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Abstract 

Background The relationship of glucosamine use with incident dementia in the older population remains uncertain. 
We aimed to evaluate the longitudinal association between habitual glucosamine supplement and the risk of cause-
specific dementia and examine the possible effect modifiers on this association.

Methods The study included 214,945 participants over the age of 60 who had available information on glucosamine 
use and did not have dementia at baseline in the UK Biobank. The APOE genotypes were determined by a combi-
nation variant of rs429358 and rs7412. The primary outcome was incident vascular dementia, incident Alzheimer’s 
disease, and incident frontotemporal dementia, respectively.

Results Over a median follow-up duration of 12 years, 1039, 1774, and 122 participants developed vascular demen-
tia, Alzheimer’s disease, and frontotemporal dementia, respectively. Overall, habitual glucosamine use was signifi-
cantly associated with a lower risk of incident vascular dementia (adjusted HR, 0.82; 95%CI, 0.70–0.96), but not signifi-
cantly associated with incident Alzheimer’s disease (adjusted HR, 1.02; 95%CI, 0.92–1.14) and incident frontotemporal 
dementia (adjusted HR, 0.95; 95%CI, 0.63–1.43). Moreover, the inverse association between habitual glucosamine 
use and incident vascular dementia was more pronounced in participants with concomitant supplement of calcium 
(P-interaction = 0.011), and those without concomitant supplement of zinc (P-interaction = 0.018). However, APOE ε4 
dosage and baseline cognitive function did not significantly modify the relationships of glucosamine use with inci-
dent vascular dementia or Alzheimer’s disease (All P-interactions > 0.05).

Conclusions Regardless of APOE genotypes and baseline cognitive function, habitual glucosamine use was signifi-
cantly inversely associated with incident vascular dementia in the older population.
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Introduction
Glucosamine is sold as a prescription drug in most Euro-
pean countries. In other countries, including the USA, 
Australia, and the UK, approximately 20% of the popu-
lation may choose to take glucosamine supplements 
instead of being prescribed by a healthcare professional 
[1–3].

In addition to the possible symptomatic benefits of 
glucosamine use on painful osteoarthritis [4–8], recent 
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evidence suggests that glucosamine may modulate 
inflammation status [9–11], and may therefore be asso-
ciated with improvements in a range of chronic meta-
bolic disorders, particularly obesity, type 2 diabetes, and 
cardiovascular disease (CVD) [12, 13]. Furthermore, 
studies in animal models have linked the use of glucosa-
mine with better cognitive function [14, 15]. A previous 
cross-sectional study in the UK also found that partici-
pants with glucosamine supplementation showed better 
cognitive performance [16]. Since inflammation, CVD, 
and impaired cognitive function are all closely related to 
dementia, especially vascular dementia, we speculate that 
glucosamine use may be associated with the reduction of 
dementia, especially vascular dementia. However, only 
a few studies [17, 18] have investigated the longitudinal 
association of habitual glucosamine use with incident 
dementia in the general population and have reported 
inconsistent results. In addition, despite older adults 
are at high risk for dementia, no studies have specifi-
cally examined the association of glucosamine use with 
dementia risk in older adults and explored the possible 
effect modifies on this association, particularly nutrients 
such as fish oil, minerals, and vitamins that are commonly 
used in older adults. More importantly, although Apoli-
poprotein E (APOE) gene polymorphic alleles are a major 
determinant for Alzheimer disease and play an important 
role in the risk of vascular dementia [19, 20], whether the 
APOE genotypes may modify the association glucosa-
mine use and dementia risk has not been examined in the 
older population. At the same time, none of the previous 
studies have evaluated whether baseline cognitive func-
tion may modify the association between glucosamine 
use and the risk of dementia.

To address the aforementioned knowledge gaps, we 
aimed to evaluate the longitudinal association between 
habitual glucosamine supplement and the risk of cause-
specific dementia, especially vascular dementia, and 
examine the possible effect modifiers on this association.

