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Abstract 

Background A growing body of evidence shows differences in the prevalence of cardiometabolic syndrome (CMS) 
and dementia based on gender and ethnicity. However, there is a paucity of information about ethnic‑ and gender‑
specific CMS effects on brain age. We investigated the different effects of CMS on brain age by gender in Korean and 
British cognitively unimpaired (CU) populations. We also determined whether the gender‑specific difference in the 
effects of CMS on brain age changes depending on ethnicity.

Methods These analyses used de‑identified, cross‑sectional data on CU populations from Korea and United Kingdom 
(UK) that underwent brain MRI. After propensity score matching to balance the age and gender between the Korean 
and UK populations, 5759 Korean individuals (3042 males and 2717 females) and 9903 individuals from the UK (4736 
males and 5167 females) were included in this study. Brain age index (BAI), calculated by the difference between the 
predicted brain age by the algorithm and the chronological age, was considered as main outcome and presence of 
CMS, including type 2 diabetes mellitus (T2DM), hypertension, obesity, and underweight was considered as a predic‑
tor. Gender (males and females) and ethnicity (Korean and UK) were considered as effect modifiers.

Results The presence of T2DM and hypertension was associated with a higher BAI regardless of gender and ethnicity 
(p < 0.001), except for hypertension in Korean males (p = 0.309). Among Koreans, there were interaction effects of gen‑
der and the presence of T2DM (p for T2DM*gender = 0.035) and hypertension (p for hypertension*gender = 0.046) 
on BAI in Koreans, suggesting that T2DM and hypertension are each associated with a higher BAI in females 
than in males. In contrast, among individuals from the UK, there were no differences in the effects of T2DM (p for 
T2DM*gender = 0.098) and hypertension (p for hypertension*gender = 0.203) on BAI between males and females.

Conclusions Our results highlight gender and ethnic differences as important factors in mediating the effects of 
CMS on brain age. Furthermore, these results suggest that ethnic‑ and gender‑specific prevention strategies may be 
needed to protect against accelerated brain aging.
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Background
Aging is an important risk factor for cognitive impair-
ment and dementia [1]. As aging progresses, brain atro-
phy also occurs at a mean volume reduction rate of 0.5% 
per year after the age of 40 [2, 3]. Age-related brain atro-
phy is referred to as the brain age. Cardiometabolic syn-
drome (CMS), syndrome X, metabolic syndrome, and 
cardiometabolic dysfunction, composed of type 2 dia-
betes mellitus (T2DM), hypertension, and obesity, are 
critical modifiable risk factors for cognitive impairment. 
There is also a growing body of evidence that CMS has 
deleterious effects on brain atrophy [4] even in non-
demented population [5, 6]. Previous studies have sug-
gested that CMS may accelerate brain aging.

Several cross-sectional studies have shown differences 
in brain volume between males and females in cognitively 
unimpaired (CU) populations [7–9]. Previously, changes 
in brain age or atrophy were shown to occur differently 
depending on gender [3, 10, 11]. Additionally, previous 
studies based on Hispanic or Korean populations sug-
gested that CMS-associated brain atrophy was more 
extensive or prominent in females than in males [6, 10]. 
However, considering the differences in the prevalence of 
CMS and dementia between Korean and European popu-
lations, it would be reasonable to hypothesize that there 
might be a difference in the gender-specific relation-
ship between CMS and brain age between Koreans and 
Europeans.

Previous studies have analyzed various morphologi-
cal features on brain magnetic resonance imaging (MRI), 
including cortical thickness [12], regional gray matter 
volume [11], and white matter hyperintensity [13] and 
integrity [14], and investigated the impact of CMS on 
brain structure in aging populations. Recently, various 
machine learning approaches have been developed to 
begin accurate prediction of brain age using the afore-
mentioned brain imaging features [15–18] and provide 
a new metric called brain age index (BAI) to measure 
how old the brain age is compared to the chorological 
age at MRI scan. The difference between the predicted 
brain age using a deep learning-based algorithm and the 
chronological age is called the BAI, which explains how 
much older or younger an individual brain appears com-
pared to the current age. A positive BAI is a novel marker 
of an older brain and has been shown to predict compro-
mised brain health [19], earlier mortality [20], and cogni-
tive impairment [21, 22].

