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Abstract 

Background A minimally invasive blood-based assessment of cognitive function could be a promising screening 
strategy to identify high-risk groups for the incidence of Alzheimer’s disease.

Methods The study included 448 cognitively unimpaired men (mean age 64.1 years) drawn from the Geelong Osteo-
porosis Study. A targeted mass spectrometry-based proteomic assay was performed to measure the abundance levels 
of 269 plasma proteins followed by linear regression analyses adjusted for age and APOE ε4 carrier status to identify 
the biomarkers related to overall cognitive function. Furthermore, two-way interactions were conducted to see 
whether Alzheimer’s disease-linked genetic variants or health conditions modify the association between biomarkers 
and cognitive function.

Results Ten plasma proteins showed an association with overall cognitive function. This association was modified 
by allelic variants in genes ABCA7, CLU, BDNF and MS4A6A that have been previously linked to Alzheimer’s disease. 
Modifiable health conditions such as mood disorders and poor bone health, which are postulated to be risk factors 
for Alzheimer’s disease, also impacted the relationship observed between protein marker levels and cognition. In 
addition to the univariate analyses, an 11-feature multianalyte model was created using the least absolute shrinkage 
and selection operator regression that identified 10 protein features and age associated with cognitive function.

Conclusions Overall, the present study revealed plasma protein candidates that may contribute to the develop-
ment of a blood-based screening test for identifying early cognitive changes. This study also highlights the impor-
tance of considering other risk factors in elucidating the relationship between biomarkers and cognition, an area 
that remains largely unexplored.
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Background
There is a substantial rise in the number of people liv-
ing with Alzheimer’s disease (AD), which is one of the 
leading causes of mortality worldwide. High prevalence 
and associated disability have necessitated a focus on 
investigating its preclinical phase, where biochemical 
changes are thought to begin 15–20 years prior to the 
presentation of clinical symptoms [1]. This is known as 
the asymptomatic stage where a screening test might 
be useful in identifying individuals at risk of developing 
AD. Currently, the most promising sets of biomarkers 
for identifying preclinical AD constitute amyloid β (Aβ) 
or tau positron emission tomography (PET) imaging 
and their measurement in the cerebro spinal fluid (CSF) 
[1–3]. However, these approaches are limited in their 
use as population screening tools and unlikely to attract 
high participation rates as PET scans are expensive and 
only available in specialised centres, while the collection 
of CSF involves an invasive lumbar puncture procedure 
that carries the risk of adverse effects. The use of blood 
biomarkers instead circumvents the above issues and is 
potentially a more useful screening tool for the general 
population. Despite this, there is a paucity of studies 
investigating blood biomarkers associated with cognitive 
function among non-demented individuals as the major-
ity focus on the identification of dementia biomarkers. 
There is also a risk of misclassification with the existing 
plasma biomarkers for amyloid pathology, for example, 
the Aβ42/Aβ40 ratio, precluding their implementation in 
routine clinical settings [4]. Another challenge with the 
use of blood biomarkers in clinical settings is the lack of 
reproducibility, which possibly could be due to the high 
complexity and wide dynamic range of protein abun-
dances in the blood as well as limited sensitivity offered 
by immunoassays. However, advancements in the area of 
targeted mass spectrometry have resulted in highly sensi-
tive and specific multiplexed methods that can accurately 
quantify low abundant protein markers [5].

The lack of reproducible results can also be due to the 
multifactorial nature of AD pathology [6]. AD is a com-
plex condition that involves an interplay between several 
genetic and environmental factors, which are often not 
considered in biomarker studies [7]. For instance, genetic 
predisposition has a substantial role in the development 
of AD, and individuals who are carriers of allelic variants 
linked to AD risk may have an altered biomarker pro-
file as compared to those who do not harbour the risk 
alleles. We hypothesised that genetic variants previously 
linked to AD risk may modify the relationship observed 
between protein markers and cognitive function. We also 
expected some of the modifiable physical and mental 
health conditions associated with AD to have a similar 
impact on the relationship between protein markers and 

cognition. Several studies including systematic reviews 
and meta-analyses have postulated depression and poor 
bone health to be risk factors for AD or general cogni-
tive decline [8–12]. In light of AD’s complex aetiology, it 
is important to account for genetic variants and health 
conditions related to AD to obtain reliable estimates of 
biomarker levels. Therefore, the primary aim of our study 
was to identify blood protein markers associated with 
cognitive function among a population cohort of 448 
healthy male participants using a high-throughput mass 
spectrometric platform. Furthermore, we investigated 
two-way interactions to see whether AD-linked genetic 
variants or health conditions modify the association 
between biomarkers and cognitive function.

