optimization gaps of cost-efficiency in the use of 
resources to improve the diagnosis from MCI to AD on 
a large scale.

Without a doubt, ML offers interesting new data 
research opportunities. However, in the medical com-
munity, there is great concern about the development of 
medical applications based on ML models [72, 73]. This 
is because as ML algorithms become more advanced, it 
is more challenging to comprehend and retrace how the 
algorithm came to a result, which translates into a trust 
issue due to the lack of explainability that these mod-
els have [74]. The whole calculation process used by an 
ML algorithm is turned into what is commonly referred 
to as a “black box” that is impossible to interpret. These 
black box models are created directly from the data, and 
not even the researchers who create the algorithm can 
understand or explain what exactly is happening inside 
them or how the ML algorithm arrived at a specific 
result [75]. Many of the ML algorithms cannot explain 
how and why they have issued a given answer or deci-
sion [76]. This occurs mainly in modeling approaches 
based on neural networks (one of the most popular in 
use) [77]. In the given context, explainable artificial intel-
ligence (XAI) is a rapidly growing research area within 
the realm of machine learning. It focuses on uncovering 
the ways in which these algorithms make decisions that 
are considered “black box,” by examining the measure-
ments and rules at play and assisting in making the mod-
eling process more self-explanatory. In that sense, the 
XAI becomes increasingly crucial for machine learning-
driven applications, especially in medical diagnosis [78]. 
Essentially, for the successful development of machine 
learning-based applications to improve the diagnosis 
from MCI to AD either from fluid biomarkers or multi-
modal data, it is necessary that the explainability of the 
model be clear and consistent from all possible perspec-
tives, in coherence with its theoretical and experimental 
framework [79].

To fully realize the potential of ML in this context, the 
purpose of this research is to conduct a systematic review 
of existing studies on the use of machine learning and 
fluid biomarkers in dementia research. This review aims 
to identify gaps in our understanding of the relationships 
between different biomarkers, highlight areas where 
additional research is needed, and provide guidance for 
the design of future studies in this field. The combination 
of machine learning and fluid biomarkers research holds 
enormous promise for advancing our understanding of 
dementia pathobiology, and a systematic review of the 
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existing literature is a crucial step towards realizing this 
potential.

Materials and methods
For this research, we followed the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses 
(PRISMA) checklist and statement.

Identification of studies
We searched PubMed Central and Scopus databases. 
PubMed Central is the digital archive of the United 
States National Institutes of Health which was selected 
for its wide scope and its relevance in the biomedical 
and life sciences. Scopus is a wide database containing 
peer-reviewed abstracts and citations. We performed 
a sensitive literature search by using specific keywords 
that were defined in four categories (including synonyms 
and related words) that allow to maintain an accurate 
search: (1) MCI—mild cognitive impairment and MCI; 
(2) Diagnosis—diagnosis and diagnostic; (3) Machine 
learning—machine learning, artificial intelligence, algo-
rithm, and deep learning; and (4) Fluid biomarkers—
Tau, cerebrospinal fluid, amyloid-beta, fluid biomarker, 
miRNA, microRNA, blood, serum, plasma, urine, saliva, 
progranulin, and neurofilament. The search queries were 
carried out defining that at least one of the keywords of 
each category considered appeared in the title, abstract, 
or keywords of the article. We focused on articles pub-
lished between January 1, 2012, and January 1, 2023, to 
base our analysis on recent studies.

Selection of studies
All abstracts were screened by co-authors. The full text 
of selected abstracts was assessed for eligibility by co-
authors, and conflicts were resolved by consensus. Firstly, 
a search was carried out for the selected keywords using 
Boolean operators in the two aforementioned databases. 
Secondly, the articles were checked for the inclusion and 
exclusion criteria by features found in the databases. 
After that, we read the titles of all the remaining articles 
to check if the articles were within the scope of our study 
and considered at least one biomarker other than neuro-
images (fluid, genetic, or clinical data). In the same way, 
we proceeded to read the abstracts of the remaining arti-
cles. Finally, after reading these, we selected the articles 
that were included in this review. The flowchart in Fig. 1 
shows the sequence of actions and the outcomes.

