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Abstract 

Background and objectives Post‑stroke cognitive impairment (PSCI) occurs in up to 50% of patients with acute 
ischemic stroke (AIS). Thus, the prediction of cognitive outcomes in AIS may be useful for treatment decisions. 
This PSCI cohort study aimed to determine the applicability of a machine learning approach for predicting PSCI 
after stroke.

Methods This retrospective study used a prospective PSCI cohort of patients with AIS. Demographic features, clinical 
characteristics, and brain imaging variables previously known to be associated with PSCI were included in the analysis. 
The primary outcome was PSCI at 3–6 months, defined as an adjusted z‑score of less than − 2.0 standard deviation 
in at least one of the four cognitive domains (memory, executive/frontal, visuospatial, and language), using the Korean 
version of the Vascular Cognitive Impairment Harmonization Standards‑Neuropsychological Protocol (VCIHS‑NP). 
We developed four machine learning models (logistic regression, support vector machine, extreme gradient boost, 
and artificial neural network) and compared their accuracies for outcome variables.

Results A total of 951 patients (mean age 65.7 ± 11.9; male 61.5%) with AIS were included in this study. The area 
under the curve for the extreme gradient boost and the artificial neural network was the highest (0.7919 and 0.7365, 
respectively) among the four models for predicting PSCI according to the VCIHS‑NP definition. The most important 
features for predicting PSCI include the presence of cortical infarcts, mesial temporal lobe atrophy, initial stroke sever‑
ity, stroke history, and strategic lesion infarcts.

Conclusion Our findings indicate that machine‑learning algorithms, particularly the extreme gradient boost 
and the artificial neural network models, can best predict cognitive outcomes after ischemic stroke.
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Introduction
Post-stroke cognitive impairment (PSCI) refers to the 
development of cognitive deficits after index stroke in 
the absence of premorbid dementia and is one of the 
major determinants of functional dependence in post-
stroke survivors [1]. The prevalence of PSCI ranges 
from 20 to 75%, according to ethnicity, country, post-
stroke duration, and diagnostic criteria [2, 3]. PSCI not 
only causes cognitive impairment, but also increases 
the risk of other recurrent vascular events, including 
stroke [4, 5] and mortality [1]. Although the prevalence 
and burden of PSCI in stroke survivors are substantial, 
the prediction of PSCI development is still far from 
optimal.

Prediction of post-stroke cognition in patients with 
acute ischemic stroke (AIS) may be useful in decid-
ing the course of cognitive assessment and treatment 
during the chronic care of patients with AIS. Previ-
ous studies have reported several prognostic scoring 
systems based on the clinical and/or radiological find-
ings of patients with AIS. Two scoring systems, the 
CHANGE [6] and SIGNAL2 scale [7], have been shown 
to be modestly accurate in the prediction of PSCI, with 
areas under the receiver operating characteristic curve 
ranging from 0.740–0.829. As the pathophysiology and 
trajectory of cognitive decline after stroke are com-
plex, with numerous determinants, traditional scoring 
systems with a limited number of variables may not 
optimally predict PSCI. Machine learning algorithms 
can easily incorporate numerous variables [8], includ-
ing demographic, clinical, and imaging parameters, and 
may better predict PSCI.

Thus, we aimed to develop and determine the appli-
cability of the machine learning (ML) models to predict 
PSCI after AIS. Furthermore, we analyzed and dem-
onstrated the feature importance of input variables to 
determine the variables that are the most important PSCI 
Predictors.

Methods
Standard protocol approvals, registrations, and patient 
consent
This retrospective observational study was based on data 
from a prospective acute stroke registry. During hospi-
talization, written informed consent was obtained from 
all participants or their legal representatives for the use 
of clinical and imaging data in the prospective stroke reg-
istry [9]. Additional approval for this study, with a waiver 
for patient consent, was obtained from the Institutional 
Review Board of Hallym University Sacred Heart Hospi-
tal because of its retrospective nature and minimal risk to 
participants (IRB No. 2022–01-010–001).

