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Abstract 

Background Behavioral variant frontotemporal dementia (bvFTD) is predominantly considered a dysfunction in 
cortico‑cortical transmission, with limited direct investigation of cortical‑subcortical transmission. Thus, we aimed to 
characterize the metabolic connectivity between areas of the limbic cortico‑striato‑thalamic‑cortical (CSTC) circuit in 
presymptomatic and symptomatic bvFTD patients.

Methods Thirty‑three bvFTD patients and 33 unrelated healthy controls were recruited for this study. Additionally, 
six asymptomatic carriers of the MAPT P301L mutation were compared with 12 non‑carriers who were all from the 
same family of bvFTD. Each participant underwent neuropsychological assessment, genetic testing, and a hybrid PET/
MRI scan. Seed‑based metabolic connectivity based on  [18F]‑fluorodeoxyglucose PET between the main components 
within the limbic CSTC circuit was explored according to the Oxford‑GSK‑Imanova Striatal Connectivity Atlas.

Results BvFTD patients exhibited reduced metabolic connectivity between the relays in the limbic CSTC circuit, 
which included the frontal region (ventromedial prefrontal cortex, orbitofrontal cortex, rectus gyrus, and anterior 
cingulate cortex), the limbic striatum, and thalamus compared to controls. In the bvFTD patients, the involvement of 
the limbic CSTC circuit was associated with the severity of behavior disruption, as measured by the frontal behavior 
inventory, the disinhibition subscale, and the apathy subscale. Notably, asymptomatic MAPT carriers had weakened 
frontostriatal connectivity but enhanced striatothalamus and thalamofrontal connectivity within the limbic CSTC 
circuit compared with noncarriers.

Conclusion These findings suggested that aberrant metabolic connectivity within the limbic CSTC circuit is present 
in symptomatic and even asymptomatic stages of bvFTD. Thus, metabolic connectivity patterns could be used as a 
potential biomarker to detect the presymptomatic stage and track disease progression.
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Background
Behavioral variant frontotemporal dementia (bvFTD) 
is a highly genetic and heterogeneous clinical syndrome 
characterized by early and prominent deterioration of 
behavior, which includes impaired social interactions, 
disinhibition, apathy, and impairment in adaptive func-
tioning, and the main causal genes are mutations of the 
microtubule-associated protein tau (MAPT) gene, espe-
cially in China [1–3]. Asymptomatic carriers with auto-
somal dominant mutations provide an opportunity to 
investigate the pathophysiology of bvFTD in the earliest 
phases of the illness [4]. Although bvFTD is tradition-
ally considered a frontotemporal cortical disease, there is 
growing evidence that subcortical brain regions, particu-
larly the striatum, are also significantly affected and may 
play a role in the generation of motor, cognitive, behav-
ioral, and psychiatric symptoms [5–7]. However, limited 
attention has been drawn toward the striatum, especially 
for the limbic striatum, which is specifically associated 
with the central features of bvFTD: behavioral and psy-
chiatric disturbances [8, 9].

Given that the dysfunction is not solely attributable to 
the nature of isolated regions, neural circuits mediated 
by the limbic striatum are critical for the integration of 
information to carry out goal-directed behavior and psy-
chiatric function [10]. The limbic striatum receives pro-
jections from the prefrontal cortex, which includes the 
ventromedial prefrontal cortex (vmPFC), orbitofrontal 
cortex (OFC), rectus gyrus, and anterior cingulate cortex 
(ACC), and sends projections that ultimately relay infor-
mation back to the prefrontal cortex via the thalamus, 
which constitutes the limbic CSTC circuit [11, 12]. Mul-
tiple lines of evidence in patients with different diseases 
suggested that the dysfunction of this limbic CSTC cir-
cuit plays a major role in the pathogenesis of behavioral 
and psychiatric symptoms, with the limbic striatum serv-
ing as the key subcortical relay [9, 13, 14]. Previous neu-
roimaging studies have revealed that the behavioral and 
psychiatric disturbances in patients with bvFTD may be 
attributed to structural abnormalities of the relays within 
the limbic CSTC circuits, which includes the vmPFC, 
OFC, rectus gyrus, ACC, and especially the limbic stria-
tum; moreover, these abnormalities can be detected even 
in asymptomatic mutation carriers [15–18]. Recently, 
the alteration in the white matter microstructure of the 
OFC and limbic striatum connections were detected in 
bvFTD patients using diffusion tensor imaging (DTI) [5]. 
These changes indicate a possible role of the limbic CSTC 