Materials and methods
Study population
The UK biobank is a large-scale, long-term prospec-
tive health research study designed to provide in-depth 
information on the effects of comprehensive exposures 
on a wide range of health conditions to further pro-
mote human health. The UK Biobank included 500,000 
residents in the UK, aged between 40 and 69  years at 
the time of recruitment from 2006 to 2010. Participants 
were asked to complete a touch-screen questionnaire, 
a face-to-face nurse interview, and a series of physi-
cal measurements, as well as to provide biological sam-
ples for genotype and biomarker analysis. Details of the 
study design have been described in the official website 

(https:// www. ukbio bank. ac. uk/) and previous studies 
[21]. The study protocol conforms to the ethical stand-
ards of the responsible committee on human experimen-
tation (institutional and national) and with the Helsinki 
Declaration of 1975, as revised in 2008, as reflected in the 
approval by the North West Multi-Center Research Eth-
ics Committee (06/MRE08/65), and all participants were 
informed and gave written informed consent prior to the 
study.

Of the 502,461 participants in the UK Biobank, a total 
of 214,945 participants were included in the final analysis 
after excluding participants who withdrew data (N = 47), 
had missing data on glucosamine use (N = 6194), 
reported dementia at baseline (N = 587), or were younger 
than 60  years of age at recruitment (N = 280,688) (Sup-
plementary Fig. 1).

Exposure assessment
The information on habitual glucosamine use was col-
lected from a touchscreen questionnaire. Each par-
ticipant was asked, “Do you regularly take any of the 
following supplements?”, and then could select more than 
one answer from a list of dietary supplements. Habitual 
glucosamine use was defined as: 1 = yes, 0 = no.

Covariates assessment
The APOE genotypes were determined by a combination 
variant of rs429358 and rs7412 [22]. Based on the num-
ber of APOE Ɛ4 allele, participants were further divided 
into the high-risk group (APOE ε4 dosage = 2, ε4/ε4), 
medium-risk group (APOE ε4 dosage = 1, ε3/ε4), and 
low-risk group (APOE ε4 dosage = 0, ε2/ε2, ε2/ε3, ε3/ε3) 
[23] in this analysis.

Information on demographic, lifestyle factors drug 
use and nutrient supplementation was collected through 
a touchscreen questionnaire at baseline. The follow-
ing covariates were included: age, sex, ethnicity, body 
mass index (BMI), education levels, household incomes, 
Townsend deprivation index, smoking status, alcohol 
consumption, physical activity, family history of demen-
tia, self-reported diseases (diabetes, hypertension, arthri-
tis, CVD), and use of drugs (antihypertensive drugs, 
lipid-lowering drugs, aspirin, non-aspirin non-steroi-
dal anti-inflammatory drug [NSAID], insulin), dietary 
intakes (cereal, fish, fruit, red meat, vegetables), vitamin 
supplements (vitamin A, vitamin B, vitamin C, vitamin D, 
vitamin E, and folic acid), mineral and other supplements 
(calcium, selenium, iron, zinc and fish oil), and healthy 
diet scores. BMI was calculated by dividing weight (kg) 
by the square of standing height (m) for each partici-
pant. Optimal physical activity was defined as more than 
4 days of vigorous/moderate physical activity in a typical 
week [24]. The healthy diet score consisted of following 
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dietary goals for ideal cardiovascular health [25, 26]: fruit 
intake ≥ 3 servings/day, vegetable intake ≥ 3 servings/day, 
whole grain intake ≥ 3 servings/day, fish intake ≥ 2 serv-
ings/day, dairy intake ≥ 2 servings/day, vegetable oil ≥ 2 
servings/day, refined grain intake ≤ 2 servings/day, pro-
cessed meat ≤ 1 serving/day, unprocessed meat ≤ 2 serv-
ings/day, and sugar-sweetened beverages intake = 0. If 
participants achieved one of 10 dietary goals, they will 
get one point. The range of healthy diet score is 0–10.