In the present study, we investigated the different 
effects of CMS on BAI with respect to the sex of CU pop-
ulations from Korea and United Kingdom (UK). Next, 
we determined whether CMS affects gender-specific BAI 
differently according to ethnicity. Considering that there 
are differences in incidence of CMS and cortical atrophy 

by gender and ethnicity, we hypothesized that there 
might be differences in the effects of CMS on the BAI in 
relation to gender and ethnicity.

Methods
Study populations
We enrolled CU participants aged ≥ 45  years from the 
Health Promotion Center of Samsung Medical Center 
(Seoul, Korea) who underwent a comprehensive health 
screening exam from September 1, 2008, to October 
31, 2019. A total of 8227 eligible candidates underwent 
a full medical examination, which included cognitive 
assessment and 3.0-Tesla MRI, including high-resolution 
T1-weighted MRI, as part of a standard screening for 
dementia. The medical examination procedure used for 
the participants has been previously described [23]. We 
excluded participants who had any of the following con-
ditions: 728 participants with missing data on years of 
education or Mini-Mental State Examination (MMSE) 
score [24]; 509 participants with significant cognitive 
impairment defined by MMSE scores below the 16th per-
centile in age-, gender-, and education-matched norms or 
through an interview conducted by a qualified neurolo-
gist; 312 participants with severe cerebral white matter 
hyperintensities (deep white matter ≥ 2.5  cm and caps 
or band ≥ 1.0 cm) or structural lesions such as territorial 
infarction, lobar hemorrhage, brain tumor, and hydro-
cephalus; 542 participants with missing information on 
DM, hypertension, or body mass index (BMI); and 377 
participants with unreliable analyses of cortical thickness 
due to head motion, blurred MRI, inadequate registra-
tion to a standardized stereotaxic space, misclassifica-
tion of tissue type, or inexact surface extraction. Finally, 
5759 participants (3042 males and 2717 females) were 
included in this study.

Similar data for people of British ancestry was obtained 
from the UK Biobank (UKB, http:// www. ukbio bank. 
ac. uk), a population-based prospective cohort study of 
approximately 500,000 people in the UK [https:// journ 
als. plos. org/ plosm edici ne/ artic le? id= 10. 1371/ journ 
al. pmed. 10017 79, https:// www. nature. com/ artic les/ 
s41586- 018- 0579-z]. Of these participants, approximately 
40,000 attended an additional visit during which MRI 
brain imaging data was collected in addition to other 
health-related data [https:// www. nature. com/ artic les/ 
s41467- 020- 15948-9]. We included non-Hispanic White 
adults only in the present study. We excluded partici-
pants with a self-reported or hospital record-based his-
tory of dementia, Parkinson’s disease, or other central 
nervous system-related diseases. Finally, 9903 (4736 
males and 5167 females) UKB participants were included 
after applying the inclusion/exclusion criteria and after 

http://www.ukbiobank.ac.uk
http://www.ukbiobank.ac.uk
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001779
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001779
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001779
https://www.nature.com/articles/s41586-018-0579-z
https://www.nature.com/articles/s41586-018-0579-z
https://www.nature.com/articles/s41467-020-15948-9
https://www.nature.com/articles/s41467-020-15948-9
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random selection of a smaller subset of participants for 
brain imaging data processing.

The institutional review board of the Samsung Medical 
Center approved this study and adhered to the principles 
of the Declaration of Helsinki. Written informed consent 
was obtained from all participants in the Health Promo-
tion Center of Samsung Medical Center. Anonymous 
and deidentified data from the UKB was used for analy-
sis and, therefore, the present study was exempted from 
obtaining informed consent.