Study design and population
Consecutive patients with acute ischemic stroke admit-
ted to a tertiary academic hospital within seven days of 
symptom onset were eligible to be enrolled in the study. 
All patients underwent standard evaluation and manage-
ment according to the institutional stroke protocol, based 
on international and domestic guidelines. In addition to 
laboratory and imaging studies, a neuropsychological 
battery was conducted in patients with acute ischemic 
stroke 3 to 6 months after stroke onset who complained 
of cognitive decline or were at high risk for PSCI at the 
discretion of the attending physician [10].

The inclusion criteria for this study were as follows: 
(1) consecutive ischemic stroke patients from January 
2011 to December 2020, (2) a relevant ischemic lesion 
observed on diffusion-weighted images, (3) admission 
within 7  days of symptom onset, and (4) available neu-
ropsychological battery data 3 to 6  months after stroke 
onset. The participants were excluded if (1) they had a 
history of premorbid cognitive decline (i.e., those previ-
ously diagnosed with dementia and prescribed anti-cho-
linesterase inhibitors or memantine), (2) patients with 
a pre-stroke modified Rankin scale score of > 2, and (3) 
patients who were unable to participate in the neuropsy-
chological tests due to hearing difficulty, poor coop-
eration, or neurological deficits including severe aphasia 
that would preclude the performance of neuropsycho-
logical tests.

Clinical variables
We collected data on baseline and demographic factors, 
including age, sex, and education level at admission. 
Clinical factors included the initial National Institute of 
Health Stroke Scale (NIHSS) score and stroke subtype 
according to the Trial of ORG 10172 in Acute Stroke 
Treatment (TOAST) classification. Data on vascular risk 
factors, including arterial hypertension, dyslipidemia, 
diabetes mellitus, smoking status, previous history of 
stroke or transient ischemic attack, and potential sources 
of cardiac embolism, including atrial fibrillation, were 
collected. Laboratory results, including initial random 
glucose, white blood cell, total cholesterol, low-density 
lipoproteins, high-density lipoproteins, triglycerides, and 
creatinine, were also collected. All participants under-
went brain magnetic resonance imaging using either a 
1.5-T or 3-T whole-body magnetic resonance imaging 
system according to their year of admission. The lateral-
ity, multiplicity, and volume of the ischemic stroke lesions 
were collected. Furthermore, lesion locations were cat-
egorized as cortical, subcortical, or infratentorial. Stra-
tegic lesion locations were defined as the basal ganglia, 
thalamus, hippocampus, caudate nucleus, inferomedial 
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temporal gyrus, and angular gyrus. Underlying small 
vessel diseases were evaluated based on the presence 
of lobar or deep chronic microbleeds and the degree of 
white matter hyperintensities according to the modified 
Fazekas scale [11]. Furthermore, the degree of mesial 
temporal lobe atrophy was determined using Schelten’s 
scale [12].

Post‑stroke cognitive impairment
The primary outcome was defined as the diagnosis of 
PSCI 3–6 months after stroke using the domain-specific 
definition. The PSCI was defined as having a standard-
ized z-score of less than or equal to two standard devia-
tions in at least one cognitive domain from the following: 
memory, language, visuospatial, and frontal/executive 
function. All participants were evaluated with a 60  min 
neuropsychological battery using the Korean version 
of the Vascular Cognitive Impairment Harmonization 
Standards-Neuropsychological Protocol (K-VCIHS-NP) 
at 3 to 6  months after stroke onset. The K-VCIHS-NP 
comprises four major cognitive domains, and the details 
of the included neuropsychological tests have been pre-
viously reported [3]. We also used the Korean version of 
the Mini-Mental State Examination (K-MMSE) to evalu-
ate general cognitive function. All cognitive batteries in 
the K-VCIHS-NP were validated for use in the Korean 
population, and the scores of each test were transformed 
into z-scores after adjusting for age, sex, and years of edu-
cation. Domain-specific z-scores were calculated using 
the average z-scores of each cognitive test comprising the 
domain-targeted tests. Pre-stroke cognitive assessments 
of the participants were performed with a structured 
questionnaire using the Korean version of the Informed 
Questionnaire on Cognitive Decline in the Elderly 
(IQCODE). IQCODE scores over 3.6 were set as a cut-
off for premorbid cognitive decline. Secondary outcomes 
included the diagnosis of PSCI according to z-scores and 
raw K-MMSE scores. PSCI-MMSEz was diagnosed when 
the z-score of MMSE was less than − 2 SD and PSCI-
MMSE was diagnosed when the raw MMSE score was 
less than 24.