The cognitive tests were developed specifically for UK 
Biobank to enable large-scale computerized administra-
tion without staff involvement and are therefore non-
standardized. The UK Biobank cognitive tests show a 
range of validity coefficients that coexist with well-val-
idated standard tests of cognitive ability, and most of 
the tests tend to have moderate to good retest reliabil-
ity [27]. Baseline cognitive function tests include verbal 
and numerical reasoning (‘Reasoning’), processing speed 
(‘Reaction Time’), attention/working memory (‘Numeric 
Memory”), visuospatial memory (‘Pairs Matching’), 
and prospective memory (‘Prospective Memory’) [28]. 
Except that prospective Memory is a binary variable, 
the raw scores for all tests were converted to z-scores for 
easy interpretation, and standardized within 5-year age 
bands [29]. Therefore, the average score is approximately 
zero and the standard deviation is approximately 1. The 
signs of the z-scores for Reaction Time and Pairs Match-
ing were reversed, so a higher z-score for each cognitive 
function test represents a better performance. In addi-
tion, a composite measure of global cognitive function 
was then calculated by averaging the available z-scores 
for each participant [30].

Ascertainment of study outcomes
The study outcome was incident vascular dementia, inci-
dent Alzheimer’s disease, and incident frontotemporal 
dementia, respectively.

Incident vascular dementia, Alzheimer’s disease, and 
frontotemporal dementia were ascertained from the 
International Classification of Disease version 10 (ICD-
10), ICD-9 coding system. Vascular dementia was defined 
as ICD-9 codes 290.4, ICD-10 codes F01 and I67.3; Alz-
heimer’s disease was defined as ICD-9 codes 331.0, ICD-
10 codes F00 and G30; frontotemporal dementia was 
defined as ICD-9 codes 331.1, ICD-10 codes F02.0 and 
G31.0. The accuracy of dementia ascertainment has been 
validated previously [31, 32].

The follow-up for each participant was calculated from 
the date of the first assessment until the first diagno-
sis date of study outcome, date of death, date of loss to 
follow-up, or the end of follow-up, whichever came first 
(February 28, 2018, for Wales, March 31, 2021, for Eng-
land and Scotland).

Statistical analysis
Baseline characteristics of study participants were 
summarized and stratified by glucosamine use status 
at baseline. Continuous and categorical variables were 
presented as means (standard deviation: SD) and num-
bers (proportion), respectively. Differences between 
groups were determined by t tests and chi-square tests, 
accordingly.

Cox proportional hazard models were applied to calcu-
late the hazard ratios (HRs) and 95% confidence intervals 
(95%CIs) for associations of glucosamine use with inci-
dent risk of vascular dementia, Alzheimer’s disease, and 
frontotemporal dementia, respectively. The proportional 
hazards assumption was checked using Schoenfeld resid-
uals, and no violation of this assumption was detected. 
Basic model was adjusted for age and sex (female or 
male). Model 1 included the adjustments for age, sex 
(female or male), ethnicity (white, others), centers, BMI, 
household incomes (< 18,000, 18,000–30,999, 31,000–
51,999, 52,000–10,000, > 100,000 £/year), Townsend dep-
rivation index, smoking status (never, former, current), 
alcohol consumption (daily or almost daily, 3–4 times a 
week, once or twice a week, 1–3 times a month, never 
or special occasions only), optimal physical activity (yes 
or no), family history of dementia (yes or no), APOE ε4 
dosage (0,1,2), self-reported diabetes (yes or no), self-
reported hypertension (yes or no), self-reported arthri-
tis (yes or no), history of cardiovascular disease (yes or 
no), antihypertensive drugs (yes or no), lipid treatment 
(yes or no), aspirin use (yes or no), non-aspirin NSAID 
use (yes or no), and insulin treatment (yes or no). Model 
2 included the adjustments for covariates in Model 1, 
plus several dietary factors, including cereal intake, fish 
intake, fruit intake, red meat intake, vegetable intake, 
vitamin supplements, mineral and fish oil supplements, 
and healthy diet score. For covariates with a missing 
rate > 5% (7.8% for optimal physical activity), we imputed 
mean values for continuous variables or created an addi-
tional category for categorical variables.