circuit in the genesis of the neuropsychiatric symptoms 
in bvFTD. However, to date, there is fragmentary evi-
dence of altered limbic CSTC circuit structure and integ-
rity in bvFTD patients, and whether abnormalities in 
the connectivity between the brain regions are present 
remains unclear. In particular, the specific contributions 
of the limbic CSTC circuit to the behavioral and psychi-
atric abnormalities of bvFTD need to be clarified. We 
hypothesized that aberrant metabolic connectivity within 
the limbic CSTC circuit is present in bvFTD patients, and 
plays a role in the core manifestations, such as behavioral 
and psychiatric symptoms.

In the current study, we examined metabolic connec-
tivity-based  [18F]-fluorodeoxyglucose (FDG) PET/MRI 
data within the limbic CSTC circuits in bvFTD patients 
and asymptomatic MAPT carriers. In addition, we 
explored associations between FDG standardized uptake 
value ratio (SUVR) in the main relays of the CSTC circuit 
and symptom severity in the bvFTD group, with a par-
ticular focus on the limbic striatum. We aimed to explore 
the characteristics of the involvement of the limbic CSTC 
circuit in the continuous spectrum of bvFTD, as well as 
its relationship with behavioral disturbance.

Methods
Participants
We enrolled 33 bvFTD patients from July 1, 2017, to 
December 31, 2020, at the Department of Neurology of 
Xuanwu Hospital, who fulfilled the 2011 consensus prob-
able bvFTD criteria [19]. We also recruited 33 age- and 
sex-matched healthy individuals, who were unrelated to 
the patients, to serve as the controls for bvFTD patients. 
All participants underwent clinical interviews, physical 
examinations, neuropsychological assessments, genetic 
testing, and a brain  [18F]-FDG PET/MRI.

In addition, 18 asymptomatic participants were 
recruited from the Department of Neurology of Xuanwu 
Hospital in September 2017, who belonged to a fam-
ily with an autosomal dominant P301L mutation of the 
MAPT gene. We defined participants as asymptomatic 
when both they and their spouse denied cognitive and 
behavioral disturbances and had normal scores on neu-
ropsychiatric measures. All participants underwent 
genetic screening, and six participants were found to 
be carriers of the mutation. The remaining 12 were 
mutation-negative and were used as controls owing to 
their similar early environment, genetic background, 
and demographics. Each participant underwent clinical 
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interviews, physical examinations, neuropsychologi-
cal assessments, and a brain  [18F]-FDG PET/MRI. All 
participants had been followed up prospectively with 
annual clinical examinations between September 2017 
and October 2021 at Xuanwu Hospital. During the 4-year 
follow-up period, all subjects remained symptom-free 
and none developed any bvFTD symptoms or any other 
neurodegenerative disease.

Neuropsychological assessments
The neuropsychological test battery consisted of widely 
used neuropsychological assessments that measure the 
cognitive function in the domains of memory, language, 
and behavioral abnormalities. Global cognitive screening 
measures comprised the Mini-Mental State Examination 
(MMSE), the Montreal Cognitive Assessment (MoCA), 
and the Frontotemporal Lobar Degeneration-Clinical 
Dementia Rating scale (FTLD-CDR). Word-list memory 
was evaluated using Rey’s Auditory-Verbal Learning Test 
(AVLT). Language was evaluated using the Boston Nam-
ing Test (BNT). The severity of behavioral abnormalities 
was assessed using the Frontal Behavior Inventory (FBI), 
which is divided into the negative apathy symptom sub-
scale (first 12 items) and the positive disinhibition symp-
tom subscale (last 12 items).

PET/MRI acquisition parameters
All images were acquired on a hybrid 3.0 T TOF PET/
MRI scanner (SIGNA PET/MR, GE Healthcare, WI, 
USA) [20]. PET and MRI data were acquired simulta-
neously using a vendor-supplied 19-channel head and 
neck union coil. Subjects were injected intravenously 
with  [l8F]-FDG (3.7 MBq/kg), and underwent three-
dimensional (3D) T1-weighted sagittal imaging and 
 [l8F]-FDG-PET imaging 40 min later during the same 
session.