Machine learning model development
A total of 31 clinical and imaging variables were included 
in the ML model development for the prediction of 
PSCI (Supplemental Table  1). We used four ML algo-
rithms: logistic regression [13], support vector machine 
(SVM) [14], extreme gradient boosting (XGB) [15], and 
artificial neural network (ANN)   [16]. Logistic regres-
sion is used for binary classification by substituting a 
linear function into a sigmoid function and express-
ing the result as 0 or 1. Support Vector Machine finds a 
hyperplane for binary classification, which is expressed 

in a high dimension according to the data input. Boost-
ing is one of the ensemble techniques, and it is a model 
that improves errors by assigning weights to unpredicted 
data in the process of sequentially learning multiple weak 
learners. XGB is an ensemble model of weak learners, 
which is a decision tree that uses gradient descent to 
update the weights. Additionally, a technique to prevent 
overfitting was applied to the algorithm to improve the 
loss. An ANN is composed of several feedforward neu-
ral networks. In general, it is primarily used for the non-
linear classification of very complex problems, and its 
performance increases as the number of layers or vari-
ables increases. However, an excessive number of layer 
compositions and the use of multiple variables can cause 
overfitting. In this study, stratified k-fold, class weight, 
and random search techniques were used to prevent 
overfitting and model optimization. First, we divided the 
dataset into a training dataset and a test dataset in an 
8:2 ratio, with 950 and 191 participants in each, respec-
tively. Then, the training dataset was divided 10-fold, and 
cross-validation was performed by composing the same 
ratio of classes in the divided dataset. Cross-validation 
can prevent overfitting of a specific dataset and create a 
more generalized model. Among class weight, focal loss, 
and resampling techniques for solving the data imbalance 
problem, we applied the class weight technique. The ratio 
of the class of each outcome variable divided according 
to the MMSE score, MMSE z-score, and PSCI z-score 
was calculated to contribute equally to the loss calcula-
tion. While the grid search technique is generally used 
to search for hyper-parameters, we used random search 
[17] for better performance in finding the optimal hyper-
parameters. The ML model was optimized using Optuna 
[18], a hyperparameter optimization framework based on 
random search.

Recently, as the performance of ML models has 
increased, the importance of XAI (eXplainable AI), which 
explains the results of the model, is increasing. Among 
them, we utilized SHAP (SHapley Additive exPlanations) 
[19] to express the feature attribution numerically. Spe-
cifically, feature attribution must satisfy local accuracy, 
missingness, and consistency. The SHAP values were the 
only additive feature importance measures that satisfied 
these three characteristics. In addition, the influence of 
the model was calculated by considering the dependence 
between variables. Therefore, it is possible to intuitively 
check the contribution of each variable in predicting 
PSCI. Thus, the feature importance and relationship of 
the PSCI-related variables were derived using SHAP 
values.

Among the study population, 80% were randomly 
selected for the training dataset and the remaining 20% 
were used as the test dataset. TensorFlow version 2.6.0, 
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and scikit-learn version 1.0.2 were used for the training 
of the models. For hyperparameter tuning, Optuna 2.10.0 
version was used. And Shap 0.40.0 version was used to 
calculate SHAP values.