Furthermore, stratified analyses were performed to 
explore the potential modifying effects of APOE ε4 dos-
age, baseline cognitive function, and a range of covariates 
on the association of glucosamine use with risk of vascu-
lar dementia, Alzheimer’s disease.

We conducted all analysis using R version 4.0.1. In all 
statistical tests, the two-sided P value < 0.05 was consid-
ered to be statistically significant.

Results
Baseline characteristics of study participants
Of the 214,945 participants included, the mean age was 
64.1 (SD: 2.9) years, 113,476 (52.8%) participants were 
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Table 1 Characteristics of the UK Biobank participants by glucosamine use

Variables are presented as mean (SD) or n (%)

NASID non-steroidal anti-inflammatory drug

Characteristics Total Glucosamine non-users Glucosamine users P value
N = 214,945 N = 162,052 N = 52,893

Female, n (%) 113,476 (52.8) 80,613 (49.7) 32,863 (62.1)  < 0.001

Age, years 64.1 (2.9) 64.1 (2.9) 64.2 (2.8)  < 0.001

White race, n (%) 207,923 (97.1) 156,539 (97.0) 51,384 (97.4)  < 0.001

Household income, £  < 0.001

  < 18,000 59,429 (27.8) 46,816 (29) 12,613 (23.9)

 18,000–30,999 56,958 (26.6) 41,803 (25.9) 15,155 (28.7)

 31,000–51,999 36,426 (17.0) 26,517 (16.5) 9909 (18.8)

 52,000–100,000 17,539 (8.2) 13,040 (8.1) 4499 (8.5)

  > 100 000 4182 (2.0) 3177 (2.0) 1005 (1.9)

Townsend deprivation index  − 1.6 (3.0)  − 1.4 (3.0)  − 2 (2.7)  < 0.001

Body mass index, kg/m2 27.6 (4.6) 27.6 (4.6) 27.4 (4.5)  < 0.001

Optimal physical activity 118,718 (59.9) 87,525 (58.9) 31,193 (63)  < 0.001

Smoking status, n (%)  < 0.001

 Never 106,920 (49.7) 79,245 (48.9) 27,675 (52.3)

 Former 89,309 (41.5) 67,034 (41.4) 22,275 (42.1)

 Current 17,655 (8.2) 14,924 (9.2) 2731 (5.2)

Alcohol consumption, n (%)  < 0.001

 Daily or almost daily 50,181 (23.3) 36,951 (22.8) 13,230 (25.0)

 3–4 times a week 47,371 (22) 34,796 (21.5) 12,575 (23.8)

 Once or twice a week 51,283 (23.9) 38,799 (23.9) 12,484 (23.6)

 1–3 times a month 21,258 (9.9) 16,118 (9.9) 5140 (9.7)

Never or special occasions only 44,700 (20.8) 35,256 (21.8) 9444 (17.9)

Healthy diet score 3.2 (1.4) 3.2 (1.4) 3.4 (1.4)  < 0.001

Family history of dementia, n (%) 32,271 (15.0) 23,823 (14.7) 8448 (16.0)  < 0.001

APOE ε4 dosage 0.290

 0 151,036 (73.7) 113,815 (73.7) 37,221 (73.7)

 1 49,098 (23.9) 37,051 (24.0) 12,047 (23.8)

 2 4904 (2.4) 3651 (2.4) 1253 (2.5)

Global cognitive function (z-score) 0.00 (0.73)  − 0.02 (0.74) 0.04 (0.67)  < 0.001

Self-reported disease history, n (%)
 Diabetes 15,076 (7.0) 12,749 (7.9) 2327 (4.4)  < 0.001