A 3D T1-weighted fast field echo sequence (repeti-
tion time [TR] = 6.9 ms, echo time [TE] = 2.98 ms, flip 
angle = 12°, inversion time = 450 ms, matrix size = 
256 × 256, field of view = 256 × 256  mm2, slice thick-
ness = 1 mm, 192 sagittal slices with no gap, voxel size 
= 1 × 1 × 1 mm3, and acquisition time = 4 min 48 s) 
was used for data acquisition. Static  [l8F]-FDG-PET data 
were acquired using the following scanning parameters: 
matrix size = 192 × 192, field of view = 350 × 350  mm2, 
and pixel size = 1.82 × 1.82 × 2.78 mm3, and included 
corrections for random coincidences, dead time, scatter, 
and photon attenuation.

Structural image preprocessing
Data were preprocessed using the Computational Anat-
omy Toolbox (CAT12) toolbox segment data pipeline 
implemented within Statistical Parametric Mapping 

12 (SPM12, www. fl. ion. ucl. ac. uk/ spm). Structural MRI 
images were normalized to standard Montreal Neuro-
logical Institute (MNI) space using diffeomorphic ana-
tomical registration through exponentiated lie algebra 
normalization as implemented in SPM12. The images 
were then smoothed using an 8-mm full-width half-max-
imum isotropic Gaussian kernel for all directions.

PET/MRI image preprocessing
The  [l8F]-FDG PET image processing and analyses were 
performed using SPM12 implemented in the Matlab 
software (Mathwork, Inc., Natick, MA, USA). After nor-
malizing the structural MRI images, the transformation 
parameters determined by the T1-weighted image spa-
tial normalization were applied to the co-registered PET 
images for PET spatial normalization. The images were 
then smoothed using an isotropic Gaussian kernel with 
an 8-mm full-width half-maximum. The FDG-PET scan 
intensity was normalized using a whole cerebellum refer-
ence region to generate standardized uptake value ratio 
(SUVR) images.

Analysis at the striatal subregion level
We used the substriatal regions of interest (ROIs) from 
the Oxford-GSK-Imanova Striatal Connectivity Atlas [9], 
which is a probabilistic atlas of substriatal regions seg-
mented according to their white-matter connectivity to 
cortical regions. Based on the differential cortical con-
nectivity patterns, the atlas subdivides the striatum into 
seven subregions: limbic, executive, rostral-motor, cau-
dal-motor, parietal, occipital, and temporal subregions 
(Fig. 1A). We focused on the limbic striatum because it 
is the principal subcortical relay of the limbic CSTC cir-
cuits. Mean  [18F]-FDG PET SUVRs were determined 
separately in the unilateral limbic portion of the striatum 
using ROIs provided by the atlas.

Metabolic connectivity analysis of the limbic CSTC circuit
We used sparse inverse covariance estimation (SICE), 
which is a method previously validated by Huang et  al. 
[21] A series of nodes (N = 172) that represent brain 
ROIs for the connectivity analysis were selected to cover 
the whole brain [22, 23]. Because our hypothesis was spe-
cifically focused on the limbic CSTC circuit, we selected 
six ROIs for the functional connectivity analysis, which 
included the vmPFC, OFC, rectus gyrus, ACC, limbic 
striatum, and thalamus (i.e., the main components of 
the limbic CTSC circuitry). We performed a seed-based 
analysis with the six ROIs to investigate the connectivity 
between the frontal cortex and the limbic striatum, the 
limbic striatum and the thalamus, and the thalamus and 
the frontal cortex.

http://www.fl.ion.ucl.ac.uk/spm
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Statistical analyses
The GraphPad Prism software (version 8.3.0, Graph-
Pad Software Inc, La Jolla, CA, USA) was used for 
all statistical analyses. The normality of the distribu-
tion for all numerical variables was evaluated using 
Shapiro-Wilk tests, and homogeneity of variance 
was assessed by F tests. Numerical variables are pre-
sented as means ± standard deviations or medians 
(Q1–Q3). Group differences were assessed using 
an independent t-test for normally distributed and 
homogeneous variance data, otherwise, the Mann-
Whitney test was used. Comparisons of categorical 
variables were analyzed using chi-square and Fisher’s 
exact tests.