Inclusion and exclusion criteria
Studies were eligible if (i) the article described empiri-
cal, quantitative, longitudinal studies; follow-up stud-
ies; neuroimaging studies; randomized controlled trials; 

quasi-randomized controlled trials; and cross-sectional 
studies, based on human populations all over the world, 
and (ii) considering samples of mild cognitive impair-
ment in conjunction with machine learning and fluid 
biomarkers, in which the algorithm has validation.

Studies were excluded if they were (i) review articles, 
conference abstracts, and studies without a complete set 
of data or with no algorithm validation.

Fig. 1  Systematic literature search flow diagram (PRISMA). 
This diagram starts with the total number of records identified 
through database searching. From there, the diagram outlines 
the number of records screened. Then, it indicates the number 
of records excluded after the initial screening, typically 
because the titles or abstracts clearly indicate that the studies 
do not meet the inclusion criteria. Next, the diagram shows 
the number of full-text articles assessed for eligibility, followed 
by the number of full-text articles excluded and the reasons for their 
exclusion. Finally, the diagram presents the number of studies 
included. This process makes the selection process transparent, which 
is crucial for the credibility of the systematic review
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Categorization of studies
Specific data from each study was recorded on a table 
including all the relevant citation information: digital 
object identifier (DOI), authors, title, and year of publica-
tion. Then, the important information in each paper was 
included: abstract, size, and origin of the cohort, which 
machine learning algorithms were used, performance of 
the best algorithm, features, number of features, and vali-
dation technique. Thirdly, after reviewing each paper, it 
was classified by the type of feature. In that sense, all the 
papers found in this systematic review fall into the cat-
egory of supervised ML algorithms.

Supervised learning is the most common ML approach 
in which an algorithm learns to make predictions or deci-
sions based on labeled input–output pairs [80]. In this 
approach, the learning model is provided with training 
data, which consists of input features and correspond-
ing output labels. The goal of the algorithm is to learn 
the relationship between the input features and the out-
put labels, which can then be used to make predictions 
on new, unseen data. Also, it is important to explain that 
supervised machine learning methods can be for classi-
fication and/or regression outputs. Classification deals 
with the task of predicting discrete output labels or cat-
egories, whereas regression involves predicting continu-
ous output values. Classification models are evaluated 
using metrics such as accuracy, precision, recall, and 
F1-score, while regression models are evaluated using 
metrics like mean squared error (MSE), root mean 
squared error (RMSE), mean absolute error (MAE), and 
R-squared. The main algorithms for classification are 
as follows: (1) logistic regression—a linear model for 
classification that uses the logistic function to estimate 
probabilities [81], (2) decision trees—a tree-like struc-
ture that recursively splits the input space based on fea-
ture values to make predictions [82], (3) support vector 
machines—a method that finds the optimal hyperplane 
to separate the different classes [83], (4) random for-
est—an ensemble learning method that constructs mul-
tiple decision trees and combines their output [84], and 
(5) neural networks—a method to make predictions by 
being trained on a labeled dataset, where input–output 
pairs are provided. One of the most popular supervised 
learning algorithms for neural networks is backpropa-
gation [85]. On the other hand, the main algorithms for 
regression are as follows: (1) linear regression—a linear 
model that predicts the target variable by minimizing the 
sum of squared errors [86], (2) Lasso regression—a lin-
ear model that includes L1 regularization, which helps in 
feature selection and reducing overfitting [87], (3) ridge 
regression—a linear model that includes L2 regulariza-
tion, which helps in reducing overfitting [88], (4) decision 
trees (for regression)—similar to classification trees but 

predicting continuous values instead of classes [82], (5) 
neural networks (for regression)—similar to classification 
neural networks but optimized for continuous output 
predictions [89].

In summary, according to the above definitions, all 
reviewed articles can be categorized for classification 
purposes based on supervised ML algorithms (Table 1). 
The diagram of Fig.  2 represents a supervised learning 
process for medical diagnosis using biomarkers.