 Hypertension 77,998 (36.3) 61,097 (37.7) 16,901 (32.0)  < 0.001

 Arthritis 29,344 (13.7) 17,813 (11.0) 11,531 (21.8)  < 0.001

 History of cardiovascular disease 27,694 (12.9) 22,995 (14.2) 4699 (8.9)  < 0.001

Drug use, n (%)
 Anti-hypertensive 68,098 (31.9) 53,976 (33.5) 14,122 (26.8)  < 0.001

 Lowering cholesterol 59,983 (28.1) 47,578 (29.5) 12,405 (23.5)  < 0.001

 Insulin treatment 2955 (1.4) 2541 (1.6) 414 (0.8)  < 0.001

 Aspirin 45,315 (21.3) 35,662 (22.3) 9653 (18.4)  < 0.001

 Non-aspirin NSAID 22,514 (10.6) 14,571 (9.1) 7943 (15.1)  < 0.001

Supplement use, n (%)
 Vitamin 36,008 (16.8) 22,521 (14) 13,487 (25.6)  < 0.001

 Mineral and fish oil 96,999 (45.1) 59,005 (36.4) 37,994 (71.8)  < 0.001
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female, and 52,893 (24.6%) participants were habitual 
glucosamine users.

The characteristics of the participants by using glucosa-
mine supplement or not are showed in Table  1. Com-
pared with glucosamine non-users, habitual glucosamine 
users were older, more likely to be female and non-smok-
ers, and less likely to take anti-hypertensive, lowering 
cholesterol drugs, insulin treatment, and aspirin; had 
higher physical activity levels and lower levels of depri-
vation; consumed more alcohol and a healthier diet; and 
tended to take non-aspirin NSAID and supplements of 
vitamins, minerals, and fish oil. Moreover, glucosamine 
users had higher prevalence of family history of dementia 
and self-reported arthritis, and lower prevalence of dia-
betes, hypertension, and CVD (Table 1).

Associations of glucosamine use with risk of incident 
cause-specific dementia
During a median follow-up duration of 12  years, 1039, 
1774, and 122 participants developed incident vascular 
dementia, Alzheimer’s disease cases, and frontotemporal 
dementia, respectively.

Overall, habitual glucosamine use was significantly 
associated with a lower risk of incident vascular dementia 

(adjusted HR, 0.83; 95% CI, 0.70–0.97), but not signifi-
cantly associated with the risk of incident Alzheimer’s 
disease (adjusted HR, 1.00; 95% CI, 0.89–1.11) and inci-
dent frontotemporal dementia (adjusted HR, 1.20; 95% 
CI, 0.78–1.85) (Table 2).

Excluding participants with follow-up duration of less 
than 5 years (Supplementary table 1, Sensitivity analysis 
1), or including baseline cognitive function scores in the 
adjustment (Supplementary table  1, Sensitivity analysis 
2), did not materially alter the findings.

Stratified analyses
Stratified analyses were performed to assess the possible 
modifying factors on the association of glucosamine use 
with incident vascular dementia and incident Alzhei-
mer’s disease (Figs. 1 and 2, and Supplementary Fig. 2).

A significantly stronger inverse association between 
glucosamine use and incident vascular dementia was 
found in participants with concomitant supplement of 
calcium (yes, adjusted HR, 0.46; 95% CI, 0.28–0.75; vs. 
no, adjusted HR, 0.87; 95% CI, 0.74–1.03; P for interac-
tion = 0.011), and those without concomitant supple-
ment of zinc (no, adjusted HR, 0.79; 95% CI, 0.67–0.93; 
vs. yes, adjusted HR, 1.74; 95% CI, 0.91–3.31; P for 