Measurement of cardiometabolic syndrome
For populations from the Health Promotion Center at 
the Samsung Medical Center, a health screening exam 
was conducted by a well-trained medical professional 
using standardized protocols. Baseline workup included 
blood tests (complete blood cell count, liver/kidney/thy-
roid function test, and tumor markers), urine analyses, 
abdominal sonography, chest radiography, electrocar-
diogram, pulmonary function test, and gastroduoden-
oscopy. We classified each CMS component using the 
following criteria: T2DM was defined as a diagnostic his-
tory of T2DM or current use of any anti-diabetic medica-
tion; hypertension was defined as a diagnostic history of 
hypertension or current use of any antihypertensive med-
ication; obesity and underweight were defined using the 
cut-off for BMI calculated by weight (kilograms)/height 
(meters) squared at the first visit. According to a previ-
ous study [10], populations with BMI < 18.5  kg/m2 were 
labeled as underweight, and those with BMI ≥ 27.5 kg/m2 
were labeled as obese.

For populations from the UKB, the classification of 
T2DM, hypertension, and obesity was determined based 
on a combination of a touchscreen-based questionnaire, 
a verbal interview, and linked hospital records. Specifi-
cally, T2DM was defined as either self-reported T2DM, 
a doctor’s diagnosis of T2DM (Data Field 2443), patients 
who were taking insulin (Data Fields 6177, 6153), or a 
hospital data-linked record of an individual with a diag-
nosis of T2DM. Hypertension was defined as either 
self-reported hypertension (Data-Field 20,002) or a hos-
pital data-linked record of having a primary or secondary 
diagnosis of hypertension (Data-Fields 41,202, 41,204, 
41,203, and 41,205). BMI was calculated using weight and 
height measurements in the same way as the Samsung 
Medical Center data. Populations with a BMI < 18.5  kg/
m2 were categorized as underweight, whereas those with 
BMI ≥ 35 kg/m2 were categorized as obese [25].

Acquisition of brain MRI
All Korean populations underwent a 3D volumetric brain 
MRI scan. An Achieva 3.0-Tesla MRI scanner (Philips, 
Best, the Netherlands) was used to acquire 3D T1 Turbo 

Field echo (TFE) MRI data using the following imaging 
parameters: sagittal slice thickness, 1.0  mm with 50% 
overlap; no gap; repetition time of 9.9 ms; echo time of 
4.6 ms; flip angle of 8; and matrix size of 240 × 240 pixels 
reconstructed to 480 × 480 over a field view of 240 mm.

In the UKB populations, brain MRI scans were 
obtained at one of the three assessment sites using a 3.0 
Tesla Siemens Skyra MRI Scanner. Among the six brain 
imaging modalities acquired was a T1-weighted, sag-
ittal 3D magnetization prepared rapid gradient echo 
(MPRAGE) scan. The following imaging parameters were 
used in this T1-weighted acquisition: inversion time of 
880 ms; repetition time of 2000 ms; 1 × 1 × 1  mm3 voxel 
size; 208 × 256 × 256 matrix size; and SENSE factor (R) 
of 2.0 [Miller, 2016: https:// www. nature. com/ artic les/ nn. 
4393].

Image processing and cortical surface extraction
T1-weighted MRI scans from the Health Promotion 
Center in Korea and the UKB were used to reconstruct 
the inner and outer cortical boundaries using the CIVET 
pipeline developed at the Montreal Neurological Insti-
tute (http:// www. bic. mni. mcgill. ca/ Servi cesSo ftware/ 
CIVET). Cortical morphology was quantitatively char-
acterized by measuring cortical thickness, sulcal depth, 
and gray/white intensity ratio [26] on the cortical sur-
face at 81,924 vertices (163,840 polygons). These features 
were further resampled to the surface template using the 
transformation obtained in the surface registration to 
allow for inter-subject comparisons.