Methods
Study cohort, assessment procedures and sample 
collection
The present study analysed data and blood sam-
ples collected from men participating in the Geelong 
Osteoporosis Study (GOS), an ongoing, prospective 
population-based study. In brief, age-stratified samples of 
men and women were selected at random from electoral 
rolls for the Barwon Statistical Division in south-eastern 
Australia [13]. The inclusion criteria were a listing on 
the electoral rolls for the Barwon Statistical Division and 
residence in the area for a minimum of six months. A 
total of 1540 men were recruited from 2001 to 2006 (67% 
participation) and returned for follow-up 5 and 15 years 
post-recruitment. This study includes a cross-sectional 
analysis of data and blood samples collected from 448 
men during the 15-year follow-up phase (2016–2020). 
Further information on participant selection is provided 
in Additional file 1: Fig. S1. As cognitive testing using the 
CogState Brief Battery (CBB) is currently underway for 
GOS women, their data could not be included in the pre-
sent study. Participants were mostly Caucasian (~ 98%). 
They provided information on their lifestyle and demo-
graphic characteristics in addition to undergoing mental 
and physical health assessments.

Cognitive function was evaluated using a computer-
based neuropsychology battery, the CBB, which has been 
described previously [14–16]. The CBB requires partici-
pants to respond to stimuli cards as a part of detection 
(DET), identification (IDN), one-card learning (OCL) 
and one-back (OBK) tasks that assess cognitive per-
formance across four domains, namely psychomotor 
function, visual identification, recognition memory and 
working memory, respectively. Both a practice trial and a 
real test were included for each task. The tasks were com-
pleted by participants in a quiet room accompanied by a 
researcher. For the tasks DET, IDN and OBK, scores were 
calculated by measuring the time (milliseconds) taken 
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to answer correctly, which was then normalised using a 
 log10 transformation. For the OCL task, scores were cal-
culated based on the accuracy of participant response 
and normalised using an arcsine square-root transforma-
tion. Furthermore, scores for the overall cognitive func-
tion (OCF, unitless) were determined by combining the 
primary measures in the four domains. The present anal-
ysis only includes scores from the overall cognitive func-
tion, for which higher scores indicate better performance. 
In addition, participants attended the Mini-Mental State 
Examination (MMSE) that assessed their overall cogni-
tive function [17]. However, due to inherent limitations 
associated with MMSE, only OCF scores from the CBB 
were used in the analysis [18].

Details on sociodemographic variables such as edu-
cation, smoking and domestic partnership status were 
acquired from self-reports. Education was defined as a 
nominal factor based on secondary education comple-
tion. Similarly, domestic partnership status was defined 
as living with a partner (coded “1”) or not (coded “0”). 
Participants who reported smoking at least one cigarette 
per day were defined as current smokers. The Structured 
Clinical Interview for Diagnostic and Statistical Manual 
of Mental Disorders, Fourth Edition, Non-Patient Edi-
tion (SCID-I/NP) was used to determine the current 
mood disorders, as described previously [19]. Bone min-
eral density (BMD; g/cm2) was measured at the total hip, 
femoral neck and lumbar spine (posterior-anterior pro-
jection, L2–L4) using dual-energy X-ray absorptiometry 
(GE Lunar, Prodigy Pro, Madison, WI, USA) [20, 21]. 
Furthermore, participants reported whether they suf-
fered a major osteoporotic fracture in the last 20 years 
that included hip, vertebral, wrist or humerus fractures 
and confirmed using radiology reports as previously 
described [22]. Fractures that occurred in a motor vehi-
cle accident were not considered. Blood plasma samples 
were collected after overnight fasting in EDTA tubes at 
the Australian Clinical Labs and stored at − 80 °C until 
use. Cognitive assessments and other health measure-
ments were conducted by trained technicians who were 
not involved in blood biomarker measurements or data 
analysis. A schematic representation of the workflow is 
shown in Fig. 1.

Liquid chromatography‑mass spectrometry (LC‑MS)‑based 
proteomic analysis
The plasma samples were shipped on dry ice to the Uni-
versity of Victoria – Genome British Columbia Prot-
eomics Centre (BC, Canada) where they were analysed 
for a panel of 269 proteins. These are common plasma 
proteins that belong to physiological processes such as 
inflammation, lipid transport, signalling, oxidative stress 
and immune response. A complete list of plasma protein 