Table 2 Associations of glucosamine use with incident cause-specific dementia

Model 1: adjusted for age, sex (female or male), ethnicity (white, others), centers, body mass index, household income (< 18,000, 18,000–30,999, 31,000–51,999, 
52,000–10,000, > 100,000 £/yr), Townsend deprivation index, smoking status (never, former, current), alcohol consumption (daily or almost daily, 3–4 times a week, 
once or twice a week, 1–3 times a month, never or special occasions only), optimal physical activity (yes or no), family history of dementia (yes or no), APOE ε4 dosage 
(0, 1, 2), self-reported diabetes (yes or no), self-reported hypertension (yes or no), self-reported arthritis (yes or no), history of cardiovascular disease (yes or no), 
antihypertensive drugs (yes or no), lipid treatment (yes or no), aspirin use (yes or no), non-aspirin NSAID use (yes or no), insulin treatment (yes or no)

Model 2: covariates in Model 1 plus cereal intake, fish intake, fruit intake, red meat intake, vegetable intake, vitamin supplements, mineral and other supplements, 
healthy diet score

Categories of dementia Glucosamine non-users Glucosamine users P value
N = 162,052 N = 52,893

Vascular dementia
 No. of case 1039 229 -

 Person-years 1,853,990 613,980 -

 Age- and sex-adjusted model 1 [Reference] 0.68 (0.59, 0.78)  < 0.001

 Model 1 1 [Reference] 0.82 (0.70, 0.96) 0.014

 Model 2 1 [Reference] 0.83 (0.70, 0.97) 0.023

Alzheimer’s disease
 No. of case (%) 1774 581

 Person-years 1,852,132 613,119

 Age- and sex-adjusted model 1 [Reference] 0.97 (0.88, 1.07) 0.553

 Model 1 1 [Reference] 1.02 (0.92, 1.14) 0.648

 Model 2 1 [Reference] 1.00 (0.89, 1.11) 0.929

Frontotemporal dementia
 No. of case (%) 122 32 -

 Person-years 1,855,706 614,363 -

 Age- and sex-adjusted model 1 [Reference] 0.83 (0.56, 1.23) 0.348

 Model 1 1 [Reference] 0.95 (0.63, 1.43) 0.804

 Model 2 1 [Reference] 1.20 (0.78, 1.85) 0.401
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interaction = 0.018). Moreover, supplement of calcium 
and zinc did not significantly modify the association 
between glucosamine use and incident Alzheimer’s dis-
ease (both P for interactions ≥ 0.05) (Figs. 1 and 2, Sup-
plementary Fig. 2).

As expected, APOE Ɛ4 dosage was significantly and 
positively associated with the risk of incident vascular 
dementia (2 vs. 0; adjusted HR: 5.81; 95%CI: 4.72, 7.15), 
and incident Alzheimer’s disease (2 vs. 0; adjusted HR: 
12.05; 95%CI: 10.54, 13.77) (Supplementary Table  2). 
However, APOE ε4 dosage did not show significant mod-
ifying effects on the relationship of glucosamine use with 
incident vascular dementia (P for interaction = 0.188) and 
Alzheimer’s disease (P for interaction = 0.375). Other var-
iables, including cognitive function, sex, age, BMI, physi-
cal activity, healthy diet score, self-reported arthritis, 
aspirin use, non-aspirin NSAID use, diabetes, hyperten-
sion, history of CVD, supplement of vitamin A, vitamin 

B, vitamin C, vitamin D, vitamin E, folate, selenium, iron, 
and fish oil, also did not significantly modify the associa-
tions of glucosamine use with risks of incident vascular 
dementia or Alzheimer’s disease associations (all P for 
interactions > 0.05) (Figs. 1 and 2, Supplementary Fig. 2).

Discussion
Our study showed that in the older population, habitual 
supplement of glucosamine was significantly associated 
with a lower risk of incident vascular dementia, but not 
significantly associated with the risk of incident Alz-
heimer’s disease and frontotemporal dementia. APOE 
genetic variations and baseline cognitive function did not 
significantly modify this association.

