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Abstract 

Background Alzheimer’s dementia (AD) is associated with electroencephalography (EEG) abnormalities includ-
ing in the power ratio of beta to theta frequencies. EEG studies in mild cognitive impairment (MCI) have been 
less consistent in identifying such abnormalities. One potential reason is not excluding the EEG aperiodic compo-
nents, which are less associated with cognition than the periodic components. Here, we investigate whether ape-
riodic and periodic EEG components are disrupted differently in AD or MCI vs. healthy control (HC) individuals 
and whether a periodic based beta/theta ratio differentiates better MCI from AD and HC groups than a ratio based 
on the full spectrum.

Methods Data were collected from 44 HC (mean age (SD) = 69.1 (5.3)), 114 MCI (mean age (SD) = 72.2 (7.5)), and 41 
AD (mean age (SD) = 75.7 (6.5)) participants. Aperiodic and periodic components and full spectrum EEG were com-
pared among the three groups. Receiver operating characteristic curves obtained via logistic regression classifica-
tions were used to distinguish the groups. Last, we explored the relationships between cognitive performance 
and the beta/theta ratios based on the full or periodic spectrum.

Results Aperiodic EEG components did not differ among the three groups. In contrast, AD participants showed 
an increase in full spectrum and periodic relative powers for delta, theta, and gamma and a decrease for beta 
when compared to HC or MCI participants. As predicted, MCI group differed from HC participants on the periodic 
based beta/theta ratio (Bonferroni corrected p-value = 0.036) measured over the occipital region. Classifiers based 
on beta/theta power ratio in EEG periodic components distinguished AD from HC and MCI participants, and outper-
formed classifiers based on beta/theta power ratio in full spectrum EEG. Beta/theta ratios were comparable in their 
association with cognition.

Conclusions In contrast to a full spectrum EEG analysis, a periodic-based analysis shows that MCI individuals are 
different on beta/theta ratio when compared to healthy individuals. Focusing on periodic components in EEG studies 
with or without other biological markers of neurodegenerative diseases could result in more reliable findings to sepa-
rate MCI from healthy aging, which would be valuable for designing preventative interventions.
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Background
Alzheimer’s dementia (AD) is a progressive illness that 
accounts for 60–80% of all dementia [1]. AD is typically 
preceded by mild cognitive impairment (MCI) during 
which individuals can still function independently [2]. 
Thus, biological markers that distinguish MCI from AD 
or healthy aging are crucial to the development of pre-
ventative interventions which in turn could improve 
quality of life, caregiver burden, and cost of care due to 
dementia [3]. Of note that while MCI is often associated 
with an increased risk of AD, it does not inevitably lead 
to its development [2].

Electroencephalography (EEG) is a non-invasive and 
inexpensive tool that allows the assessment of neural 
ionic current flows based on differences in voltages at dif-
ferent spatial scales in the brain and at a high time reso-
lution [4–6]. Most EEG, like magnetoencephalogram 
(MEG), studies in AD and MCI have analyzed the power 
spectral density (PSD), especially for resting-state EEG 
[5, 7–12]. In general, these studies have found increased 
power in delta and theta and decreased powers in alpha 
and beta in individuals with AD, especially in the tem-
poral and posterior/occipital brain regions [5, 7–14]. 
The ratios of fast-to-slow frequency powers have also 
been shown to differ between individuals with AD and 
those with normal cognition [3]. One of the most prom-
ising power ratios is the ratio of fast beta frequency to 
slow theta frequency (“beta/theta ratio”), suggesting that 
the beta/theta ratio is a marker of cognitive processing 
capacity [4–8].

In contrast, EEG differences in MCI vs. healthy indi-
viduals have been smaller in magnitude and not consist-
ently replicated [9, 15–17], including when measured 
over the occipital or temporal regions [9, 18]. In fact, the 
EEG power spectrum-based parameters are more sensi-
tive to identify the MCI subjects most likely to progress 
to dementia in comparison with those MCI subjects that 
do not develop [15]. One potential reason is that these 
studies did not exclude the aperiodic component of EEG. 
EEG power spectra typically consist of two main com-
ponents: an aperiodic background part of the spectrum 
(arrhythmic component - 1/f-like component); and peri-
odic or rhythmic neural oscillations [19]. The aperiodic 
part of EEG is also called fractal or “scale-free” activity 
because the signal of the aperiodic part is typically self-
similar across many temporal scales [20]. Several stud-
ies have shown the benefit of focusing on the periodic 
parts of EEGs [15, 19, 21, 22]. The periodic components 
of EEG, rather than the aperiodic components, have been 

associated with speed of processing and working mem-
ory [15]. Excluding the aperiodic parts of an EEG could 
be beneficial because the aperiodic parts could mask 
observing reductions in true oscillatory power, shifts in 
oscillation center frequency, or reductions in broadband 
power [19], all of which can be subtle in mild disease con-
ditions such as MCI.