Results
Our search identified 346 articles published between 
1/2012 and 1/2023, of which 123 studies were excluded 
based on features delivered by databases. Sixty-four stud-
ies were excluded after reading the title. One-hundred 
studies were excluded after reading the abstract. Thirty 
studies were excluded during full-text screening. Finally, 
29 studies meet our criteria for this review of MCI using 
machine learning as a diagnostic tool.

The systematic review highlights the variety of machine 
learning algorithms used in diagnosing MCI and AD, 
with traditional methods being more common in trans-
versal studies and a diverse set of other algorithms used 
in longitudinal studies. Traditional machine learning 
methods, such as support vector machine and random 
forest, are the most common, but other algorithms like 
logistic regression methods and non-traditional tech-
niques like extreme learning machine are also present. 
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
is the most common cohort source. Sample sizes for the 
groups HC, MCI, and AD vary significantly across stud-
ies. AUC and ACC values also vary across studies, but 
not all studies report both values. Some of the highest 
AUC values are found in Redolfi et al. [90] and Sh et al. 
[91], while high ACC values are reported in Khatri et al. 
[92] and Barbará-Morales et al. [93]. Table 1 represents a 
descriptive summary of the review.

Study types
We identified 2 main groups among the selected papers, 
those that use cross-sectional data and those that use 
longitudinal data from the established cohort (Table  1). 
Almost half of the selected articles correspond to each of 
the categories mentioned (15 transversal and 14 longitu-
dinal). Also, we found that the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) is the widely used cohort for 
these studies. Another cohort is the Oxford Project to 
Investigate Memory and Aging (OPTIMA), while the rest 
are their own non-public cohorts (Table 2).

Transversal studies demonstrate a higher number 
of algorithms focused on logistic regression methods 
and traditional machine learning methods. The highest 
reported ACC is 0.86 [94]. Longitudinal studies utilize 
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Table 1  Review’s descriptive summary

Fig. 2  Supervised machine learning (ML) process. The first step is when biomarkers are taken from a cohort, then the data is pre-processed, 
outliers are removed, data is imputed and normalized, then the data is divided between testing and training data sets; the first is used to train 
the algorithms, and the second test it and validate it, if the model is selected as the best performing algorithm. Finally, the model can be used 
to diagnose a new patient
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a more diverse set of algorithms, including other algo-
rithms such as extreme learning machine and novel 
machine learning-based frameworks. The highest 
reported ACC is 0.97 [92].

Algorithms inputs
Regarding the characteristics used as input for the algo-
rithms (Table 1), 10 articles were found to use only fluid 
biomarkers as input for the algorithm, and the others use 
it accompanied by other types of biomarkers, specifically 
15 use neuroimaging, 8 neuropsychological tests, and 
6 genetic information in addition to fluid biomarkers 
(showing that the tendency is to employ more than one 
source of information, in a multimodal way).

In fact, we observed that longitudinal studies tend to 
be multimodal, applying different types of inputs. Impor-
tantly, we found that genetic data is the least used feature 
in ML algorithms while the most used is neuroimaging 
data, considering that this study only included articles 
that used neuroimaging in support of fluid biomarkers. 

However, only 14 articles did not use neuroimaging as 
input to the algorithm, corresponding to less than 50% 
of the included studies. Also, we found that algorithms 
using only fluid biomarkers as features have reported 
very good performances.

Cohorts
Regarding patients’ home country, 28 cohorts include 
patients from the USA, 4 from Italy, 3 from Spain, and 
2 from Korea, and with one study each, considering 
patients from China, Holland, Finland, and the UK were 
found (Table 1). In addition, we identified that most of the 
included studies consider three main classification cat-
egories as targets for their patients: healthy control (HC), 
MCI, and AD. However, we also found three studies that 
considered only HC and MCI, one that considered MCI 
and AD and 2 that considered only MCI divided into two 
subcategories (progressive and stable) (Table 1).