markers included in the assay is provided in Additional 
file  1: Table  S1. A peptide-based targeted quantita-
tion was conducted using multiple reaction monitoring 
assays following the Clinical Proteomic Tumor Analysis 
Consortium guidelines for assay development (https:// 
assays. cancer. gov/). Tryptic peptides were selected to 
serve as molecular surrogates for the 269 target pro-
teins according to a series of peptide selection rules (e.g. 
unique sequence, devoid of oxidisable residues and pre-
vious detectability in plasma samples). To help compen-
sate for a matrix-induced suppression or variability in 
LC-MS performance, 13C/15N-labelled peptide analogues 
were used as internal standards. All peptides were syn-
thesised via Fmoc chemistry, purified through reversed-
phase high-performance liquid chromatography and 
characterised via amino acid analysis and capillary zone 
electrophoresis. A detailed protocol has been described 
previously [23]. The plasma proteolytic digests were 
analysed using a triple quadrupole mass spectrometer 
(Agilent 6495) in the positive ion mode. The data were 
visualised and examined using the Skyline Quantita-
tive Analysis software (version 21.0.9.139, University of 
Washington). This involved peak inspection to ensure 
accurate selection, integration and uniformity in terms 
of peak shape and retention time. After defining a small 
number of criteria (i.e. 1/x regression weighting, < 20% 
deviation in the QC’s level’s accuracy), a standard curve 
was used to calculate the peptide concentration in fmol/
μL of plasma.

DNA extraction and genotyping
Total genomic DNA was isolated from buffy coats using 
the QIAamp® DNA Mini Kit (Qiagen, Hilden, Germany) 
as per the manufacturer’s instructions. The DNA sam-
ples were genotyped for the following 11 single nucleo-
tide polymorphisms (SNPs): rs429358 (apolipoprotein E; 
APOE ε4), rs7412 (apolipoprotein E; APOE ε2), rs744373 
(bridging integrator 1; BIN1), rs11136000 (clusterin; 
CLU), rs3764650 (ATP-binding cassette subfamily A 
member 7; ABCA7), rs3818361 (complement receptor 1; 
CR1), rs3851179 (phosphatidylinositol-binding clathrin 
assembly protein; PICALM), rs3865444 (cluster of dif-
ferentiation 33; CD33), rs610932 (membrane spanning 
4-domains A6A; MS4A6A), rs6265 (brain-derived neu-
rotrophic factor; BDNF) and rs9349407 (CD2-associated 
protein; CD2AP) at the Australian Genome Research 
Facility, Brisbane, using the Agena Bioscience Mas-
sARRAY® platform. These SNPs are associated with 
late-onset AD and were selected based on a thorough lit-
erature review including the meta-analysis results from 
the AlzGene database [24]. The carrier status was defined 
by the presence of at least one copy of the risk allele. No 

https://assays.cancer.gov/
https://assays.cancer.gov/
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departure from the Hardy-Weinberg equilibrium was 
detected. The genetic data analysed in this study are pro-
vided in Additional file 1: Table S2.

Statistical analyses
Data cleaning steps were applied to the proteomic data 
prior to the analyses. For each protein, concentration 
values outside the limit of quantitation were treated as 
missing, following which protein analytes with greater 
than 10% missing values were dropped [3, 25]. For the 
remaining 125 proteins with more than 90% of data 
available, missing values were imputed by assigning the 
lower limit of quantitation/2 value [3]. Furthermore, 
the protein concentrations were transformed to a natu-
ral logarithm to achieve normal distribution. Individual 
linear regression analyses were conducted to investi-
gate the association between overall cognitive function 

and protein concentrations. Age and APOE ε4 carrier 
status were included as confounders in the regression 
model. As this was an exploratory analysis, correction 
for multiple testing was not applied.

Next, two-way interactions between proteins that 
showed a significant association with cognitive function 
and nine AD-linked genetic polymorphisms [rs744373 
(BIN1), rs11136000 (CLU), rs3764650 (ABCA7), 
rs3818361 (CR1), rs3851179 (PICALM), rs3865444 
(CD33), rs610932 (MS4A6A), rs6265 (BDNF) and 
rs9349407 (CD2AP)] were explored (in separate regres-
sion analyses) to see whether the latter affects the rela-
tionship between cognition and protein markers. The 
interaction analyses were adjusted for age and APOE 
ε4 status. Similar interaction analyses were performed 
to investigate whether comorbidities such as mood dis-
orders and bone loss affect the relationship observed 

Fig. 1 Schematic representation of the workflow
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between cognitive function and protein markers. All 
statistical analyses were performed using Stata/SE 17.0.

Multianalyte model building and functional mapping 
of proteins
While the univariate analysis described above revealed 
associations between a single protein and cognitive func-
tion, classifiers and machine learning methods enable 
the identification of a panel of features that relate to the 
condition only when considered in combination with 
one another. Thus, a linear multianalyte model was built 
using the least absolute shrinkage and selection operator 
(LASSO) method. A total of 127 features were selected 
that included 125 protein markers, age and APOE ε4 car-
rier status. A 10-fold cross-validation method was used 
to develop the model. The optimal regularisation param-
eter (lambda) was estimated through the 10-fold cross-
validation process to maximise the out-of-sample R2 and 
minimise the mean prediction error. The analysis was 
performed using Stata/SE 17.0.