Statistical analysis
For the descriptive analysis, continuous variables are pre-
sented as mean ± standard deviation or medians with an 
interquartile range (IQR), as appropriate, and categori-
cal variables with numbers and frequencies. Baseline, 
clinical, and imaging characteristics between the PSCI 
and no PSCI groups were compared using the t-test or 
Mann–Whitney U test for continuous variables and the 
chi-squared test or Fisher’s exact test for categorical vari-
ables, as appropriate. The area under the curve (AUC), 
accuracy, and F1 score were calculated to assess the per-
formance of the developed ML models.

Data availability statement
The data supporting the findings of this study are avail-
able from the corresponding author upon reasonable 
request.

Results
Baseline characteristics
Among the 4329 patients admitted with acute stroke dur-
ing the study period, 951 patients were included in this 
study (Fig. 1). The mean age was 65.7 ± 11.9 years and the 

average interval between stroke onset to neuropsycho-
logical assessment was 4  months. The median NIHSS 
score was 2 (IQR 1–5) in our cohort.

Of the 951 patients included, 286 (30.1%) devel-
oped PSCI–3–6  months after stroke according to the 
K-VCIHS-NP results. The baseline characteristics of the 
PSCI and non-PSCI groups are shown in Table  1. The 
development of PSCI was significantly associated with 
older age, cardioembolic etiology, higher initial NIHSS 
score, larger stroke volume, and presence of cortical or 
strategic lesions. The PSCI group also had a more fre-
quent history of hypertension, diabetes mellitus, coro-
nary heart disease, atrial fibrillation, previous history of 
stroke or TIA, and higher levels of fasting blood glucose 
and MTLA scores.

Prediction models
Four models were developed for the prediction of PSCI, 
including logistic regression, SVM, XGB, and ANN 
models. The mean AUC for predicting PSCI was 0.7919 
(0.6839–0.8866) for XGB, 0.7365 (0.6202–0.8438) for 
ANN, 0.7157 (0.5914–0.8271) for SVM, and 0.7121 
(0.5914–0.8265) for logistic regression (Fig. 2 and Supple-
mental Table 2). The ROC curves for the best-performing 
folds and corresponding confusion matrices are shown in 
Fig. 3. The mean accuracy was the highest with XGB, fol-
lowed by SVM, ANN, and logistic regression.

Fig. 1 Study enrollment process. PSCI, post‑stroke cognitive impairment. K‑VCIHS, Korean version of Vascular Cognitive Impairment Harmonization 
Standard
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Table 1 Demographic and clinical characteristics according to the status of post‑stroke cognitive impairment

Abbreviations: PSCI Post-stroke cognitive impairment, BMI Body mass index, TOAST Trial of ORG 10172 in Acute Stroke Treatment, LAA Large artery atherosclerosis, 
SVO Small vessel occlusion, CE Cardioembolism, OD Other determined, UD Undetermined, NIHSS National institute of health stroke scale, IV Intravenous, tPA tissue 
plasminogen activator, IA Intraarterial, mFS modified Fazekas scale, MTLA Medial temporal lobe atrophy

Patients without PSCI
(n = 661)

Patients with PSCI
(n = 290)

p‑value

Demographic characteristics

 Age, mean ± SD 64.9 ± 12.2 67.3 ± 11.1 0.002

 Sex, male, n (%) 446 (62.5%) 198 (59.5%) 0.388

 Education years, median [IQR] 9.0 [6.0; 12.0] 9.0 [6.0; 12.0] 0.651

 Previous mRS, median [IQR] 0.0 [0.0; 0.0] 0.0 [0.0; 0.0] 0.009

 BMI, mean ± SD 24.3 ± 3.1 23.9 ± 3.4 0.056

Stroke characteristics

 TOAST classification < 0.001

  LAA, n (%) 254 (35.6%) 125 (37.5%)

  SVO, n (%) 300 (42.0%) 93 (27.9%)

  CE, n (%) 82 (11.5%) 67 (20.1%)

  UD and OD, n (%) 78 (10.9%) 38(14.4%)