Development of prediction model for relative brain age
As illustrated in Fig. 1, we did not use topology-varying 
surfaces because of the nature of the graph convolutional 
networks (GCN) model used in this study. Rather, we 
considered the cortical morphological changes that occur 
in relation to brain size and gyrification using cortical 
thickness, volume, and sulcal depth. The GCN employed 
in our study requires identical graph/mesh structures for 
all individual inputs, whereas the features of the nodes/
vertices can vary. Another advantage of the topology-
kept surface model is that surface nodes are registered 
across all individuals such that anatomical information is 
shared.

Brain age index
After calculating the predicted brain age for each subject, 
we further calculated a metric that reflected the subject’s 
relative brain health status, called the BAI. BAI was ini-
tially measured by subtracting the true brain age from the 
predicted brain age [27]. Due to regression dilution [28], 
however, it is also possible that regression models bias the 
predicted brain age toward the mean, underestimating 

https://www.nature.com/articles/nn.4393
https://www.nature.com/articles/nn.4393
http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET
http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET
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the age of older subjects and overestimating the age of 
younger subjects [29]. When deriving the BAI, this bias 
must be corrected using a strategy introduced in other 
studies [15, 28]. We defined the new BAI as the differ-
ence between the individual BAI and the expected BAI 
(measurement fitted over the entire sample set using the 
regression model and leave-one-out cross-validation). 
The BAI was corrected such that the BAIs of the whole 
dataset analyzed became unbiased across all age ranges.

Propensity score matching
Propensity score matching was performed to minimize 
the differences in the demographics and cardiometa-
bolic factors between the UK and KOR participants. The 
propensity score was obtained using multivariable logis-
tic regression based on age, gender, T2DM, hyperten-
sion, and obesity. A total of 5541 KOR participants were 
matched with 9903 UK participants based on propensity 
scores using the 1:2 nearest-neighbor matching algo-
rithm with caliper of 0.1. A good balance was achieved 
between the KOR and UK participants, with all standard-
ized mean differences (age, gender, T2DM, hypertension, 
and obesity) below 0.1 after matching.

Statistical analysis
Independent t-tests and chi-squared tests were used 
to compare continuous and categorical variables, 
respectively.

To explore the association between the presence of 
each CMS component and brain age in females and 
males among the Korean and UK populations, we per-
formed a linear regression analysis with the presence 
of T2DM, hypertension, obesity, and underweight as 
covariates. To assess whether the association between 
the presence of each CMS component and brain 
age might differ by gender in the Korean and the UK 

populations, we performed linear regression analyses 
by adding each two-way interaction term (the pres-
ence of each CMS component*gender) to covariates in 
Korean and UK populations after controlling for the 
other CMS components. To assess whether the asso-
ciation between the presence of each CMS component 
and brain age might differ by gender and ethnicity, we 
performed linear regression analyses with the addition 
of each three-way interaction term (the presence of 
each CMS component*gender*ethnicity) to covariates 
after controlling for the other CMS components.

False discovery rate (FDR) correction was conducted 
for all statistical analyses to control for p-values, and 
q-values were obtained after FDR correction. All 
reported p-values and q-values were two-sided and the 
significance level was set at 0.05. All analyses were per-
formed using R version 4.3.0 (Institute for Statistics and 
Mathematics, Vienna, Austria; www.R- proje ct. org).

Results
Demographics of cognitively unimpaired populations 
in the UK and Korea
After propensity score matching, the demographic 
characteristics of the two ethnic datasets were similar 
(Table  1). Among the 5541 Korean populations, there 
were 2599 (46.9%) females and 2942 (53.1%) males. 
Among the 9903 UK populations, there were 5167 
(52.2%) females and 4736 (47.8%) males. There were 
some differences in mean age (64.0 and 63.6  years, 
p < 0.001), female ratio (46.9 and 52.2%, p < 0.001), 
and the presence of T2DM (17.3 and 9.8%, p < 0.001), 
hypertension (42.7% and 40.6%, p = 0.011), obesity 
(10.7 and 7.9%, p < 0.001), and underweight (1.8 and 
0.6%, p < 0.001) between Koreans and participants from 
the UK.