Studies using the ADNI cohort have a broad range of 
sample sizes and algorithm types. Performance metrics 

Table 2  Comprehensive synthesis of the systematic review findings

References: Martínez-Torteya et al, 2015 [94], Ficiarà et al. 2021 [95], Jääskeläinen et al., 2020 [96], Olazarán et al., 2015 [97], Gray et al., 2013 [98],  Zhao et al., 2020 
[99], Redolfi et al., 2020 [90], Wang et al., 2018 [100], Miller et al., 2020 [101], Hu et al., 2016 [102], Sh et al., 2021 [91],  Yilmaz et al., 2020 [103], Peña-Bautista et al., 
2019 [104], Dong et al., 2021 [105], Chang et al., 2021 [106], Santangelo et al., 2020 [107],  Abate et al., 2021 [108], Lin et al., 2021 [109], Devanarayan et al., 2019 [110], 
Barbará-Morales et al., 2020 [93],  Iddi et al., 20119 [111], Lin et al., 2020 [112], Mathotaarachchi et al., 2017 [113], Khatri et al., 2020 [92], Gupta et al., 2019 [114], Zhang 
et al., 2012 [115], Eke et al., 2021 [116], Cheng et al., 2015 [117], Escudero et al., 2013 [118]
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(AUC and ACC) also vary considerably within this group. 
Studies from Italy, Spain, and other countries generally 
report high AUC and ACC values, though sample sizes 
are often smaller than those in ADNI cohort studies.

Performance metrics (AUC and ACC)
In machine learning, area under the curve (AUC ROC) 
and accuracy (ACC) are two distinct performance metrics 
used to evaluate the effectiveness of classification models. 
AUC refers to the area under the ROC curve, which plots 
the true-positive rate (sensitivity) against the false-posi-
tive rate (1-specificity) at various threshold settings. AUC 
ranges from 0 to 1, with a higher value indicating better 
model performance. It is particularly useful when deal-
ing with imbalanced datasets, as it considers both sensi-
tivity and specificity. ACC, on the other hand, is the ratio 
of correct predictions to the total number of predictions 
made. It measures the overall performance of a model 
and is more suitable for balanced datasets. However, ACC 
can be misleading in the case of imbalanced datasets, as it 
may not account for the true effectiveness of a classifier. 
In summary, AUC is a more robust performance metric 
that considers both sensitivity and specificity, while ACC 
measures the overall performance but may be less inform-
ative for imbalanced datasets [119]. In this review, AUC 
values are generally high, with most reported values above 
0.8. The highest AUC value is 0.97 [91], achieved using a 

support vector machine in a transversal study. ACC val-
ues also tend to be high, with most reported values above 
0.8. The highest ACC value is 0.97 [92], achieved using an 
extreme learning machine in a longitudinal study (Fig. 3). 
In some cases, only one of the two performance metrics is 
reported, making it difficult to comprehensively compare 
the algorithms’ performances. No significant difference is 
observed between the accuracy achieved between the two 
groups, nor in the reported AUC. However, longitudinal 
studies have the potential of predicting the diagnosis of 
diseases, which could allow early action to use treatments 
aiming to delay the progression of the disease.

Overall, logistic regression methods generally report 
high ACC values (0.86 and 0.88), though AUC values are 
not always available. Traditional ML methods, specifi-
cally Support Vector Machines, are widely used in trans-
versal studies with varying ACC values (0.61 to 0.97). 
Ensemble methods (i.e.: Random Forest algorithms) are 
more common in longitudinal studies and report ACC 
values between 0.8 and 0.9. Other algorithms show a 
wider range of performance, with AUC values from 0.75 
to 0.97 and ACC values from 0.67 to 0.97 (Fig. 4).