The structural and  [18F]-FDG PET data were sub-
jected to voxel-wised whole-brain two-sample t-tests 
based on the framework of a general linear model 
(GLM) in SPM12, with age and sex as covariates. Brain 
regions with significant volume and FDG changes were 
determined using a voxel threshold of p < 0.05 (family-
wise error [FWE]-corrected). We then conducted the 

atlas-based ROI analysis of the PET images to extract 
the regional SUVRs of the relays in limbic CSTC cir-
cuit for further correlation analyses. To compare 
metabolic connectivity between groups, we used non-
parametric permutation tests with 5000 permutations 
to determine significance. The p-values were calcu-
lated as the fraction of the difference in distribution 
values that exceeded the difference value between the 
actual groups.

For the bvFTD group, we performed a Pearson’s cor-
relation between the  [18F]-FDG SUVR of the relays in 
the limbic CSTC circuit and neuropsychiatric assess-
ment scores using a threshold of p < 0.05 (false discov-
ery rate [FDR]-corrected). Furthermore, multivariable 
linear regression analyses were performed to examine 
whether the severity of behavior disruption (FBI total 
score, FBI apathy, FBI disinhibition) was associated 
with involvement of limbic striatum covarying out the 
general cognition (MMSE) or disease severity (FTLD-
CDR). For all analyses, a p-value < 0.05 indicated statis-
tical significance.

Fig. 1 Significant correlations between the limbic striatum and neuropsychological scores in patients with bvFTD. A Striatal parcellations based on 
intrinsic functional connectivity with the cerebral cortex. B Scatter plots of significant correlations between the SUVR value of the limbic striatum 
and neuropsychiatric scores. Region and scatterplot colors, red: left limbic striatum, blue: right limbic striatum
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Results
Demographic features of the subjects
Demographic, cognitive, and behavioral features of the 
bvFTD patients, controls, asymptomatic carriers, and 
noncarriers are presented in Table  1. Asymptomatic 
MAPT carriers exhibited no symptoms or signs of any 
kind, including cognitive and motor impairment. In addi-
tion, none of the bvFTD patients displayed any symptoms 
or signs of motor disturbance. There were significant dif-
ferences in MMSE, MoCA, FTLD-CDR, AVLT, BNT, 
and FBI scores between bvFTD patients and controls, 
but not between asymptomatic MAPT mutation carri-
ers and noncarriers. The mean (standard deviation) esti-
mated years from the symptom onset was 8.33 (1.875) in 
the MAPT mutation carrier group with a range of 4 to 13 
years.

Alteration in each striatal subregion
Compared with controls, bvFTD patients showed a 
significantly lower GM volume in the striatal limbic 
subregion, the executive subregion, the rostral motor 
subregion, and the caudal motor subregion, but not in 
the parietal subregion, occipital subregion, or temporal 

subregion, as shown in Supplementary Tables  1 and 
2. No gray matter loss was identified in asymptomatic 
MAPT carriers compared with non-carriers based on a 
voxel threshold of p < 0.05 (FWE-corrected).

Even though bvFTD patients did not exhibit any symp-
toms or signs of motor disturbance, when compared to 
controls, they showed gray matter loss and hypome-
tabolism in bilateral motor subregions of the striatum, 
including the rostral-motor and caudal-motor subregion. 
Asymptomatic MAPT carriers and noncarriers did not 
significantly differ in GM volume and FDG uptake of 
bilateral motor subregions. These results are presented 
in Supplementary Tables  1 and 2 and Supplementary 
Figure 1.

[18F]‑FDG uptake in the relays of the limbic CSTC circuit
Bilateral hypometabolism was significantly more pro-
nounced in bvFTD patients than in healthy controls in 
the relays within the limbic CSTC circuit, which included 
the vmPFC, OFC, rectus gyrus, ACC, thalamus, and lim-
bic striatum (p < 0.0001; Supplementary Table 3). How-
ever, asymptomatic MAPT carriers and noncarriers did 

Table 1 Demographic and neuropsychiatric assessment data

Data are presented as means ± the standard deviations or medians (Q1–Q3)

AVLT auditory verbal learning test, BNT Boston Naming Test, FTLD-CDR Frontotemporal Lobar Degeneration-Clinical Dementia Rating, FBI Frontal Behavioral Inventory, 
MMSE Mini-Mental State Examination, MoCA Montreal Cognitive Assessment
a Based on unpaired t-tests
b Based on Mann-Whitney tests
c Based on Pearson’s chi-squared test

BvFTD patients
(n = 33)

Controls
(n =33)

Asymptomatic 
MAPT carriers
(n = 6)

Noncarriers in 
the family
(n = 12)