Fig. 1 The graph‑based convolutional network for brain age prediction

http://www.R-project.org
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Effects of cardiometabolic syndrome components on brain 
age index
As shown in Fig. 2, DM was associated with increased 
BAI for all participants, regardless of gender and eth-
nicity (q < 0.001 in the four groups) (Table  2). Hyper-
tension was associated with a significantly higher BAI 
for all participants (q < 0.001), except for Korean males 
(q = 0.309). Obesity significantly increased the BAI for 
UK males (q = 0.004). Being underweight increased the 
BAI significantly only for UK females (q = 0.002).

Interactive effects of cardiometabolic syndrome 
components on brain age index in relation to gender 
and ethnicity
We also investigated the interaction of the presence of 
each CMS component and gender with BAI in Koreans 
and participants from the UK. Among Koreans, there 
were interactions between T2DM and gender with BAI 
(q = 0.035) and between hypertension and gender with 
BAI (q = 0.046), suggesting that the effects of T2DM and 
hypertension on BAI were more prominent in females 

Table 1 Demographics of populations from UK Biobank and Health Promotion Center in Korea

Propensity score matching was performed to balance the age and gender between the Korean and UK populations, and 9903 out of 17,791 populations in the UK and 
5541 out of 5759 populations in Korea were selected for the present study

Abbreviations: BMI, body mass index; T2DM, type2 diabetes mellitus; UK, United Kingdom
a Distribution of age and BMI was compared between the populations of UK and Korea using independent t tests
b Distribution of education level and presence of hypertension, T2DM, obesity, and underweight between the populations of UK and Korea were tested using the 
chi-squared test

Variables Korea UK p-value

Females 
(n = 2599)

Males (n = 2942) Total (n = 5541) Females 
(n = 5167)

Males (n = 4736) Total (n = 9903)

Age (years)a 63.2 ± 6.9 64.7 ± 6.5 64.0 ± 6.7 63.4 ± 7.1 63.8 ± 7.4 63.6 ± 7.2 0.007

Hypertension (n, 
%)b

965 (37.1%) 1402 (47.7%) 2367 (42.7%) 1813 (35.1%) 2208 (46.6%) 4021 (40.6%) 0.1

T2DM (n, %)b 273 (10.5%) 683 (23.2%) 956 (17.3%) 365 (7.1%) 602 (12.7%) 967 (9.8%)  < 0.001

BMI (kg/m2)a 23.5 ± 2.9 24.5 ± 2.6 24.0 ± 2.8 26.8 ± 5.2 27.7 ± 4.4 27.2 ± 4.9  < 0.001

Obesity (n, %) 227 (8.7%) 336 (12.4%) 593 (10.7%) 450 (8.7%) 336 (7.1%) 786 (7.9%)  < 0.001

Underweight (n, %)b 70 (2.7%) 32 (1.1%) 102 (1.8%) 49 (0.9%) 7 (0.1%) 56 (0.6%)  < 0.001

Fig. 2 BAI distribution between groups regarding gender and ethnicity for healthy participants and participants with different CMS. BAI = 0 
indicates that the chronological age is the same as the predicted brain age, with higher values indicating an older‑appearing brain than 
chronological age. Asterisk symbol (*) indicates the following: q‑values, FDR‑corrected p‑values, are lower than 0.05. BAI, brain age index; Kor, Korea; 
UK, United Kingdom; CMS, cardiometabolic syndrome
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than in males (Table  3, Fig.  3). Among British partici-
pants, however, there were no interactions of any CMSs 
and gender with BAI (q range 0.098 to 0.203, Table  3, 
Fig.  3). In fact, there were interactions between gender 
and ethnicity for T2DM (q = 0.004) and hypertension 
(q = 0.011, Table 3, Fig. 3).