To our knowledge, the effect of excluding the aperi-
odic component of EEG has not been studied in AD and 
MCI. In this context, we conducted a study to investigate 
whether we could better distinguish MCI from healthy 
control (HC) and AD participants using periodic only vs. 
full spectrum analyses of eyes-closed resting-state EEG, 
with a focus on fast-to-slow activity as measured using 
beta-to-theta power ratio.

Material and methods
Participants
HC and MCI participants were recruited for an AD pre-
vention trial (Prevention of AD with Cognitive Reme-
diation plus transcranial Direct Current Stimulation 
in Mild Cognitive Impairment and Depression (PACt-
MD); NCT02386670) across five academic hospitals in 
Toronto, Canada. The complete clinical trial design and 
rationale have been reported previously [16]. All partici-
pants provided written informed consent as approved 
by the local Research Ethics Board and Clinical Trials 
Ontario. Eligibility criteria for all participants included: 
(1) no lifetime Diagnostic and Statistical Manual of Men-
tal Disorders Fifth Edition (DSM 5) [17] diagnosis of 
schizophrenia, bipolar disorder, or obsessive-compul-
sive disorder; (2) no significant neurological conditions 
impacting cognition or unstable medical illnesses; (3) no 
DSM 5 diagnosis of alcohol or other substance use dis-
order within the past 12 months; (4) no use of cognitive 
enhancers in the 6 weeks prior to entering the study; and 
(5) Montgomery–Asberg Depression Rating Scale [18] 
(MADRS) score ≤ 10. Additional eligibility criteria for the 
MCI group included: (1) Age ≥ 60; and (2) DSM-5 diag-
nosis of Mild Neurocognitive Disorder. Additional eli-
gibility criteria for the HC group included: (1) Age ≥ 60; 
(2) no DSM 5 diagnosis of Mild or Major Neurocognitive 
Disorder; and (3) no neuropsychological testing done in 
the 12 months prior to baseline assessment. In addition, 
MCI diagnosis was confirmed at a consensus conference 
that included the clinical psychiatrist of the participant, 
one or two principal investigators, the study neuropsy-
chologist, and the research staff who administered the 
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clinical, functional, and neuropsychological assessments. 
The EEG study was an optional portion of the parent 
study. Of those who consented and completed the EEG at 
baseline, 114 MCI and 44 HC participants were included 
in the final analyses (see CONSORT chart, Figs. S1 and 
S2 in Supplementary Appendix A). Of note, PACt-MD 
also recruited participants with a major depressive dis-
order with or without MCI. These participants were not 
included in this analysis.

AD participants were included from two other interven-
tion studies (clinicaltrials.gov  identifiers: NCT01847586 
and NCT02537496). Eligibility criteria for AD partici-
pants included: (1) a diagnosis of probable AD according 
to the criteria of either the National Institute of Neuro-
logical and Communicative Disorders and Stroke and the 
Alzheimer’s Disease and Related Disorders Association 
(NINCDS-ADRDA) [23] in one study or the National 
Institute on Aging – Alzheimer’s Association  (NIA-AA) 
Research Framework for Alzheimer’s Disease [24] in the 
other study; (2) either not taking an acetylcholinesterase 
inhibitor or having been on a stable dosage for at least 3 
months; and (3) no DSM-5 diagnosis other than Major 
Neurocognitive Impairment due to Alzheimer’s disease 
(i.e., AD) within the past 12 months. In addition, in one 
study, participants were 65 years old or older and they had 
a Mini Mental State Examination (MMSE) [25] score ≥ 17; 
in the other study, they were 55 years old or older and 
they had a Montreal Cognitive Assessment (MoCA) [26] 
score ≥ 10 (see CONSORT chart, Fig. S3 in Supplemen-
tary Appendix).

All participants in the three studies provided written 
informed consent, as approved by the Research Ethics 
Board at the Centre for Addiction and Mental Health, 
Toronto, Canada.