Furthermore, complex interactions among proteins 
identified through LASSO were investigated using bio-
informatic tools such as NetworkAnalyst 3.0 (http:// 
www. netwo rkana lyst. ca/) [26] and STRING version 11.5 
(https:// string- db. org/) [27]. The list of UniProt protein 

accession numbers was uploaded to generate the protein-
protein interaction networks. In order to identify the per-
turbed pathways, pathway mapping was performed using 
Reactome.org (www. react ome. org) [28].

Results
Participant characteristics are presented in Table 1. The 
study participants had a mean age of 64.1 years (SD 13.3), 
and more than three-quarters had completed secondary 
education (75.5%) and were living with a partner (81.5%). 
The average MMSE score of the participants was 28.6 
(SD 1.7), and only nine had an MMSE score less than 
24, which suggests cognitive impairment. Among them, 
one participant scored 19, another scored 21, two scored 
22 and the remaining five scored 23 on MMSE. Overall, 
25.9% of all participants carried the APOE ε4 risk allele.

Association between plasma protein levels and overall 
cognitive function
Preliminary data cleaning steps resulted in 125 proteins 
that were analysed. Of these, 10 proteins, namely apoli-
poprotein A-I, apolipoprotein C-I, apolipoprotein M, 
carboxypeptidase N catalytic chain, complement C1q 
subcomponent subunit B, complement C1q subcompo-
nent subunit C, glutathione peroxidase 3, lysozyme C, 

Table 1 Demographic characteristics of the study participants (n = 448). Data are presented as mean (SD) or n (%)

aExcludes missing values

Variable Mean (SD)/n (%)

Age [years], mean (SD) 64.1 (13.3)

Educationa, n (%) Secondary education completed 338 (75.5)

Secondary education not completed 109 (24.3)

Domestic partnership status, n (%) Living with a partner 365 (81.5)

Not living with a partner 83 (18.5)

Current smoker, n (%) Yes 30 (6.7)

No 418 (93.3)

APOE ε4  carriagea, n (%) Yes 116 (25.9)

No 323 (72.1)

Current mood  disordera, n (%) Yes 22 (4.9)

No 37 (8.3)

Femoral neck BMD [g/cm2], mean (SD) 1.0 (0.1)

Total hip BMD [g/cm2], mean (SD) 1.1 (0.1)

Spine BMD [g/cm2], mean (SD) 1.3 (0.2)

Occurrence of a major osteoporotic fracture in the last 20 years, 
n (%)

Yes 33 (7.4)

No 415 (92.6)

MMSE, mean (SD) 28.6 (1.7)

CBB-IDN, mean (SD) 2.7 (0.1)

CBB-DET, mean (SD) 2.5 (0.1)

CBB-OBK, mean (SD) 2.9 (0.1)

CBB-OCL, mean (SD) 1.0 (0.1)

CBB-OCF, mean (SD) − 0.01 (0.7)

http://www.networkanalyst.ca/
http://www.networkanalyst.ca/
https://string-db.org/
http://www.reactome.org
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neuropilin-2/cystatin-C and alpha-1-microglobulin were 
found to be significantly associated with cognitive func-
tion (Table  2). Among these, the biggest effect size was 
observed for the protein apolipoprotein A-I; with every 
1% rise in plasma apolipoprotein A-I levels, the average 
cognitive function score increased by 0.004 units.

Interaction between protein markers and genetic variants 
(linked to AD) for predicting cognitive function
Four genetic variants: rs3764650 (ABCA7), rs11136000 
(CLU), rs6265 (BDNF) and rs610932 (MS4A6A) that 
have been previously associated with AD risk, modified 
the relationship between protein markers and cognitive 
function (Table  3 and Fig.  2). For instance, individuals 
with increasing plasma apolipoprotein C-I levels showed 
a higher score for cognitive function; however, among 
those carrying the ABCA7 risk allele, increasing apoli-
poprotein C-I levels were associated with poorer cogni-
tive function (Fig.  2A). Among the risk allele carriers, 
with every 1% rise in plasma apolipoprotein C-I levels, 
the average cognitive function score decreased by 0.004 
units. A similar pattern was observed for apolipoprotein 
C-I’s interaction with the risk allele belonging to the CLU 
gene (Fig. 2B). Increasing plasma apolipoprotein C-I lev-
els were associated with a steep rise in cognitive func-
tion among individuals who did not carry the risk allele; 
however, this was greatly diminished among carriers, for 
whom a minimal change in cognitive function scores was 
observed with increasing apolipoprotein C-I levels.