Discussion
In the present study, we systematically investigated the 
different effects of CMS on BAI in relation to gender 
and ethnic differences in a large sample of Korean and 
UK CU populations. Our major findings are as follows: 
first, among Koreans, the effects of DM and hypertension 
on BAI were higher in females than in males. This indi-
cated interaction effects of gender and the presence of 
T2DM and hypertension on BAI in Korean population. 
Second, among the UK population, there were no differ-
ences in the effects of T2DM and hypertension on BAI 
between males and females. Overall, there was evidence 
that ethnicity modified the gender-specific relationship 
of T2DM and hypertension with BAI. Taken together, 
our findings suggest that CMS exerts different effects on 
brain age depending on gender and ethnicity. Therefore, 

Table 2 Brain age index in controls and four CMS component groups

Values of age and BAI are presented as mean ± standard deviation

Abbreviations: BAI, brain age index; CMS, cardiometabolic syndrome; T2DM, type2 diabetes mellitus; UK, United Kingdom
* q-values, FDR-corrected p-values, were obtained using a linear regression analysis with the presence of hypertension, T2DM, obesity, and underweight as covariates 
in each group (Korean females, Korean males, UK females and UK males)

Ethnicity/gender CMS Age BAI β (SE) q-value*

Korean females Control 61.6 ± 8.1  − 0.67 ± 3.57

T2DM 66.9 ± 9.5 1.51 ± 4.44 1.73 (0.25)  < 0.001

Hypertension 66.0 ± 8.0 0.39 ± 3.97 0.80 (0.20)  < 0.001

Obesity 64.8 ± 8.5 0.31 ± 3.69 0.26 (0.94) 0.347

Underweight 62.8 ± 7.6 0.30 ± 4.34 0.77 (0.48) 0.145

Korean males Control 64.1 ± 8.2 0.70 ± 3.55

T2DM 65.5 ± 8.6 1.82 ± 4.05 0.88 (0.19)  < 0.001

Hypertension 65.3 ± 8.4 1.29 ± 4.13 0.19 (0.18) 0.309

Obesity 63.4 ± 7.7 1.52 ± 4.03 0.37 (0.23) 0.144

Underweight 67.5 ± 10.7 2.17 ± 3.63 1.24 (0.72) 0.171

UK females Control 62.0 ± 7.2  − 0.17 ± 3.50

T2DM 64.4 ± 7.4 1.22 ± 3.87 1.08 (0.20)  < 0.001

Hypertension 65.2 ± 6.6 0.45 ± 3.79 0.49 (0.13)  < 0.001

Obesity 61.5 ± 6.7 0.53 ± 3.54 0.32 (0.19) 0.088

Underweight 63.8 ± 7.0 1.60 ± 3.87 1.67 (0.53) 0.002

UK males Control 61.5 ± 7.5 0.25 ± 3.66

T2DM 65.8 ± 6.8 2.42 ± 3.90 1.55 (0.17)  < 0.001

Hypertension 65.6 ± 6.8 1.35 ± 3.86 0.73 (0.13)  < 0.001

Obesity 62.9 ± 7.2 1.72 ± 3.63 0.65 (0.22) 0.004

Underweight 68.0 ± 6.3  − 1.21 ± 2.28  − 1.69 (1.42) 0.235

Table 3 Interaction effect on the difference in BAI between 
participants with each CMS and those with control

Abbreviations: BAI, brain age index; CMS, cardiometabolic syndrome; T2DM, 
type2 diabetes mellitus; UK, United Kingdom
* q-values, FDR-corrected p-values, were obtained using linear regression 
analyses with adding each two-way interaction term (the presence of each 
CMS component*gender) to covariates in Korean and UK populations after 
controlling for the other CMS components
¥ q-values, FDR-corrected p-values, were obtained using linear regression 
analyses with additionally adding each three-way interaction term (the presence 
of each CMS component*gender*ethnicity) to covariates after controlling for the 
other CMS components