P-value 
bvFTD patients
vs controls

P-value 
MAPT carriers
vs noncarriers

Age 58.94 ± 9.87 55.82±10.05 49.00 ± 3.90 42.25 ± 9.21 0.20a 0.11a

Sex (male/female) 16/17 15/18 3/3 7/5 0.99c 0.99c

Years of education 10.62 ± 4.64 11.31 ±3.47 8.67 ± 0.52 10.55 ± 3.80 0.52a 0.25a

MMSE 16.52 ± 6.87 28.65 ± 2.07 28.67 ± 0.82 28.36 ± 2.06 <0.0001b 0.74a

MoCA 10.15 ± 6.25 26.06 ± 3.43 26.50 ± 1.23 26.18 ± 3.06 <0.0001b 0.81a

FTLD‑CDR 10.98 ± 4.46 0 ± 0 0 ± 0 0 ± 0 <0.0001b ‑

Memory
 AVLT: immediate recall 7.70 ± 7.38 23.81 ± 5.59 23.83 ± 2.32 26.00 ± 7.32 <0.0001a 0.50a

 AVLT: delayed recall 1.35 ± 2.53 8.79 ± 2.98 8.67 ± 2.25 9.27 ± 3.16 <0.0001a 0.69a

Executive function
 TMT‑A 111.60±39.95 50.48 ± 24.94 44.33 ± 14.98 42.00 ±18.75 <0.0001b 0.79a

 TMT‑B 247.80±82.95 88.44 ± 62.59 85.17 ± 35.37 63.67±31.04 <0.0001a 0.19a

Language
 BNT 11.63 ± 6.39 24.96 ± 3.83 25.00 ± 1.00 24.90 ± 2.08 <0.0001b 0.92a

Behavior features
 FBI total score 26.87 ± 14.94 1.67 ± 4.08 0 (0–6) 0 (0–2) <0.0001b 0.84b

 FBI apathy 17.58 ± 9.02 0.83 ± 2.04 0 (0–4) 0 (0–0) <0.0001b 0.40b

 FBI disinhibition 9.29 ± 7.88 0.83 ± 2.04 0 (0–2) 0 (0–1.5) <0.001b 0.99b
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not significantly differ in FDG uptake of the above relays 
within the limbic CSTC circuit.

Correlations between the limbic CSTC circuit 
and neuropsychological features
As shown in Fig.  1B and Supplementary Table 4, in the 
bvFTD group, SUVR values of the limbic striatum were 
negatively correlated with the FBI total score, disinhibi-
tion subscale score, apathy subscale score, and FTLD-
CDR sum of boxes scale.

Similarly, significant diffusion associations were pre-
sent between the SUVR values of the vmPFC, OFC, rec-
tus gyrus, and ACC and the FBI total score, disinhibition 
subscale score, apathy subscale score, and FTLD-CDR 
sum of boxes scale score, as shown in Supplementary 
Table 4 and Supplementary Figures 2 and 3.

Multivariable linear regression analyses revealed that 
the FBI total score was significantly correlated with 
SUVR of the bilateral limbic striatum when the models 
were adjusted by MMSE. SUVR of the bilateral limbic 
striatum and FBI disinhibition subscale showed a trend 
of correlation, as did SUVR of the right limbic striatum 
and FBI apathy subscale. In addition, the FBI disinhibi-
tion subscale score was significantly correlated with 
SUVR of the bilateral limbic striatum when the models 

were adjusted by FTLD-CDR. The results were present in 
Supplementary Tables 5 and 6.

Metabolic connectivity in the limbic CSTC circuit
Compared with the controls, bvFTD patients showed the 
decreased metabolic connectivity within the CSTC cir-
cuit, including connectivity between the vmPFC, OFC, 
rectus gyrus, ACC, and the limbic striatum, between the 
limbic striatum and the thalamus, as well as between the 
thalamus and the prefrontal cortex (vmPFC, OFC, rectus 
gyrus, ACC), as shown in Fig. 2.

In asymptomatic MAPT carriers, the limbic subre-
gions of the striatum showed weakened connections with 
vmPFC, OFC, rectus gyrus, and ACC, but enhanced con-
nectivity with the thalamus compared with non-carriers. 
Accordingly, the thalamus had enhanced connections 
with the vmPFC, OFC, rectus gyrus, and ACC (Fig. 3).