For the interaction between protein complement C1q 
subcomponent subunit C and BDNF risk allele, a weak 
negative association was observed between the pro-
tein level and cognitive function among non-carriers 

(Fig.  2C). Although the directionality of association 
remained the same among risk allele carriers, the decline 
in cognitive function was greater.

Interaction between protein markers and health 
conditions such as mood disorders and bone health 
for predicting cognitive function
Six proteins: carboxypeptidase N catalytic chain, glu-
tathione peroxidase 3, apolipoprotein A-I, apolipopro-
tein C-I, complement C1q subcomponent subunit B and 
complement C1q subcomponent subunit C, showed a 
significant interaction with mood disorders or bone 
health-related variables for predicting overall cognitive 
function (Table  4 and Fig.  3). An overall negative inter-
action was observed between carboxypeptidase N cata-
lytic chain and bone mineral density at the femoral neck 
as shown in Table 4. A closer inspection of the predictive 
margin plots revealed that for femoral neck BMD values 
up to 1.0, a positive association between carboxypepti-
dase N catalytic chain and cognitive function existed 
(Fig. 3A). However, for BMD values beyond 1.0, increas-
ing carboxypeptidase N catalytic chain was associated 
with a decline in cognitive function. An opposite trend 
was seen for the relationship between apolipoprotein A-I 
levels and cognitive function as modified by spine BMD 
(Fig.  3C). For spine BMD values up to 1.1, there was a 
negative association between apolipoprotein A-I levels 
and cognitive function that changed to a positive asso-
ciation for higher BMD values. Other bone health-related 
variables included total hip BMD and major osteoporo-
tic fractures in the last 20 years, which also modified the 
association between some of the protein markers and 
cognitive function. In addition to variables relating to 

Table 2 Results from the linear regression analysis investigating the association between plasma protein levels and overall cognitive 
function

The protein concentrations were transformed into a natural log, and the analyses were adjusted for age and APOE ε4 carrier status
a An eta-squared value of < 0.02 is considered a small effect size

Protein Bcoeff 95% CI t‑value p‑value aPartial 
eta‑
squared

Apolipoprotein A-I 0.38 0.11, 0.65 2.80 0.005 0.02

Apolipoprotein C-I 0.18 0.04, 0.32 2.46 0.014 0.01

Apolipoprotein M 0.23 < 0.01, 0.47 1.97 0.050 0.01

Carboxypeptidase N catalytic chain 0.22 < 0.01, 0.44 2.01 0.046 0.01

Complement C1q subcomponent subunit B − 0.24 − 0.47, − 0.01 − 2.05 0.040 0.01

Complement C1q subcomponent subunit C − 0.22 − 0.44, − 0.01 − 2.01 0.045 0.01

Glutathione peroxidase 3 0.28 0.04, 0.51 2.29 0.022 0.01

Lysozyme C − 0.18 − 0.36, − 0.01 − 2.06 0.040 0.01

Neuropilin-2/cystatin-C − 0.21 − 0.41, − 0.01 − 2.02 0.044 0.01

Alpha-1-microglobulin/bikunin precursor − 0.19 − 0.373, − 0.004 − 2.01 0.045 0.01
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bone health, the presence of a mood disorder impacted 
the biomarker findings. The interaction between pro-
tein markers and mood disorder was examined for only 
58 participants. Among individuals with a current diag-
nosis of a mood disorder, increasing apolipoprotein C-I 
levels correlated with higher cognitive function, while an 
inverse pattern was detected for people without a mood 
disorder (Fig. 3G).

Variable selection and multimarker model building using 
LASSO
An 11-feature multimarker panel was identified through 
LASSO in the following order of importance: apolipo-
protein A-I, neuropilin-2/cystatin-C, apolipoprotein C-I, 
alpha-1-microglobulin/bikunin precursor, complement 
C1q subcomponent subunit B, insulin-like growth factor-
binding protein complex acid labile subunit, glutathione 
peroxidase 3, age, alpha-1-acid glycoprotein 1, lysozyme 
C and carboxypeptidase N catalytic chain (Additional 

file 1: Fig. S2). The cross-validated LASSO model had a 
mean squared error of 0.38, which was smaller than the 
total mean squared error (0.56) of the regression model 
that included the same 11 features identified through 
LASSO. There was a good overlap between the results 
obtained from LASSO and individual linear regres-
sion analyses as out of the 10 proteins revealed through 
LASSO, eight were identified through regression analyses 
(refer to Table 1).