Black‑box algorithms and sample sizes
In relation to the black-box problem mentioned, of the 
total of 29 studies reviewed, 11 (38%) of them use algo-
rithms of neural networks, support vector machines, and 

Fig. 3  Funnel plot of algorithm performance by study. This funnel plot is a specialized form of the scatterplot, uniquely tailored for the analysis 
and visualization of data behavior between minimal and maximum metrics. Its primary function is to assist in identifying anomalies or outliers 
within the data set. In a funnel plot, data points are depicted as dots and plotted within a funnel-shaped graphical field. The shape of the funnel 
serves as a visual guideline, delineating the expected range of variation based on statistical norms. Consequently, any data point, or dot, 
that is plotted outside this funnel shape is classified as an outlier, indicating a substantial deviation from the anticipated pattern or range. In 
the context of this review, it is noteworthy that all the metrics derived from the studies are plotted within the confines of the funnel. This suggests 
that there is a consistent pattern in the data, with no significant anomalies or outliers detected. It implies that the metrics of the studies fall 
within the expected range and adhere to the statistical norms, reinforcing the reliability and validity of the reviewed studies
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random forests, which are considered within the black-box 
methods [120]. Importantly, relative to the sample sizes of 
the studies included here (Table 1), it is observed that of a 
total of 18 studies (62%), the sample is less than 100 cases. 
Of the 15 cross-sectional studies, 8 (53%) of them have a 
sample size of less than 100. In longitudinal studies, a total 
of 10 (71%) use a sample of less than 100 cases. A very rel-
evant aspect of modeling based on ML is related to the 
sampling size and the power of its estimates. Using ML on 
small-size datasets could present a problem. The smaller 
the dataset, the less powerful and less accurate the mod-
els [121]. The process of ML involves training, validation, 
and test datasets [122]. This perspective is essential in the 
development of models and must be considered.

For the cross-sectional studies, the most used types 
of techniques are the explicable ones with 4 articles and 
support vector machine (SVM) with 5 articles out of a 
total of 15, while for the longitudinal studies, the assem-
blies are the ones that take the lead with 7 out of 14 arti-
cles. The category of explainable models includes logistic 
regression and decision tree.

Methodological issues
No article was found in this review that considered the 
longitudinal dimension within the algorithm itself. How-
ever, in all cases, this dimension is delivered to the data 
label with which the algorithm will be trained later. For 
the use of longitudinal data, deep learning methods are 
the most recommended in the literature but considering 
that these fields the availability of data is limited, and it 
is also sought that the methodology used be interpret-
able, which excludes efforts with deep learning that have 
an advantage in the representation of longitudinal data 
[123]. The classification targets of the algorithm are rel-
evant for the comparison of their results. It is possible to 
differentiate between classification targets which include 
disease progression, which require a longitudinal study to 
be able to evaluate the individuals at least in two different 
time points, and classification targets without progres-
sion, where the targets are defined on a single data point. 
In the case of classification targets that include disease 
progression, they are usually built to represent the lon-
gitudinal dimension of the data. For example, in a study, 

Fig. 4  Scatterplot of algorithm performance. Scatterplot representing the performance of the ML algorithms. The x-axis, labeled “ACC,” measures 
the accuracy of the algorithms. Accuracy is a simple metric for binary classification problems, representing the proportion of true results (both 
true positives and true negatives) among the total number of cases examined. The y-axis, labeled “AUC,” represents the area under the receiver 
operating characteristic (ROC) curve. AUC is a popular metric in machine learning for binary classification problems. It measures the tradeoff 
between a true-positive rate and a false-positive rate. An AUC of 1.0 means the model has a perfect classification, while an AUC of 0.5 implies 
the model is no better than random guessing. Each point in the scatterplot represents a different machine learning algorithm. The position 
of the point on the graph shows the performance of the algorithm on both metrics: its accuracy and its AUC score. The scatterplot also features 
a performance target of 0.8. This could be represented as a line or a highlighted area in the plot, indicating the desired minimum performance level 
for both the accuracy and AUC. Algorithms that fall within or above this target region are considered to meet or exceed the performance goal. This 
visual comparison makes it easier to quickly identify which algorithms meet the performance target according to these two key metrics
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4 classes were used (healthy control (HC), cognitive 
impairment without progression to Alzheimer’s (sMCI), 
cognitive impairment with progression to Alzheimer’s 
(cMCI), and Alzheimer’s (AD)).