 Initial NIHSS, median [IQR] 2.0 [1.0; 4.0] 3.0 [1.0; 6.0] < 0.001

 Thrombolysis 0.057

  IV tPA, n (%) 66 (9.2%) 38 (11.4%)

  IA thrombectomy, n (%) 9 (1.3%) 4 (1.2%)

  Combined IV + IA, n (%) 8 (1.1%) 11 (3.3%)

Lesion characteristics

 Stroke volume  (mm3), median [IQR] 4.2 [0.8; 20.5] 10.3 [1.3; 114.8] < 0.001

 Left‑sided lesions, n (%) 402 (56.3%) 192 (57.7%) 0.73

 Multiple lesions, n (%) 67 (9.4%) 34 (10.2%) 0.757

 Cortical lesions, n (%) 221 (31.0%) 171 (51.4%) < 0.001

 Subcortical lesions, n (%) 362 (50.7%) 161 (48.3%) 0.625

 Infratentorial lesions, n (%) 201 (28.2%) 65 (19.5%) 0.004

 Strategic lesions, n (%) 229 (32.1%) 140 (42.0%) 0.002

Vascular risk factors

 Hypertension, n (%) 413 (57.8%) 215 (64.6%) 0.046

 Diabetes mellitus, n (%) 191 (26.8%) 121 (36.3%) 0.002

 Hyperlipidemia, n (%) 256 (35.9%) 108 (32.4%) 0.311

 Previous stroke/TIA, n (%) 86 (12.0%) 68 (20.4%) 0.001

 Coronary heart disease, n (%) 34 (4.8%) 27 (8.1%) 0.044

 Atrial fibrillation, n (%) 74 (10.4%) 70 (21.0%) < 0.001

 Smoking, n (%) 277 (38.8%) 118 (35.4%) 0.329

Laboratory findings

 Total cholesterol (mg/dL), mean ± SD 181.3 ± 42.8 177.6 ± 46.9 0.217

 Serum creatinine (mg/dL), mean ± SD 0.8 ± 0.5 0.9 ± 0.8 0.186

 Hemoglobin (mg/dL), mean ± SD 14.0 ± 1.7 13.9 ± 1.7 0.24 3

 Fasting blood sugar (mg/dL), mean ± SD 120.4 ± 42.6 129.0 ± 48.9 0.006

 Systolic blood pressure (mmHg), mean ± SD 149.1 ± 25.8 146.8 ± 24.6 0.178

Small vessel disease burden and atrophy

 Microbleeds, n (%) 132 (18.5%) 67 (20.1%)

 Modified Fazekas score 0.086

  mFS grade 0, n (%) 132 (18.5%) 51 (15.3%)

  mFS grade 1, n (%) 329 (46.1%) 144 (43.2%)

  mFS grade 2, n (%) 176 (24.6%) 85 (25.5%)

  mFS grade 3, n (%) 77 (10.8%) 53 (15.9%)

 Total MTLA, median [IQR] 2.0 [1.0; 3.0] 2.0 [2.0; 4.0] < 0.001
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Fig. 2 Comparison of machine learning model performance for the prediction of PSCI according to the VASCOG definition matrices 
of the best‑performing model, XGB

Fig. 3 The receiver operating characteristic curves for the developed machine learning models and the confusion matrix of the best‑performing 
model, XGB
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Feature importance
We determined the important variables used for the pre-
diction of PSCI using the SHAP values of the best pre-
diction model, the XGB (Fig. 4). The severity of the index 
stroke, assessed using the discharge NIHSS score and 
stroke volume, was the most important variable. Base-
line medial temporal lobe atrophy was the second lead-
ing cause of PSCI development, followed by age, fasting 
blood sugar level, depression, age, and the presence of 
cortical lesions. History of previous stroke and atrial 
fibrillation was also utilized in the prediction model. 
However, the presence of left-sided lesions or multiple 

territory lesions was associated with zero SHAP values. 
Other common important features captured from three 
other ML models included cortical lesion, stroke severity, 
mesial temporal lobe atrophy, previous stroke, strategic 
lesion, and history of atrial fibrillation (Supplementary 
Fig. 1).