Pathway mapping and interaction network of proteins 
identified in the multianalyte panel
The proteins identified through LASSO were mapped 
to different molecular pathways such as amyloid fibre 
formation, lipoprotein assembly and clearance, innate 
immune system and transport of insulin-like growth 
factor. Further bioinformatic analyses revealed an 
interaction network among these proteins as shown 
in Additional file  1: Fig. S3. Similar protein-protein 

Table 3 Results from the interaction analyses between plasma protein levels and genetic variants for predicting overall cognitive 
function

The protein concentrations were transformed into a natural log, and the analyses were adjusted for age and APOE ε4 carrier status. The individual main effects are 
from a model without the interaction term
a An eta-squared value of < 0.02 is considered a small effect size

Exposure Bcoeff 95% CI t‑value p‑value aPartial 
eta‑
squared

Interaction between apolipoprotein C-I and rs3764650 (ABCA7)

 Apolipoprotein C-I 0.17 0.03, 0.32 2.42 0.016 0.01

 ABCA7_carrier 0.10 − 0.06, 0.26 1.27 0.204 < 0.01

Apolipoprotein C-I#ABCA7_carrier − 0.44 − 0.83, − 0.05 − 2.24 0.026 0.01

Interaction between apolipoprotein C-I and rs11136000 (CLU)

 Apolipoprotein C-I 0.17 0.03, 0.31 2.37 0.018 0.01

 CLU_carrier − 0.001 − 0.12, 0.12 − 0.02 0.986 < 0.01

 Apolipoprotein C-I#CLU_carrier − 0.29 − 0.58, − 0.01 − 2.00 0.046 0.01

Interaction between complement C1q subcomponent subunit C and rs6265 (BDNF)

 Complement C1q subcomponent subunit C − 0.22 − 0.438, − 0.005 − 2.01 0.045 0.01

 BDNF_carrier − 0.01 − 0.13, 0.12 − 0.10 0.919 < 0.01

 Complement C1q subcomponent subunit C#BDNF_
carrier

− 0.58 − 1.06, − 0.11 − 2.43 0.015 0.01

Interaction between glutathione peroxidase 3 and rs610932 (MS4A6A)

 Glutathione peroxidase 3 0.28 0.04, 0.51 2.29 0.023 0.01

 MS4A6A_carrier − 0.02 − 0.15, 0.10 − 0.38 0.707 < 0.01

 Glutathione peroxidase 3#MS4A6A_carrier − 0.64 − 1.12, − 0.15 − 2.56 0.011 0.01

Interaction between lysozyme C and rs6265 (BDNF)

 Lysozyme C − 0.19 − 0.36, − 0.01 − 2.06 0.040 0.01

 BDNF_carrier − 0.01 − 0.14, 0.11 − 0.23 0.815 < 0.01

 Lysozyme C#BDNF_carrier − 0.36 − 0.71, − 0.01 − 2.00 0.047 0.01

Interaction between lysozyme C and rs610932 (MS4A6A)

 Lysozyme C − 0.18 − 0.36, − 0.01 − 2.05 0.041 0.01

 MS4A6A_carrier − 0.02 − 0.15, 0.10 − 0.39 0.696 < 0.01

 Lysozyme C#MS4A6A_carrier 0.45 0.12, 0.79 2.65 0.008 0.02
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interactions were observed with the two tools. Of these 
11 proteins (given that neuropilin-2 and cystatin-C 
are distinct proteins), eight were found to be interact-
ing with one another. Despite having distinct biological 

functions, these proteins interacted through more than 
one pathway, suggesting an underlying physiological 
link.

Fig. 2 Predictive margins plots displaying interactions of protein markers with AD-related genetic variants for predicting overall cognitive function. 
A Interaction of apolipoprotein C-I with ABCA7 risk allele. B Interaction of apolipoprotein C-I with CLU risk allele. C Interaction of complement 
C1q subcomponent subunit C with BDNF risk allele. D Interaction of glutathione peroxidase 3 with MS4A6A risk allele. E Interaction of lysozyme C 
with BDNF risk allele. F Interaction of lysozyme C with MS4A6A risk allele
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Discussion
The present study identified plasma proteins associ-
ated with overall cognitive function among ageing men 
without severe cognitive impairment. In age- and APOE 
ε4 carrier status-adjusted univariate analysis, 10 pro-
teins, which are known to be associated with physi-
ological processes such as lipid transport, immune 
responses, protection against oxidative damage and 
transmembrane transport, displayed an association with 
cognitive function. We suspected that the observed rela-
tionship between protein markers and cognition might 
be impacted by the presence of genetic variants linked to 
AD risk. Allelic variants belonging to four genes: ABCA7, 
CLU, BDNF and MS4A6A, showed an interaction with 