Discussion
The growing use of artificial intelligence techniques today 
to work new diagnostic algorithms with current data has 
an impact on the diagnostic tool, improving its accuracy 
and helping to predict the status or possible evolution of 
the patient. Biomarkers can play a very important role 
[124, 125] which could distinguish between AD and MCI 
or between MCI and age-related changes [126]. There are 
different types of biomarkers, some of which are better 
studied, such as those obtained from cerebrospinal fluid 
and neuroimaging, and novel types, especially due to 
their cost-efficiency, such as fluid biomarkers that include 
those obtained from the blood, urine, and saliva, which 
correspond to proteins and miRNA, among others [127–
129]. On the one hand, they would allow greater access 
to the population and, on the other, to the investigation 
of their use for diagnosis, increasing sample sizes, espe-
cially when we talk about ML tools, where the sample 
size becomes relevant in order to achieve greater statisti-
cal power.

In this review, it is seen that the sample sizes tend to be 
low; however, the article by Redolfi et al. stands out with 
1339 participants between HC, MCI, and AD for the arti-
cles of the cross-sectional category, using the base built 
from of a Medical Informatics Platform installed across 3 
Italian memory clinics and the article by Iddi et al., with 
841 participants between controls, MCI, and AD for the 
longitudinal articles using the ADNI database. Then, arti-
cles with a sample size of up to 59 patients were included 
[103], where an AUC of 78% was obtained, in this case, 
the MCI category has 10 participants, while HC and AD 
have 29 and 20 patients, respectively, indicating a very 
low statistical power.

Today the diagnosis of MCI is based mainly on neu-
ropsychological tests that include cognitive and func-
tional tests. These tests can be influenced by various 
factors such as age, education, and lifestyle, among oth-
ers [130, 131], leading to a focus on new forms of detec-
tion that are more reliable and ideally easily accessible. 
Neuropsychological tests can provide complementary 
information to suggest the etiological diagnosis, but 
not enough to do it on their own. Here, we carry out a 
systematic review of studies from the last 10  years that 
consider ML techniques and use fluid biomarkers for the 
diagnosis of MCI due to AD. As for the selected articles, 
most use some type of biomarker in addition to fluid bio-
markers, as complementary information. It was found 
that fluid biomarkers are mainly added to neuroimaging 

characteristics, neuropsychological tests, and genetic 
information. Being neuroimaging is the most used, espe-
cially in longitudinal articles, this may be due to the 
amount of neuroimaging data available to test new ML 
architectures in databases such as ADNI, compared to 
the datasets of other biomarkers, which facilitates the 
implementation and investigation of these techniques.

Another point to highlight is the explainability of the 
models to be used, in terms of biomedicine and diagnos-
tics in general; it is expected to be closer to white-box 
than black-box type models, since an important compo-
nent is the process of the architecture of the model. In 
this case, there are 4 explainable models for cross-sec-
tional articles, corresponding to different logistic regres-
sions, while for longitudinal articles, there are only two, 
a logistic regression and a decision tree. While the other 
models lose explainability to a certain degree, reaching 
black boxes such as the neural network that only appears 
in 2 articles in this review [132, 133] where the explain-
ability of the process is completely lost.

In addition, a relevant aspect in the development of 
diagnostic models for MCI is related to the cultural 
representativeness gap [134]. There is no single cause 
of AD, but multiple factors are involved [135]. Among 
these factors, the socioeconomic and cultural condi-
tion is very important for both diagnosis and treatment 
[136, 137]. Unfortunately, most research in MCI and AD 
is conducted in the US and European population, where 
findings and inferences cannot be extrapolated cross-cul-
turally to everyone in appropriate cultural contexts and 
niches [138–143]. This premise is applied in this specific 
review of the diagnosis of MCI with the use of ML, where 
there is no article on the Latin American or African pop-
ulation and the majority includes the population of the 
USA and/or Europe, leaving a gap in the study of these 
related populations.