Prediction models for the secondary outcomes
We used all four ML models for secondary outcomes 
with different diagnostic criteria for PSCI. The mean 
AUC for predicting PSCI-MMSEz was 0.7876 (0.6711–
0.8892) for XGBoost, 0.7339 (0.6018–0.8525) for ANN, 

Fig. 4 The SHapley Additive exPlanations values of the best prediction model, XGB
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0.7463 (0.6191–0.8566) for SVM, and 0.7608 (0.6434–
0.8663) for logistic regression (Supplemental Table  3). 
The mean accuracy was the highest with XGB, followed 
by SVM, ANN, and logistic regression. The ROC curves 
for the best-performing folds are shown in Supplemental 
Fig. 2A. The overall AUC for the prediction of the PSCI-
MMSE was the highest among the outcome variables. 
The mean AUC for predicting PSCI-MMSE was 0.8751 
(0.7838–0.9472) on SVM, 0.8741 (0.8165–0.9241) on 
ANN, 0.8713 (0.7831–0.9414) on LR and 0.8616 (0.7683–
0.9389) on XGBoost. The mean accuracy was the highest 
with ANN (0.8639), followed by XGBoost, SVM, and LR. 
The ROC curves for the best-performing folds are shown 
in Supplemental Fig. 2B.

Discussion
We developed ML models to predict PSCI in patients 
with acute ischemic stroke. We demonstrated that the 
ML approach can accurately predict short-term cogni-
tive outcomes after an acute stroke. Among the four 
ML models, XGB had the highest accuracy and largest 
area under the curve. Furthermore, the most important 
features associated with the prediction of PSCI include 
stroke severity, stroke volume, mesial temporal lobe atro-
phy, fasting blood glucose, age, and cortical lesions.

As the pathophysiology and contributing factors for 
the development of PSCI are diverse and complex [20], 
the prediction of PSCI is less accurate than the predic-
tion of functional outcomes after stroke in clinical prac-
tice. Although multiple traditional prediction models 
[21] and ML models [22] for the prediction of functional 
outcomes after ischemic stroke have been reported with 
high accuracy, there are few prediction models for PSCI 
in the literature. Furthermore, this study is the first to 
incorporate ML techniques with both demographic and 
image variables to predict PSCI. Among the prediction 
models, Chander et al. reported the CHANGE (Chronic 
lacunes, Hyperintensities, Age, Non-lacunar corti-
cal infarcts, Global atrophy, and Education) score using 
logistic regression models with PSCI at 3–6  months as 
the outcome. They used the cut-off raw score of either 
the Mini-Mental Status Examination (MMSE) ≤ 25 or 
Montreal Cognitive Assessment (MOCA) ≤ 22. The over-
all accuracy and area under the ROC curve for the model 
development cohort were 73.7% and 0.820, respectively. 
The  SIGNAL2 model also used the definition of PSCI 
using the same cutoff values of MMSE and MoCA as 
the CHANGE model. The  SIGNAL2 model also had an 
AUC of 0.829 for the prediction of PSCI using both clini-
cal and neuroimaging variables. Meanwhile, the machine 
learning model we developed had an accuracy of 79.6% 
and an AUC of 0.792, which are relatively lower than 
those of traditional risk prediction models, whereas our 

models utilized more than 30 input variables with the 
ML approach. These discrepancies are mainly due to the 
fact that MMSE and MoCA scores are highly depend-
ent on age and education level. Both the CHANGE and 
SIGNAL2 models used age and education as input vari-
ables with high weights; thus, the prediction of raw score 
cutoff of MMSE and MoCA may be higher regardless of 
patients’ clinical characteristics. In this regard, the AUC 
and accuracy were as high as 0.8751 and 81.7%, respec-
tively, in the secondary outcome of our study using the 
raw MMSE score, which is higher than that of the tradi-
tional risk prediction models. However, as the diagnosis 
of PSCI is mostly based on the standardized z-scores of 
each neurocognitive domain in recent diagnostic criteria, 
including the VASCOG [23] and VICCCS criteria [24], 
the overall accuracy achieved with ML techniques using 
validated diagnostic criteria is more suitable than previ-
ous studies.