A few studies [17, 18] have investigated the longitudi-
nal association of habitual glucosamine use with incident 
dementia in the general population and have reported 
inconsistent results. Ai et  al. [17] found that habitual 

Fig. 1 Stratified analyses of the association between glucosamine use and incident vascular dementia. *Adjusted for age, sex (female or male), 
ethnicity (white, others), centers, body mass index, household income (< 18,000, 18,000–30,999, 31,000–51,999, 52,000–10,000, > 100,000 £/yr), 
Townsend deprivation index, smoking status (never, former, current), alcohol consumption (daily or almost daily, 3–4 times a week, once or twice 
a week, 1–3 times a month, never or special occasions only), optimal physical activity (yes or no), family history of dementia (yes or no), APOE ε4 
dosage (0, 1, 2), self-reported diabetes (yes or no), self-reported hypertension (yes or no), self-reported arthritis (yes or no), history of cardiovascular 
disease (yes or no), antihypertensive drugs (yes or no), lipid treatment (yes or no), aspirin use (yes or no), non-aspirin NSAID use (yes or no), 
and insulin treatment (yes or no)
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supplementation of glucosamine was not associated with 
incident all-cause dementia in approximately 290,000 
middle- to old-aged participants during a median fol-
low-up of 9.1  years. However, Zheng et  al. [18] showed 
that glucosamine use was associated with a lower risk 
of all-cause dementia, Alzheimer’s disease, and vascular 
dementia in approximately 490,000 middle- to old-aged 
participants over a median follow-up of 8.9  years. Of 
note, none of the previous studies have examined the 
association between glucosamine use and incident fron-
totemporal dementia. Moreover, although the high risk 
of dementia in older adults, no studies have specifically 
investigated the association between glucosamine use 
and incident dementia in the older population and fully 
explored the possible effect modifications on this asso-
ciation, particularly with regard to fish oil, minerals, and 
vitamins that are commonly used by older adults, and 
baseline cognitive function. Our current study, which 

has the longest follow-up duration compared to previous 
studies [17, 18], addresses the above knowledge gaps in 
time in the older population, by adjusting for a range of 
important confounding factors, and taking into account 
the modifying effect of baseline cognitive function and 
use of fish oil and a series of minerals and vitamins.

Our study provides some new insights. Firstly, in the 
older population, there was a significant inverse associa-
tion of glucosamine use with incident vascular demen-
tia. However, glucosamine use was not significantly 
associated with incident Alzheimer’s disease and fron-
totemporal dementia. Previous studies have found that 
glucosamine supplementation was associated with a 
reduced risk of CVD [5] and type 2 diabetes [13], both of 
which are associated with an increased risk of dementia, 
particularly vascular dementia [33, 34]. In addition, a pre-
vious randomized trial, including 38 subjects diagnosed 
with knee osteoarthritis, showed that glucosamine sulfate 

Fig. 2 Stratified analyses of the association between glucosamine use and incident Alzheimer’s disease. *Adjusted for age, sex (female or male), 
ethnicity (white, others), centers, body mass index, household income (< 18,000, 18,000–30,999, 31,000–51,999, 52,000–10,000, > 100,000 £/yr), 
Townsend deprivation index, smoking status (never, former, current), alcohol consumption (daily or almost daily, 3–4 times a week, once or twice 
a week, 1–3 times a month, never or special occasions only), optimal physical activity (yes or no), family history of dementia (yes or no), APOE ε4 
dosage (0, 1, 2), self-reported diabetes (yes or no), self-reported hypertension (yes or no), self-reported arthritis (yes or no), history of cardiovascular 
disease (yes or no), antihypertensive drugs (yes or no), lipid treatment (yes or no), aspirin use (yes or no), non-aspirin NSAID use (yes or no), 
and insulin treatment (yes or no)
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supplements could modulate the metabolic and immune 
activity of the gastrointestinal microbiota [35], thereby 
affecting the risk of neurodegenerative diseases [36]. All 
of these results suggest a possible beneficial effect of glu-
cosamine on dementia.