some of the protein markers for predicting cognitive 
function, suggesting that individuals carrying the risk 
alleles may show an altered biomarker profile. These 
interactions may further aid our understanding of the 
underlying biology of the disease. For instance, the pro-
tein apolipoprotein C-I, which plays a major role in lipid 
metabolism, displayed interaction with risk variants 
of ABCA7 and CLU genes that also have a role in lipid 
metabolism. The gene ABCA7 encodes for a transmem-
brane protein involved in the packaging of lipids into 
lipoprotein particles, while CLU encodes for an apolipo-
protein that transports cholesterol in the brain [29, 30]. 
These interactions suggest a possible role for lipid trans-
port and metabolism in modulating cognitive function. 

Table 4 Results from the interaction analyses between plasma protein levels and variables related to bone health and mood disorder 
for predicting overall cognitive function

The protein concentrations were transformed to a natural log, and the analyses were adjusted for age and APOE ε4 carrier status. The individual main effects are from a 
model without the interaction term. MOF_20yr refers to the occurrence of a major osteoporotic fracture in the last 20 years
a An eta-squared value of < 0.02 is considered a small effect size

Exposure Bcoeff 95% CI t‑value p‑value aPartial 
eta‑
squared

Interaction between carboxypeptidase N catalytic chain and femoral neck BMD

 Carboxypeptidase N catalytic chain 0.20 − 0.02, 0.42 1.81 0.072 0.01

 Femoral neck BMD 0.19 − 0.29, 0.66 0.78 0.434 < 0.01

 Carboxypeptidase N catalytic chain#Femoral neck BMD − 2.21 − 3.86, − 0.57 − 2.65 0.008 0.02

Interaction between glutathione peroxidase 3 and total hip BMD

 Glutathione peroxidase 3 0.36 0.12, 0.60 2.93 0.004 0.02

 Total hip BMD 0.23 − 0.19, 0.66 1.08 0.282 < 0.01

 Glutathione peroxidase 3#Total hip BMD − 1.86 − 3.51, − 0.21 − 2.21 0.027 0.01

Interaction between apolipoprotein A-I and spine BMD

 Apolipoprotein A-I 0.38 0.11, 0.65 2.73 0.007 0.02

 Spine BMD 0.03 − 0.28, 0.35 0.20 0.840 < 0.01

 Apolipoprotein A-I#Spine BMD 1.49 0.08, 2.89 2.08 0.038 0.01

Interaction between apolipoprotein C-I and major osteoporotic fractures in the last 20 years

 Apolipoprotein C-I 0.18 0.04, 0.32 2.47 0.014 0.01

 MOF_20yrs − 0.08 − 0.30, 0.15 − 0.66 0.510 < 0.01

Apolipoprotein C-I#MOF_20yrs 0.65 0.25, 1.06 3.19 0.002 0.02

Interaction between complement C1q subcomponent subunit B and major osteoporotic fractures in the last 20 years

 Complement C1q subcomponent subunit B − 0.24 − 0.470, − 0.005 − 2.00 0.046 0.01

 MOF_20yrs − 0.05 − 0.28, 0.18 − 0.45 0.654 < 0.01

 Complement C1q subcomponent subunit B#MOF_20yrs − 1.52 − 2.45, − 0.59 − 3.21 0.001 0.02

Interaction between complement C1q subcomponent subunit C and major osteoporotic fractures in the last 20 years

 Complement C1q subcomponent subunit C − 0.22 − 0.434, 0.001 − 1.95 0.051 0.01

 MOF_20yrs − 0.05 − 0.28, 0.18 − 0.42 0.674 < 0.01

 Complement C1q subcomponent subunit C#MOF_20yrs − 1.20 − 2.28, − 0.12 − 2.19 0.029 0.01

Interaction between apolipoprotein C-I and a current mood disorder

 Apolipoprotein C-I − 0.02 − 0.42, 0.38 − 0.09 0.925 < 0.01

 Current mood disorder 0.03 − 0.30, 0.36 0.19 0.852 < 0.01

 Apolipoprotein C-I#Current mood disorder 0.81 0.05, 1.56 2.15 0.036 0.08
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The effect of genotype on blood protein profiles for AD 
has been previously demonstrated by Soares et  al. who 
found the APOE genotype to be associated with a unique 
biochemical plasma profile [3]. However, not much is 

known about the impact of other risk-conferring genetic 
variants on plasma biomarkers as APOE remains the 
most studied genetic risk factor to date even though AD 

Fig. 3 Predictive margin plots displaying the interactions of protein markers with AD-related health conditions for predicting overall cognitive 
function. A Interaction of carboxypeptidase N catalytic chain with femoral neck BMD. B Interaction of glutathione peroxidase 3 with total hip BMD. 
C Interaction of apolipoprotein A-I with spine BMD. D Interaction of apolipoprotein C-I with major osteoporotic fractures in the last 20 years. E 
Interaction of complement C1q subcomponent subunit B with major osteoporotic fractures in the last 20 years. F Interaction of complement C1q 
subcomponent subunit C with major osteoporotic fractures in the last 20 years. G Interaction of apolipoprotein C-I with a current mood disorder
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can develop among individuals without the APOE ε4 risk 
allele.