Cognitive assessments
Clinical
The MCI and HC participants completed both the MoCA 
and MMSE. AD participants did not undergo both tests: 
26 completed the MMSE and 14 completed the MoCA. 
For one participant, neither a MMSE nor a MoCA score 
was available. For this analysis, for the 26 participants 
who had completed the MMSE, we generated and used 
equivalent MoCA scores based on the conversion table 
from [27].

EEG data collection and processing
All three studies were conducted using the same EEG 
equipment and protocols as described in [17]. Briefly, 
EEGs were completed using a 64-channel Synamps 2 
EEG device and the 10–10 montage system. Electrodes 
were referenced to CPz. EEG signals were recorded 

for 10 min at the sampling frequency of 1000 Hz. Par-
ticipants sat on a chair, eyes closed in a relaxed state 
while avoiding to move their head or eyes, or to sleep. 
A band-pass filter with cut-off frequencies of 1 and 45 
Hz was next used, bad channels were removed, and the 
data was re-referenced to a common average reference.

EEG data processing occurred offline using MAT-
LAB (The MathWorks, Inc.) and EEGLAB toolbox. Ini-
tially, we visually inspected the EEG data to ensure the 
absence of prominent delta and theta waves, which are 
typically indicative of sleep EEG patterns, in order to 
exclude drowsiness during the EEG recording. Subse-
quently, we conducted a visual examination of the EEG 
data to eliminate segments with noticeable noise and 
channels heavily affected by various artifacts, includ-
ing motion artifacts, eye movements, and blinks. Fur-
thermore, in an effort to further mitigate any remaining 
noise, we divided the processed continuous EEG data 
into epochs of 2 s each and applied independent com-
ponent analysis (ICA) to remove components related to 
eye movements and muscle activity [28].

After the pre-processing step, we calculated the total 
power spectrum using the Welch method [29] with 
a Hann window function and a segment size 2 s with 
overlap of 50%, and taking the median. Subsequently, 
we used the “fooof” (fitting of one over f ) toolbox to 
parametrize the resulting total power spectrum; it 
performs a sequential decomposition of the power 
spectrum into its aperiodic and periodic components, 
optimizing the modelled spectrum using a least-
squared- error approach [19]. We then normalized the 
resulting periodic component of the spectrum (by total 
power of the periodic component) to account for inter-
individual differences when computing averages.

We calculated the total PSD of EEG data based on the 
Welch method [29] in the frequency domain 1–45 Hz, 
which includes delta (1–4  Hz), theta (4–8  Hz), alpha 
(8–13  Hz), beta (13–30  Hz), and gamma (30–45  Hz). 
The algorithm considers the power spectrum as a com-
bination of an aperiodic background component with 
overlying periodic components, or oscillations. These 
assumed periodic oscillatory power components are 
characterized as frequency regions of power above the 
aperiodic or background component, and are referred 
to here as ‘peaks’. The algorithm operates on PSDs in 
semilog-power space, where the frequencies are lin-
early spaced, and the power values are log-spaced. The 
aperiodic component is fitted as a function over the 
entire range of the spectrum, while each oscillatory 
peak is modeled using a Gaussian. Each Gaussian is an 
oscillation, and the three parameters that define it are 
used to describe the oscillation. This formulation mod-
els the power spectrum as:
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where the PSD is comprised of two parts: the aperiodic 
component, L, and N total Gaussians, G. Each Gn is a 
Gaussian fitted to a peak, with N representing the total 
number of peaks extracted from the power spectrum as:

where a denotes the power of the peak, in log10(power) 
values; c shows the center frequency in Hz; w is the 
standard deviation of the Gaussian in Hz; and F is the 
vector of input frequencies. The aperiodic or background 
component, L, is modeled based on a Lorentzian func-
tion as follows:

where b is the broadband offset, χ is the exponent and 
k is the ‘knee’ parameter that controls the bend in the 
aperiodic component, F denotes the vector of input fre-
quencies. If k equals 0, this formulation is equivalent to 
fitting a line in log–log space, which is also known as 
fixed mode. It is worth mentioning that there is a direct 
relationship between the slope, a, of the line in log–log 
spacing, and the exponent, χ, with χ equaling negative a 
when there is no knee. By fitting with k, it is possible to 
parameterize bends or knees in the aperiodic component 
that occur across broad frequency ranges, which is par-
ticularly relevant in intracranial recordings [19].

PSD = L+

N
∑

n=0

Gn,

Gn = a× exp
−(F − c)2

2w2
,

L = b− log
(

K + Fx
)

,

We utilized the parameter settings for the fooof algo-
rithm (peak width limits = [1,13], maximum number of 
peaks = 3, minimum peak height = 0.00, peak thresh-
old = 1.5, and aperiodic mode = ‘fixed’) [19, 30]. We vali-
dated visually that these settings achieved an adequate fit 
and that there was no distinct ‘knee’ observed within the 
1–45 Hz frequency range we analyzed.