The underlying mechanism for the benefit of glucosa-
mine supplementation in vascular dementia is uncer-
tain, but biologically plausible. First, glucosamine use 
may provide an anti-inflammation effect by interfering 
with nuclear factor-κB activity [9], therefore reducing 
angiogenesis and remodeling [37]. Second, glucosamine 
treatment could relieve inflammatory atherosclerosis at 
the femoral wall and aortic [38]. These beneficial effects 
of glucosamine supplement on vascular functions may 
play an important in the prevention of vascular dementia 
[39]. Of note, our data indicate a significant inverse asso-
ciation between glucosamine use and vascular dementia 
only, not Alzheimer’s disease and frontotemporal demen-
tia, in the older population. It could be that different 
types of dementia have different mechanisms. For exam-
ple, although vascular dementia is closely related to the 
biological processes of Alzheimer’s disease [40], vascular 
dementia is primarily due to vascular lesions [41], while 
the primary cause of Alzheimer’s disease is β amyloid 
deposition [42]. Glucosamine may have a stronger effect 
on vascular damage and thus a stronger association with 
vascular dementia. In addition, the hippocampus gradu-
ally shrinks and cortical density decreases in the elderly, 
which leads to a decrease in cell membrane receptors of 
brain cells, thus weakening the effect of glucosamine on 
Alzheimer’s disease and frontotemporal dementia.

Secondly, a stronger inverse association between 
glucosamine use and risk of vascular dementia among 
those with concomitant supplement of calcium, or 
those without concomitant supplement of zinc. A 
recent study in Sweden found that those who received 
calcium supplementation had a more than threefold 
risk of developing vascular dementia compared to those 
who did not [43]. Therefore, participants with concomi-
tant use of calcium may have benefited more from the 
anti-inflammatory and vascular protective effects of 
glucosamine use. However, a Mendelian randomization 
study found that increased serum calcium levels were 
associated with a reduced risk of Alzheimer’s disease 
[44]. Therefore, more research is needed to confirm our 
findings and further examine the underlying mecha-
nisms. At the same time, zinc is an essential mineral 
nutrient that is involved in many important biological 
processes, including maintaining insulin homeostasis, 
influencing inflammatory responses [45], and playing 
key structural roles in thousands of proteins [46]. A 

recent study has reported that zinc intake was inversely 
associated with the prevalence of low cognitive perfor-
mance [47]. We speculate that zinc and glucosamine 
may share some of the mechanisms that are beneficial 
to dementia risk, thus diminishing the beneficial effects 
of glucosamine. However, it must be noted that inter-
actions of calcium supplement or zinc supplement 
and glucosamine use on incident vascular dementia 
became non-significant after the Bonferroni correction. 
As such, due to the chance given multiple testing, our 
results are just hypotheses, and the clinical implication 
of these interactions needs to be evaluated with more 
studies.

Our study has several limitations. First, the UK Biobank 
did not collect more specific information on glucosa-
mine use, including form, dose, frequency, duration, etc. 
Moreover, the information on supplement use in the UK 
Biobank was available at one time point; more frequent 
assessments could provide more accurate results. Second, 
although a broad range of covariates were included in the 
adjustments, possible confounding from other unknown 
or unmeasured factors could not be excluded. Third, 
the causation cannot be determined through the obser-
vational design in this analysis. Fourth, previous studies 
have reported different positive predictive values (PPV) 
for different types of dementia [31, 32], with vascular 
dementia and frontotemporal dementia in particular hav-
ing relatively low PPV, which could lead to potential mis-
classification bias. In addition, dementia cases may have 
been underestimated due to the ascertainment based on 
ICD9/10 codes, leading to an underestimation of the true 
effect size. Fifth, the present study was conducted in UK 
older people with special socioeconomic status and over-
all health status, and 97% of the participants were white 
race [48]; whether the observed results can be extrapo-
lated to other populations will need further investigation.

In summary, our study showed that habitual glucosa-
mine use was significantly associated with a lower risk 
of incident vascular dementia in the older population, 
regardless of APOE genotypes and cognitive function. If 
further confirmed, habitual glucosamine use may act as 
a dietary supplement for primary prevention of vascular 
dementia in the elderly.

Abbreviations
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