Discussion
We found altered connectivity within the limbic CSTC 
circuit in the bvFTD patients and presymptomatic MAPT 
mutation carriers, which, to the best of our knowledge, 
has not been empirically demonstrated previously. Spe-
cifically, extensive decreased connections were observed 
in the limbic CSTC circuit, which may be associated with 

Fig. 2 Metabolic connectivity within the limbic CSTC circuits in bvFTD patients. A Connectivity weights in bvFTD patients compared with 
controls. In bvFTD patients, extensively decreased metabolic connectivity between the major components of limbic CSTC circuits was observed. 
B Connectomes projected onto a 3D brain template. Enhanced metabolic connections are represented by red lines, and weakened metabolic 
connections are represented by blue lines. Abbreviations: vmPFC, ventromedial prefrontal cortex; ACC, anterior cingulate cortex
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more severe behavioral disturbances in bvFTD patients 
with both apathetic and disinhibition syndromes. In 
contrast to the connectivity patterns observed in bvFTD 
patients, the asymptomatic MAPT mutation carriers 
showed decreased frontostriatal connectivity and com-
pensatory increases in striato-thalamic and thalamo-cor-
tical connections in the limbic CSTC circuits, which may 
contribute to the absence of the symptom.

We revealed alterations in metabolic connectivity of 
the CSTC circuit in presymptomatic and symptomatic 
bvFTD, especially at the level of the limbic striatum asso-
ciated with the behavior and psychiatric function, which 
has not been specifically investigated to date. Instead 
of using anatomically defined discrete striatal regions 
(nucleus accumbens, caudate nucleus, and putamen) as 
previously employed, we use a connectivity-based (CB) 
functional striatum atlas based on their distinct corti-
cal connectivity profiles, which provides optimal subdi-
vision to investigate specific functions of the striatum. 
We observed reduced metabolic connectivity within 
these circuits in our bvFTD patients, which is consist-
ent with previous findings of both metabolic and struc-
tural abnormalities within regions comprising the limbic 
CSTC circuits in frontotemporal dementia (FTD) [5, 24]. 

Furthermore, the functional connectivity patterns of the 
limbic CSTC circuits were altered during the presympto-
matic stage of MAPT mutation carriers at risk of genetic 
bvFTD. The above findings support previous studies that 
suggest that FTD is a more complex disease involving the 
dysfunctions in the cortical and subcortical transmission 
rather than dysfunctions in cortico-cortical transmission 
alone [5, 7, 24]. Furthermore, our study highlights that 
dysfunctions of cortico-subcortical transmission may 
occur during a very early stage of the disease. Notably, 
our study provided an opportunity to characterize in vivo 
changes in the limbic CSTC circuits from the preclini-
cal to the symptomatic stage of bvFTD, which has not 
yet been experimentally established in previous studies. 
Taken together, the aberrance of the limbic CSTC circuit 
may be a sensitive and useful method for recognizing the 
presymptomatic stage of bvFTD and tracking disease 
progression.

In addition to disruption in behavior, personality, and 
social cognition, extensive cognitive impairment, includ-
ing memory, execution, and language, were detected 
in bvFTD patients in this study. According to the most 
recent bvFTD diagnostic criteria, the neuropsychologi-
cal profile includes executive dysfunction in the context 

Fig. 3 Metabolic connectivity within the limbic CSTC circuits in asymptomatic MAPT mutation carriers. A Connectivity weights in asymptomatic 
mutation carriers compared with noncarriers. Asymptomatic mutation carriers showed the decreased fronto‑striatal connectivity and 
compensatory increased striato‑thalamo and thalamo‑cortical connection within limbic CSTC circuits. B Connectomes projected onto a 3D brain 
template. Enhanced metabolic connections are represented by red lines, and weakened metabolic connections are represented by blue lines. 
Abbreviations: vmPFC, ventromedial prefrontal cortex; ACC, anterior cingulate cortex
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of relatively preserved episodic memory and visuospa-
tial skills [19]. Interestingly, significant memory impair-
ment was found in our bvFTD patients, which was in line 
with previous studies that included pathologically proven 
patients with bvFTD, implying that memory deficit may 
be associated with the disease progression or with the 
fact that a portion of bvFTD does have amnestic distur-
bance [25–27].