Statistical analyses
All data were analyzed using the Statistical Program 
for Social Sciences (SPSS) version 23.0 (SPSS Inc., Chi-
cago, IL, USA). One-way analysis of variance (ANOVA) 
and  χ2  tests were used to evaluate differences among 
the three groups on demographic, clinical and MoCA 
measures. The level of significance was set at α = 0.05. If 
needed, data were transformed using natural log (LN) 
to approximate the normal distributional assumptions 
required by parametric statistical methods. Since there 
were group differences in age and education, these vari-
ables were included as covariates in subsequent analyses.

As Alzheimer’s disease can affect whole the brain and 
due to the effect of volume conduction in electrode-
based EEG analysis, we investigate the effect of AD and 
MCI on both the global and local brain activity pat-
terns. We first generated full spectrum, periodic, ape-
riodic spectra for all frequencies across the whole brain 
(averaged across all EEG electrodes) in AD, HC, and 
MCI participants. We compared the three groups on 
relative powers across all frequencies for full or peri-
odic spectra analyses in five brain regions, including 
frontal (AF3, AF4, FP1, FPZ, FP2, F7, F5, F3, F1, FZ, F2, 

Table 1 Demographic, clinical, and cognitive characteristics

HC MCI AD F or χ2 (df1, df2) P values

N 44 114 41 -

Age in years (SD) 69.07 (5.31) 72.19 (7.45) 75.65 (6.53) 9.81 (2, 196) < 0.001
HC vs MCI, p = 3e-03;
HC vs AD p = 3e-05;
MCI vs AD, p = 3e-03

Gender (F:M) 31: 13 72: 42 24: 17 0.67 (2, 196) NS

Highest level of education 16.5 (2, 196) 2e-07
HC vs MCI, p = 0.28;
HC vs AD p = 2e-07;
MCI vs AD, p = 2e-06

Less than high school 1 6 10

High school graduate 2 10 8

Partial University 2 9 7

University degree 26 65 10

Graduate degree 13 24 6

MoCA score (SD) 27.65 (1.31) 23.75 (2.46) 17.17 (3.93) 168.61 (2, 196) 1e-44;
HC vs MCI, p = 2e-24;
HC vs AD p = 4e-45;
MCI vs AD, p = 7e-32
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F4, F6, F8, FT7, FC5, FC3, FC1, FCZ, FC2, FC4, FC6, 
FT8), temporal (T7, T8, TP7, TP8), central (C5, C3, C1, 
CPz, C2, C4, C6, CP5, CP3, CP1, CPZ, CP2, CP4, CP6), 
parietal (P7, P5, P3, P1, Pz, P2, P4, P6, P8 PO7, PO5, 
PO3, POz, PO4, PO6, PO8), and occipital (O1, O2, Oz).

Then, we generated the beta/theta ratios using full 
or periodic spectra and compared them in the three 
groups. All group analyses were conducted using Anal-
ysis of Covariance (ANCOVA) with the EEG measure 
as the dependent variable, group as the independent 
variable and age and education as the covariates. Each 
ANCOVA was followed by post-hoc analyses with 
Bonferroni correction for 90 comparisons (3 (HC vs. 
MCI, HC vs. AD, and MCI vs AD) * 5 (number of brain 
regions) * 6 (delta, theta, alpha, beta, gamma, and beta/
theta power ratio)).

We also conducted a post-hoc power analysis to deter-
mine the minimum effect sizes that our sample size had 
sufficient power to detect. By providing this information, 
we better evaluated the reliability of our findings and 
determine if the observed effect sizes were large enough 
to be detected with the sample size employed.

Then, given our primary aim, we applied a logistic 
regression to distinguish HC from MCI and AD par-
ticipants, and MCI from AD participants, using beta/
theta ratios in the occipital lobe. We used a 10-fold 
cross validation (CV) and evaluated the cross-validated 

performance of each model using the area under the 
Receiver Operating Characteristic curve (AUC ROC). To 
improve the estimated performance of the models, we 
repeated the 10-fold CV process 10 times and reported 
the average outcomes. To interpret the classification find-
ings, we generated ROC curves using the MoCA given 
that the MoCA is often used as a screening tool for AD 
and MCI. These analyses incorporated age and education 
as covariates to account for the observed group differ-
ences in these variables. Both variables were included as 
covariates alongside the independent (predictor) variable 
(beta/theta ratio for the periodic components of EEG, 
beta/theta ratio for the full power spectrum, or MoCA 
score). This allowed us to control for the potential influ-
ence of age and education on the relationship between 
each predictor variable and the outcome variable (HC, 
MCI, and AD groups).