Ethnicity Two-way interaction (each CMS 
component*gender)

β (SE) q-value*

Korea T2DM*gender 0.84 (0.32) 0.035

Hypertension*gender 0.61 (0.27) 0.046

Obesity*gender  − 0.11 (0.36) 0.770

Underweight*gender  − 0.82 (0.85) 0.450

UK T2DM*gender  − 0.52 (0.26) 0.098

Hypertension*gender  − 0.26 (0.18) 0.203

Obesity*gender  − 0.37 (0.28) 0.191

Underweight*gender 3.51 (1.50) 0.076

Three-way 
interaction(each CMS 
component*gender*ethnicity)

β (SE) q-value¥

Both T2DM*gender*ethnicity 1.36 (0.41) 0.004

Hypertension*gender*ethnicity 0.89 (0.32) 0.011
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ethnic- and gender-specific prevention strategies may be 
necessary to protect against accelerated brain aging.

We found that the presence of T2DM and hypertension 
was associated with a higher BAI regardless of gender 
and ethnicity, except for hypertension in Korean males. 
T2DM and hypertension are well-known risk factors for 
brain atrophy, which is an important indicator of brain 
age [30]. T2DM may have deleterious effects on the brain 
via various mechanisms, including cerebrovascular com-
plications, glucose toxicity due to insulin resistance, and 
chronic inflammation [31]. Similarly, the positive asso-
ciation between hypertension and BAI may be due to 
several possible mechanisms including cerebral hypoper-
fusion, micro- and macrovascular damage in white mat-
ter, and cerebral microinfarcts [32, 33].

Our first major finding was that Korean females suf-
fered more deleterious effects of T2DM and hyperten-
sion on brain age than Korean males. Although the 
underlying mechanisms for the gender-specific effects 
of T2DM and hypertension on brain age are not fully 
understood, our findings might be related to the com-
plex effects of biological and socioeconomic differences 
[34]. Previous studies have suggested that hypertension 
exerts worse effects on multiple organs in females than 
in males. This was attributed to differences in sex hor-
mones. There are stronger associations of hypertension 

with autonomic dysfunction in females than in males 
[35]. Similar associations are witnessed in the cases of 
microalbuminuria [36] and reduction of heart function 
[37]. In particular, females uniquely experience meno-
pause transition, which might accelerate cardiometabolic 
syndrome, brain aging, or cognitive impairment via sev-
eral mechanisms including changes in the availability of 
estrogen [38], estrogen receptor activity, and/or estro-
gen-regulated neural networks [39]. Specifically, estrogen 
deficiency in postmenopausal females leads to inflamma-
tory process and vasoconstriction via the dysfunction of 
the renin-angiotensin system [40–42]. In fact, a growing 
body of evidence shows that menopause has a deleteri-
ous impact on cognitive function, which may contribute 
to the higher prevalence of dementia in females than in 
males [43–47]. Additionally, several studies have shown 
that females tend to maintain lifestyles that are more 
favorable for brain health, with overall lower drinking 
and smoking rates [48–51]. Therefore, our findings might 
be also related to differences in stress, alcohol consump-
tion, smoking, and dietary habits according to gender.

Our second major finding was that there were interac-
tive effects of the presence of T2DM and hypertension, 
gender, and ethnicity on BAI. That is, unlike Koreans, 
there were no differences in the effects of T2DM and 
hypertension on BAI between males and females in the 