Next, interactions were explored between protein 
markers and variables related to bone health and mood 
disorders. Poor bone health and mood disorders, espe-
cially depression, are some of the known modifiable 
risk factors associated with AD, and it is worthwhile to 
investigate whether their presence influences the rela-
tionship between biomarker levels and cognitive func-
tion. Bone mineral density at the femoral neck, total 
hip and spine along with a history of major osteoporo-
tic fracture and diagnosis of a mood disorder, modified 
the relationship between plasma protein markers and 
cognition. Overall, the interaction results highlight the 
need to include genetic variants and other risk factors 
in biomarker studies, which face the inherent challenge 
of reproducibility. This is more important for health 
conditions such as AD, which is not driven by a single 
causative factor but arises due to a complex interplay 
between genetic and environmental risk factors. As the 
analyses above focused on a single protein analyte, a 
multianalyte panel associated with cognitive function 
was identified that comprised 10 protein markers and 
age. Eight of these plasma proteins were also found to 
be associated with cognitive function through individ-
ual regression analyses. Further analysis revealed dys-
regulation of pathways such as amyloid fibre formation 
and other biological mechanisms that may not directly 
relate to Aβ pathology such as lipoprotein assembly and 
immune responses. Encouragingly, proteins such as 
apolipoprotein A-I, apolipoprotein C-I and cystatin-C, 
which were identified through both univariate regres-
sion analyses and LASSO, are some of the most widely 
investigated plasma biomarkers for cognitive decline 
[31–34]. Among these proteins, the highest effect size 
was observed for apolipoprotein A-I through regres-
sion analyses wherein increasing levels of this protein 
were associated with better cognitive function. This 
is consistent with previous studies that have demon-
strated that reduced blood apolipoprotein A-I levels are 
associated with an increased risk of cognitive decline 
[31, 35, 36].

Although these biomarker findings have the potential 
to be used for wide-scale population screening, they 
need to be first replicated across independent popu-
lation cohorts to ensure high accuracy and reproduc-
ibility. Future prospective studies are required to see 
whether these protein markers can also predict any 
long-term cognitive change. Despite these challenges, 
blood-based screening to detect early cognitive changes 
and identify high-risk individuals offers several advan-
tages over expensive PET imaging with limited avail-
ability or CSF measurements that involve an invasive 

lumbar puncture. Furthermore, high-throughput mass 
spectrometric platforms allow simultaneous quantita-
tion of multiple proteins using sample volume as low as 
30 μL, facilitating efficient blood-based screening tests 
[5].

This was a one-of-a-kind study that highlights the 
need to investigate the role of genetic risk factors other 
than APOE and health conditions in biomarker analy-
sis. Our study was strengthened by the use of a pop-
ulation-based cohort where participants were drawn 
at random from the general population and did not 
comprise individuals with severe cognitive impairment 
or dementia. Also, an ethnically homogeneous popula-
tion may yield more precise results. However, our find-
ings may not be generalisable to other populations, 
and thus, future studies are required to extend these 
findings to other ethnically diverse cohorts. The pre-
sent study included only male participants as cognitive 
function using CBB was evaluated for the first time for 
the GOS male cohort in their 15-year follow-up phase. 
We are collecting data for the female cohort in their 
current follow-up and plan to conduct a similar study 
for women in the future when their follow-up assess-
ment phase is completed. Also, as this was an explora-
tory study, in order to mitigate the possibility of a false 
discovery rate, future confirmatory studies with adjust-
ments for multiple comparisons are expected. Another 
limitation of our study was the lack of brain imaging 
data to correlate with biochemical findings.

Overall, this study supports the hypothesis that a 
relationship between plasma protein levels and cogni-
tive function exists, and a blood-based proteomic sig-
nature can be exploited to enrich participants for more 
comprehensive AD testing. Early screening of high-risk 
groups may provide an opportunity to make lifestyle 
or pharmacological interventions before the onset of 
clinical symptoms, which become apparent only after 
irreversible neurological damage has occurred [2]. 
The study also underscores the importance of includ-
ing information on genetic risk factors and other health 
conditions associated with AD in order to establish 
reproducible biomarkers.
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