We also calculated the DeLong test p-value to evalu-
ate whether the AUCs from the two models (beta/theta 
ratios for the periodic components of EEG vs. full power 
spectrum in the occipital lobe) are statistically signifi-
cantly different [31].

Last, we explored the relationships between cognitive 
performance across all groups based on MoCA scores 
and the beta/theta ratios in the occipital lobe calculated 
based on the full spectrum or periodic spectrum. To 
this end, we conducted a linear regression to assess the 

Fig. 1 Whole-brain averaged relative power spectral density curves for full power spectrum and periodic components (rhythmic oscillations) 
in addition to fractal background components (aperiodic part or 1/f-like noise in log-log spacing) in Healthy Control (HC) (red), Mild Cognitive 
Impairment (MCI) (blue), and Alzheimer’s dementia (AD) (black) participants. In the full power and periodic components panels error bars represent 
standard errors
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association between beta/theta ratio as the independent 
variable and MoCA score as the dependent variable while 
controlling for group, age and education as covariates 
given that the groups differed in age and education.

Results
All participants demographic, clinical and cognitive char-
acteristics are presented in Table 1. The groups differed 
in age, education, and MoCA scores.

Fig. 2 Evaluation of regional full power spectrum in delta, theta, alpha, beta, gamma, and beta/theta power ratio on the frontal, occipital, central, 
parietal, and occipital lobes for HC, MCI, and AD. Bonferroni corrected post-hoc comparisons with p-values smaller than 0.05, 0.01, and 0.001 are 
shown with *, **, and ***, respectively
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Whole brain full power spectrum EEG vs. periodic 
and aperiodic components
The full power spectrum and its periodic and aperi-
odic background components are shown in Fig. 1, aver-
aged across all electrodes. The figure shows a qualitative 
increase of relative power for delta, theta, and gamma, 
and a decrease of relative power for beta using the full 
spectrum and the periodic component in AD partici-
pants compared to HC and MCI participants (we quan-
titatively compared these metrics for different regions in 
the next subsection). In contrast, there are no differences 
in aperiodic background EEG components among HC, 
MCI, and AD participants (ANCOVA F(3,195) = 0.55, 
p = 0.56).

Full spectrum vs. periodic EEG relative powers in different 
brain regions
We next evaluated whether there were differences in 
the full power spectrum and periodic components in 
five main brain regions (frontal, temporal, central, pari-
etal, and occipital). The relative powers of these full and 

periodic oscillations are shown in Figs. 2 and 3, respec-
tively, for each group in delta, theta, alpha, beta, and 
gamma as well as beta/theta power ratio. The results of 
the ANCOVAs are shown in Table 2.

Table  2 shows that while there was a group effect 
for almost all ANCOVAs. Bonferroni-corrected post-
hoc analyses revealed a significant difference between 
MCI and HC participants specifically in the periodic 
spectrum based on the occipital lobe beta/theta ratio 
(F(3; 195) = 28.456, p < 0.001) with the ratio in MCI 
being lower than in HC participants (p = 0.036; Cohen’s 
d = 0.52). The observed power of 1 for the periodic 
spectrum based the occipital lobe beta/theta ratio 
suggests that the sample size and the effect size in the 
study were sufficient to detect the expected effect with 
maximum certainty.

Classification analysis
Discriminating participants using the periodic spec-
trum-based occipital lobe beta/theta ratio was consist-
ently better than using the full spectrum occipital lobe 

Fig. 3 Evaluation of regional EEG periodic components in delta, theta, alpha, beta, gamma, and beta/theta power ratio on the frontal, occipital, 
central, parietal, and occipital lobes for HC, MCI, and AD. Bonferroni corrected post-hoc comparisons with p-values smaller than 0.05, 0.01, and 0.001 
are shown with *, **, and ***, respectively
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beta/theta ratio (Fig.  4; AD vs. HC: AUC ROC = 0.97 vs. 
AUC ROC = 0.89; AD vs. MCI: AUC ROC = 0.86 vs. AUC 
ROC = 0.77; and MCI vs. HC: AUC ROC = 0.70 vs. AUC 
ROC = 0.66). The AUC values obtained by the MoCA total 
scores (AD vs. HC: AUC ROC = 0.99; AD vs. MCI: AUC 
ROC = 0.93; and MCI vs. HC: AUC ROC = 0.92) are higher 
than those for the periodic and full spectrum of EEG 
(Fig.  4). Based on the DeLong test, we found that the 
AUC differences between the periodic and full spectrum 
analyses were significant for HC vs. AD and MCI vs. AD 
(p’s < 0.05) but not for HC vs. MCI (p > 0.05).