On the other hand, it is important to highlight that 
most of the ML approaches mentioned in this review are 
based on associative inference. Primarily, these methods 
propose a diagnostic framework that establishes cor-
relations among various factors including symptoms, 
neuroimaging data, neuropsychological tests, genetic 
information, and other relevant variables. However, asso-
ciative inference is the simplest in a hierarchy of possi-
ble inference schemes because it does not allow causal 
explanations to be attributed to the data [144]. Instead, 
an approach based on causal and/or counterfactual infer-
ence modeling would allow it [145]. There is evidence 
that a highly accurate medical diagnosis can be per-
formed based as a counterfactual inference approach 
using ML methods such as probabilistic graphical model 
(PGM), Bayesian networks, and noisy-OR algorithms 
[146]. Under this approach, it is argued that diagnosis is 
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the process of finding causal explanations for a patient’s 
symptoms. This implies promoting causal reasoning to 
show that the probability of occurrence of an effect B 
has really been caused by cause A. This leads to develop-
ing a diagnostic measure to classify the probability that 
a disease X is causing the symptoms of a patient given 
the evidence. In general, the criticism leveled at associa-
tive inference is the fact that not separation of correlation 
from causation places strong constraints on the accuracy 
of associative diagnostic algorithms, sometimes leading 
to suboptimal diagnostic results [147]. In this case, these 
methodological perspectives of causal inference would be 
very helpful for the development of MCI and AD diag-
nostic models based on ML algorithms.

Conclusions and future directions
The latest advances in neuroimaging, laboratory analy-
sis, genetic, and ML techniques have led to a progressive 
change in the diagnosis of neurodegenerative diseases. 
Overall, it is not possible to determine with our sys-
tematic review a group of techniques or features which 
achieves better results than others, since the metrics 
reported vary widely. However, it is possible to see that 
the following points address the major themes and chal-
lenges that appear in the article and would be essential 
considerations for any researcher planning to embark on 
a similar research journey in the realm of neurodegenera-
tive diseases using ML techniques:

•	 Multi-modal approach: The growing trend towards 
a multi-modal approach in utilizing neuroimaging, 
laboratory, genetic, and ML techniques from cohorts 
like the Alzheimer’s Disease Neuroimaging Initiative, 
Neuroimaging in Frontotemporal Dementia, and 
UNITED Consortium [63] requires careful planning 
and integration. Researchers need to understand how 
to synergize various data types and technologies, lev-
eraging them for more accurate diagnoses.

•	 Longitudinal data challenges: The lack of sufficient 
data, short monitoring time, and a need for interpret-
able results in longitudinal studies present significant 
challenges. When planning research, it is essential to 
ensure that the methodology allows for long-term 
monitoring and that the tools used can handle sparse 
or incomplete data.

•	 Cultural representativeness and diverse population 
sampling: The absence of studies in underrepresented 
populations like Latin American, Caribbean, and 
African regions necessitates planning for more inclu-
sive research [137, 142, 148, 149]. This could involve 
considering different cultural, socioeconomic, and 
demographic factors that may influence the disease 
progression and diagnosis.

•	 Use of white-box models: The emphasis on using 
white-box type machine learning algorithms reflects 
a need for transparency and interpretability in the 
models. Researchers need to carefully choose or 
design algorithms that not only perform well but also 
provide insights into how and why they are making 
specific predictions.

•	 Cost-effective large-scale studies: Achieving long-
term multimodal longitudinal monitoring in a cost-
effective manner is crucial. Planning must include 
budget considerations, the incorporation of large-
scale sample sizes, and a strategic approach to collect 
and analyze the large quantities of data required.

In summary, the intricate and varied array of techniques 
within neuroimaging, laboratory analysis, genetics, and 
machine learning alludes to a captivating yet demanding 
trajectory in neurodegenerative disease research. Success-
ful amalgamation of these methodologies demands thor-
ough planning, inclusiveness, and transparency, thereby 
establishing the foundation for a groundbreaking era in 
diagnosing and comprehending these ailments. Further-
more, the establishment of a multidisciplinary task force 
is imperative to rectify diagnostic accuracy.
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