Our FDG-PET findings showed that the limbic stria-
tum which serves as the key subcortical relay of the lim-
bic CSTC circuit is involved in bvFTD symptomatology, 
particularly in the behavioral and psychiatric distur-
bances of both apathetic and disinhibition syndromes. 
The hypometabolism of the limbic striatum in bvFTD 
patients was associated with the severity of the disease, 
which is consistent with the previous studies of FTD 
that used morphological and diffusion imaging [5, 24]. 
Notably, the SUVR of the bilateral limbic striatum was 
correlated with behavioral disturbances, as measured 
by the FBI total score, disinhibition subscale score, and 
apathy subscale score, which has never been studied to 
date. Moreover, the correlation analysis revealed that the 
SUVR of the vmPFC, OFC, rectus gyrus, and thalamus, 
which were identified as relays of the limbic CSTC cir-
cuits, was linked significantly to behavioral disturbances. 
In summary, these findings imply that the involvement of 
the limbic CSTC circuits might contribute to the central 
features of bvFTD including behavioral and psychiatric 
symptoms.

In both bvFTD patients and asymptomatic MAPT 
carriers, the frontostriatal connectivity in the limbic 
CTSC circuit was shown to be reduced. This finding is 
partly consistent with previous research that used DTI, 
which reported structural hypoconnectivity between 
the OFC and limbic striatum in bvFTD patients [5]. 
Interestingly, in contrast to the decreased metabolic 
connectivity observed in bvFTD patients, the asympto-
matic MAPT mutation carriers showed increased con-
nectivity between the limbic striatum and the thalamus, 
as well as between the thalamus and the frontal cortex 
within the limbic CTSC circuitry. This result suggested 
that increased connectivity in the CTSC circuitry dur-
ing the very early stages of the disease may reflect 
compensatory or maladaptive remodeling, which then 
decreases as the disease progresses. Previous research 
has also discovered that the regional volumes of the 
striatum and thalamus connected to the medial pre-
frontal cortex in mild bvFTD patients were significantly 
larger than those in controls [5]. Thus, we speculate 
that the frontostriatal connectivity may be the initially 
involved in the asymptomatic MAPT mutation carri-
ers, and enhanced connectivity between the other relays 

of the limbic CTSC circuit may reflect a compensatory 
process to help maintain normal function. In addition, 
asymptomatic MAPT carriers showed altered metabolic 
connectivity without corresponding hypometabolism in 
the relays of the limbic CSTC circuit, which is consist-
ent with recent studies that reported that intracortical 
transmission deficits preceded the emergence of white 
matter lesions, structural brain atrophy, degeneration 
of neuronal synapses, and cognitive impairment [18, 
28, 29]. Taken together, aberrant metabolic connectivity 
within the limbic CSTC circuit, albeit with different pat-
terns, was present during both the presymptomatic and 
symptomatic disease stages of bvFTD and was possibly 
related to the underlying pathophysiological process, 
implying that the earliest involvement in the bvFTD 
continuum occur in the frontostriatal connectivity 
within the limbic CTSC circuit.

Limitations
This study has several limitations. First, the results were 
limited by the small sample size, particularly for asymp-
tomatic MAPT mutation carriers, because FTD families 
that carry the MAPT mutation are rare. Second, this was 
a cross-sectional study. We plan to conduct longitudinal 
studies with postmortem confirmation in the future in 
asymptomatic MAPT mutation carriers and symptomatic 
bvFTD patients. Third, the asymptomatic MAPT subjects 
and subjects with bvFTD were each matched to a con-
trol group, which reduced their comparability. Neverthe-
less, the groups were as close as possible in age, and age 
was included in all analyses as a covariate to minimize 
potential confounds. Additionally, from a connectiv-
ity perspective, the directionality of the fronto-striatum, 
striato-thalamic, and thalamo-frontal connectivity could 
not be separated by FDG-PET imaging, which may have 
confounded the correlations.

Conclusion
Our FDG-derived metabolic connectivity study in 
bvFTD patients and asymptomatic MAPT mutation car-
riers revealed abnormal functional connectivity within 
the limbic CSTC circuits. This study provided clinically 
relevant insights into the features of the limbic CSTC 
circuit in bvFTD patients, and these disrupted meta-
bolic connectivity patterns may be eventually be used as 
imaging biomarkers to detect the presymptomatic stage 
of bvFTD and monitor disease progression. In the future, 
larger but foremost longitudinal studies will be needed to 
confirm the aberrant connectivity patterns of the limbic 
CSTC circuits in a continuous spectrum of bvFTD and 
elucidate the sequential order of these potential markers 
during the evolution of the disease.
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