Associations between beta/theta ratio in occipital lobe 
and cognition
Given that the beta/theta ratio was different in MCI vs. 
HC participants only in the occipital lobe, we assessed the 
association with cognition using the occipital ratios (Fig. 5). 
Both linear regression models showed significant asso-
ciations between beta/theta ratios and MoCA scores, after 
controlling for group, age and education: (periodic: F(4, 
193) = 84.93, p < 0.001, R square = 0.638, beta coefficient for 
beta/theta ratio = 0.144, t-value = 2.804 and p-value = 0.006; 
vs. full spectrum: F(4, 193) = 86.08, p < 0.001, R 

Table 2 Full spectrum vs. periodic EEG relative powers in different brain regions

The post-hoc comparisons were done when ANCOVA p-values < 0.05. The degrees of freedom for all the tests between-subjects effects were 3

Full Power Spectrum (All Oscillations) Periodic Components or Oscillations

F ANCOVA p-value (post-hoc 
p-values HC vs. MCI, HC vs. AD, MCI 
vs. AD)

Observed 
power

F ANCOVA p-value (post-hoc 
p-values HC vs. MCI, HC vs. AD, MCI 
vs. AD)

Observed 
power

Delta in frontal region 2.510 0.060 0.62 14.516 < 0.001 (1.000, < 0.001, < 0.001) 1

Theta in frontal region 10.974 < 0.001 (0.660, < 0.001, < 0.001) 1 22.396 < 0.001 (0.252, < 0.001, < 0.001) 1

Alpha in frontal region 3.369 0.020 (1.000, 0.041, 0.012) 0.76 0.896 0.444 0.24

Beta in frontal region 3.233 0.023 (0.660, 0.015, 0.033) 0.74 7.961 < 0.001 (0.786, < 0.001, < 0.001) 0.99

Gamma in frontal region 13.457 < 0.001 (1.000, < 0.001, < 0.001) 1 21.086 < 0.001 (0.541, < 0.001, < 0.001) 1

FSA ratio in frontal region 7.839 < 0.001 (0.713, < 0.001, < 0.001) 0.99 23.918 < 0.001 (0.219, < 0.001, < 0.001) 1

Delta in temporal region 2.720 0.046 (1.000, 0.077, 0.110) 0.66 18.053 < 0.001 (1.000, < 0.001, < 0.001) 1

Theta in temporal region 12.252 < 0.001 (0.366, < 0.001, < 0.001) 1 24.591 < 0.001 (0.192, < 0.001, < 0.001) 1

Alpha in temporal region 5.322 0.002 (1.000, 0.004, 0.002) 0.93 1.275 0.284 0.34

Beta in temporal region 7.620 < 0.001 (0.421, < 0.001, < 0.001) 0.99 26.335 < 0.001 (0.335, < 0.001, < 0.001) 1

Gamma in temporal region 16.176 < 0.001 (1.000, < 0.001, < 0.001) 1 28.305 < 0.001 (0.459, < 0.001, < 0.001) 1

FSA ratio in temporal region 10.659 < 0.001 (0.339, < 0.001, < 0.001) 1 30.223 < 0.001 (0.164, < 0.001, < 0.001) 1

Delta in central region 1.315 0.271 0.35 12.863 < 0.001 (1.000, < 0.001, < 0.001) 1

Theta in central region 13.352 < 0.001 (0.892, < 0.001, < 0.001) 1 26.082 < 0.001 (0.483, < 0.001, < 0.001) 1

Alpha in central region 0.477 0.698 0.15 0.511 0.675 0.15

Beta in central region 7.139 < 0.001 (0.721, < 0.001, 0.001) 0.98 16.331 < 0.001 (0.699, < 0.001, < 0.001) 1

Gamma in central region 11.950 < 0.001 (1.000, < 0.001, < 0.001) 1 18.738 < 0.001 (0.664, < 0.001, < 0.001) 1

FSA ratio in central region 11.440 < 0.001 (0.705, < 0.001, < 0.001) 1 28.458 < 0.001 (0.429, < 0.001, < 0.001) 1