Recently, eXplainable Artificial Intelligence (XAI) [25] 
has been developed, in which investigators can under-
stand the important variables that were utilized in the 
predictions made by AI. Among them, we performed 
Shapley Additive Explanations, which produce Shapley 
values for each input variable to measure the contribution 
to the prediction. Among 30 clinical and neuroimaging 
variables, the most important features for the prediction 
of PSCI in the best-performing models were stroke sever-
ity, stroke volume, mesial temporal lobe atrophy, age, 
fasting blood sugar, cortical lesions, body mass index, 
and history of previous stroke. The important features of 
other ML models that are not in the higher order in the 
XGB model include strategic infarction, history of hyper-
tension, and depression. This order of feature importance 
is in accordance with previous risk factor studies on PSCI 
[10, 26, 27]. Previous studies on neuroimaging markers 
have revealed that the adjusted  R2 for the prediction of 
PSCI was the highest for stroke volume, followed by total 
brain tissue volume, total medial temporal lobe atrophy, 
and the presence of strategic strokes. Further signifi-
cant predictors with less meaningful R2 were a history of 
stroke, left hemispheric lesion, microbleeds, and white 
matter hyperintensity burden [28]. Old age, low educa-
tional level, history of hypertension, fasting blood sugar, 
and body mass index have also been reported as potential 
risk factors for stroke in previous studies [29–31].

Most of the important predictors for the models were 
unmodifiable factors such as age, previous stroke his-
tory, and stroke lesion characteristics. While vascular 
risk factors, including hypertension, dyslipidemia, dia-
betes, and atrial fibrillation also showed a strong associa-
tion with PSCI development, there is limited evidence 
that controlling these modifiable risk factors would lower 
the incidence of PSCI [32]. Thus, it remains unclear 
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whether the prediction of PSCI in the acute stroke stage 
may help prevent the development of PSCI. However, it 
may be helpful to perform a careful and thorough cog-
nitive assessment at a reasonable time point after stroke 
in patients whose PSCI is predicted by the ML approach 
to effectively diagnose and improve cognitive status with 
potential therapeutic options at an earlier stage.

This study had several limitations. First, this was based 
on a single-center cohort and thus requires external vali-
dation. Although we only included clinical variables and 
imaging variables that are typically obtained or evaluated 
in most stroke centers, stroke registries with a routine 
cognitive assessment with a full neuropsychological bat-
tery are scarce. Second, the attrition rate was high in this 
cohort and mostly included patients with mild ischemic 
stroke who could complete neuropsychological batter-
ies, thereby precluding the generalizability of our model. 
Thirdly, we utilized the MMSE as one of our study’s out-
come variables in place of the MoCA. While the MoCA 
is recognized for its greater sensitivity and specificity in 
detecting cognitive decline in patients with PSCI [33], not 
all participants in our study undertook this test. To mini-
mize selection bias, we chose to implement the MMSE. 
This decision also facilitated comparison with previous 
studies, which predominantly utilized MMSE as their 
outcome variables. Furthermore, the ML models are sub-
ject to improvement with additional features, including 
raw MRI images including DWI or DTI, which may rep-
resent network connectivity and other unknown imaging 
features associated with the development of PSCI.

Conclusion
We demonstrated that ML models, particularly the XGB 
model, could accurately predict short-term cognitive 
outcomes after acute ischemic stroke. Among these vari-
ables, the most important features associated with the 
prediction of PSCI included stroke severity, stroke vol-
ume, mesial temporal lobe atrophy, fasting blood glucose, 
age, and cortical lesions. However, it remains to be deter-
mined whether accurate prediction of PSCI development 
can indeed contribute to mitigating cognitive decline in 
these patients.
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