Fig. 3 Ethnic‑ and gender‑specific difference in BAI between participants with and without T2DM and HTN. Values depicted in the bar plot 
represent the mean of BAI, and values depicted in the error bar represent the standard error of mean. BAI = 0 indicates that the chronological age 
is the same as the predicted brain age, with higher values indicating an older‑appearing brain than chronological age. Asterisk (*) symbol indicates 
the following: q‑values, FDR‑corrected p‑values, were obtained using linear regression analyses with adding each two‑way interaction term (the 
presence of each CMS component*gender) to covariates in Korean and UK populations after controlling for the other CMS components. Yen (¥) 
symbol indicates the following: q‑values, FDR‑corrected p‑values, were obtained using linear regression analyses with additionally adding each 
three‑way interaction term (the presence of each CMS component*gender*ethnicity) to covariates after controlling for the other CMS components. 
BAI, brain age index; Kor, Korea; UK, United Kingdom; T2DM, type 2 diabetes mellitus; HTN, hypertension
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UK population. A few studies have found that brain age 
differs depending on ethnicity [52, 53]. However, gen-
der- and ethnicity-specific differences in the effects of 
T2DM and hypertension on brain age have not been 
extensively investigated. These differences might be 
related to the biological and socioeconomic differences 
between the Korean and UK populations. Previously, a 
higher frequency of CMS in Korean populations com-
pared to Europeans has been explained by the fact that 
Asians have higher visceral fat and lower subcutaneous 
fat than Europeans with the same BMI [54]. This might 
increase the complication rate of CMS because visceral 
fat has more deleterious effects on arteriosclerosis and 
brain health than subcutaneous fat. In fact, Asians are 
more likely to develop CMS-related complications such 
as coronary artery disease [55], stroke [56], dementia 
[57–59], or mortality [60]. Another potential explanation 
is that there were fewer differences in socioeconomic sta-
tus and years of education between males and females 
in the UK than in Korea. Further studies are needed to 
investigate the pathomechanism to explain gender differ-
ences according to ethnicity.

Limitations
The strengths of our study include a large sample size 
from two different cohorts, well-balanced clinical demo-
graphics between the two cohorts after propensity score 
matching, and a novel measurement of brain age that is 
sensitive to neurodegenerative changes in gray and white 
matter. However, our study had some limitations. First, 
owing to the cross-sectional study design, the causal 
or temporal relationship of the effects of CMS on brain 
aging was not determined. In addition, the study did not 
have information on exposure time or changes in the 
status of risk factors. Longitudinal studies are needed to 
identify whether there are dynamic differences from mid-
adulthood to old age in the effects of risk factors on brain 
aging in elderly CU populations. Second, differences 
in subject selection methods between the two cohorts 
may have confounded the ethnic differences. Third, the 
presence of T2DM and hypertension was determined 
through the patient history of diagnosis or medications 
and not through clinical examinations including meas-
urement of systolic blood pressure and fasting glucose. 
Fourth, obesity was defined using BMI only rather than 
waist circumstance, which has relevance to central obe-
sity according to the International Diabetes Federation. 
We also used different criteria for diagnosing obesity 
according to ethnicity-specific BMI. This was, however, 
done to abide by a previous consensus on the definition 
of obesity according to ethnicity [25]. Finally, we did not 
consider the brain pathology markers of Alzheimer’s dis-
ease, lacunes, micro-cortical infarcts, and white matter 

hyperintensities, which can also be associated with brain 
age. Further studies are needed to identify the effects of 
CMS on brain aging in relation to the pathophysiologi-
cal processes. Despite the aforementioned limitations, 
our study is the first report to compare the gender- and 
ethnicity-specific effects of CMS on brain age.

Conclusions
In the present study, we highlight gender and ethnic 
differences in the effects of CMS on brain age. Further-
more, our findings suggest that different measures may 
be needed to prevent accelerated brain aging by CMS 
in terms of gender and ethnic differences. In conclu-
sion, CMS exerted different effects on brain age accord-
ing to the gender and ethnicity of the individuals. Our 
study shows that it is important to control for T2DM and 
hypertension to prevent brain aging. Since the effects of 
T2DM and hypertension on brain age were the largest 
among Korean females, more careful treatment of these 
CMS components would be more effective to prevent or 
mitigate fast brain aging in Korean females. Therefore, 
ethnic- and gender-specific prevention strategies may be 
needed to protect against accelerated brain aging.
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