Delta in parietal region 3.368 0.020 (1.000, 0.032, 0.041) 0.78 18.110 < 0.001 (1.000, < 0.001, < 0.001) 1

Theta in parietal region 14.218 < 0.001 (0.859, < 0.001, < 0.001) 1 25.526 < 0.001 (0.463, < 0.001, < 0.001) 1

Alpha in parietal region 2.560 0.056 0.62 0.540 0.656 0.16

Beta in parietal region 6.323 < 0.001 (0.502, < 0.001, < 0.001) 0.97 11.123 < 0.001 (0.427, < 0.001, < 0.001) 1

Gamma in parietal region 15.532 < 0.001 (1.000, < 0.001, < 0.001) 1 23.880 < 0.001 (1.000, < 0.001, < 0.001) 1

FSA ratio in parietal region 12.331 < 0.001 (0.520, < 0.001, < 0.001) 1 30.233 < 0.001 (0.280, < 0.001, < 0.001) 1

Delta in occipital region 3.785 0.011 (1.000, 0.142, 0.019) 0.81 23.919 < 0.001 (1.000, < 0.001, < 0.001) 1

Theta in occipital region 10.142 < 0.001 (0.482, < 0.001, < 0.001) 1 22.913 < 0.001 (0.179, < 0.001, < 0.001) 1

Alpha in occipital region 6.670 < 0.001 (1.000, 0.014, < 0.001) 0.97 3.978 0.009 (0.878, 0.239, 0.005) 0.83

Beta in occipital region 1.878 0.135 0.48 6.529 < 0.001 (0.165, 0.001, 0.021) 0.97

Gamma in occipital region 25.417 < 0.001 (1.000, < 0.001, < 0.001) 1 27.331 < 0.001 (1.000, < 0.001, < 0.001) 1

FSA ratio in occipital region 7.011 < 0.001 (0.283, < 0.001, 0.001) 0.98 28.456 < 0.001 (0.036, < 0.001, < 0.001) 1
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square = 0.641, beta coefficient for beta/theta ratio = 0.140, 
t-value = 3.097 and p-value = 0.002). We also found that 
group was associated with MoCA score (periodic: beta 
coefficient = -0.663, t-value = -12.630 and p-value < 0.001; 
full spectrum: beta coefficient = -0.690, t-value = -14.012 
and p-value < 0.001), but not age (periodic: beta coeffi-
cient = -0.054, t-value = -1.174 and p-value = 0.242; full 
spectrum: beta coefficient = -0.063, t-value = -1.385 and 
p-value = 0.168) and weakly with education (periodic: beta 
coefficient = 0.083, t-value = 1.783 and p-value = 0.076; 

full spectrum: beta coefficient = 0.094, t-value = 2.041 and 
p-value = 0.043).

Discussion
In this study, we investigated whether resting-state EEG 
features based on periodic power components are bet-
ter at distinguishing amongst AD, MCI and healthy 
individuals than EEG features based on full power spec-
trum, with a focus on MCI vs. healthy individuals. As 
expected, MCI were different than healthy individu-
als on the beta/theta ratio over the occipital lobe when 

Fig. 4 Classification performance of beta/theta power ratios for periodic- and full spectrum-based analyses, and MoCA total scores 
in discriminating AD, MCI, and HC participants. Both beta/theta power ratios were calculated from the occipital region. To address the influence 
of group differences in age and education, these variables were taken into account as covariates in these analyses
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calculated based on periodic power components and not 
the full spectrum. Otherwise, we found that full spec-
trum and periodic based features performed similarly. 
We also found that the logistic regression classifiers 
that used beta/theta power-periodic as an input feature 
are noticeably better in distinguishing AD vs. HC, and 
AD vs. MCI, than classifiers that used beta/theta power 
using full spectrum. Further, we found that the associa-
tions between performances on cognitive tasks and beta/
theta power ratio were comparable between periodic 
components vs. full spectrum analysis. Last, we found 
no significant differences in the aperiodic components of 
EEGs among all groups.

Increases in powers of slow oscillations, especially 
theta oscillations, have been associated with AD and 
cerebrospinal fluid total tau accumulation [9, 10]. In 
contrast, increases in powers of fast oscillations, e.g. 
beta oscillations, are associated with better cognitive 
control, including attentional inhibition, cognitive set-
maintenance and cognitive effort [11]. Thus, a fast-to-
slow activity ratio like the beta/theta ratio would be 
expected to be a sensitive measure in separating indi-
viduals across a spectrum of cognitive decline given 
that a neurodegenerative process could be leading 
to increases in theta powers and decrease beta pow-
ers simultaneously. It was also shown that the ratio 
is a marker of cognitive processing capacity [4–8]. 
Additionally, there has been a longstanding hypoth-
esis that the beta/theta power ratio is indicative of 
cognitive functioning, particularly in conditions like 
attention-deficit hyperactivity disorder, and executive 
function deficits [5, 7, 11–13]. Given that both execu-
tive function and cognitive processing capacity are 
impaired in MCI and AD, it is reasonable to anticipate 
a reduced beta/theta ratio in individuals with MCI 

when compared to healthy controls. The results are 
consistent with a recent study demonstrating the suc-
cessful differentiation of individuals with MCI from 
HC using a similar spectral power ratio, specifically 
(alpha + beta)/(delta + theta) [32].

The aperiodic component of EEG may be related to 
excitation/inhibition balance with flatter slopes reflect-
ing increased excitation and or decreased inhibition 
and so may be linked to aging [15, 19, 33]. This is agrees 
with the fact that increased age is associated with a flat-
ter, less negatively sloped power spectrum [33]. This 
study showed that the EEG aperiodic power spectrum 
components may not be related to Alzheimer’s disease 
as a neurodegenerative disease. These results are also 
in agreement with [34] showing that the EEG spectral 
slowing in AD is driven by periodic components, while 
aperiodic EEG components remain unaffected. Apart 
from that, previous studies indicate that, although the 
periodic components of the EEG spectrum is linked 
to the processing speed the aperiodic component may 
not show a consistent relationship to cognitive perfor-
mance [15].

The reason behind detecting a statistically significant 
difference between MCI and healthy individuals only 
over the occipital lobe could be because the occipital lobe 
is typically the least affected region by EEG main artifacts 
(e.g., eye and body movement, and electrocardiogram) 
[35]. This occipital lobe specificity also agrees with the 
literature on EEG features in AD or MCI but based on 
full power spectrum [13, 14].

The classification results demonstrated that com-
pared with periodic-based EEG beta/theta ratios, the 
total MoCA total scores lead to better discrimina-
tion among clinical conditions. One potential reason 
is that performance on one cognitive assessment, e.g., 

Fig. 5 Partial regression plots demonstrating the associations between beta/theta power ratios and the Montreal Cognitive Assessment (MoCA) 
total score using periodic or full spectrum as captured in the occipital lobe for the Alzheimer’s dementia (AD), Mild Cognitive Impairment (MCI), 
and Healthy Control (HC) participants. The two parallel lines represent the 95% confidence intervals for each regression line
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the MoCA (or MMSE) is typically correlated with per-
formance on other cognitive assessments such as the 
ones used to diagnose the clinical conditions. Never-
theless, the strong performance of the beta/theta ratio 
in distinguishing healthy individuals from those with 
AD and in correctly identifying AD among individuals 
with MCI vs. AD suggests that a 10-min resting state 
EEG could be complementary to clinical tools such as 
the MoCA or MMSE by providing more mechanistic 
information or when a clinical tool is not possible to be 
administered. Moreover, the high sensitivity of the beta/
theta ratio in separating MCI from healthy individuals 
indicates that when an individual has a beta/theta ratio 
above the identified cut-off, one could be confident that 
the individual does not have MCI. This is particularly 
helpful when such an individual is scoring high on clini-
cal screening cognitive tools due, for example, having 
high education yet the individual or their informant has 
cognitive concerns. Having a high beta/theta ratio on 
a resting-state EEG would further support the healthy 
status of such an individual.

We acknowledge the following limitations of this 
study. First, the sample size was insufficient to conduct 
subgroup analyses (e.g., based on sex). Second, these 
analyses were not conceived as part of the original stud-
ies. Third, the diagnoses of AD and MCI were based on 
clinical criteria without the use biomarkers. However, a 
clinical diagnosis based on the NINCDS-ADRDA criteria 
has been shown to be highly reliable [36, 37]. Thus, sam-
ple sizes may not have been large enough to detect sig-
nificant differences and we needed to combine two data 
from two studies.

Conclusions
Our findings support further study of the EEG periodic 
components based on beta/theta power ratio over the 
occipital lobe as a neurophysiological metric that sepa-
rates patients with MCI and AD from healthy individu-
als. Future work to link this metric with other biological 
markers of neurodegenerative diseases are needed to fur-
ther elucidate the mechanistic role of this metric.
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