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Abstract 

Background:  Alzheimer’s disease (AD) and frontotemporal dementia (FTD) show network dysfunctions linked with 
cognitive deficits. Within this framework, network abnormalities between AD and FTD show both convergent and 
divergent patterns. However, these functional patterns are far from being established and their relevance to cognitive 
processes remains to be elucidated.

Methods:  We investigated the relationship between cognition and functional connectivity of major cognitive net-
works in these diseases. Twenty-three bvFTD (age: 71±10), 22 AD (age: 72±6), and 20 controls (age: 72±6) underwent 
cognitive evaluation and resting-state functional MRI. Principal component analysis was used to describe cogni-
tive variance across participants. Brain network connectivity was estimated with connectome analysis. Connectivity 
matrices were created assessing correlations between parcels within each functional network. The following cognitive 
networks were considered: default mode (DMN), dorsal attention (DAN), ventral attention (VAN), and frontoparietal 
(FPN) networks. The relationship between cognition and connectivity was assessed using a bootstrapping correlation 
and interaction analyses.

Results:  Three principal cognitive components explained more than 80% of the cognitive variance: the first compo-
nent (cogPC1) loaded on memory, the second component (cogPC2) loaded on emotion and language, and the third 
component (cogPC3) loaded on the visuo-spatial and attentional domains. Compared to HC, AD and bvFTD showed 
impairment in all cogPCs (p<0.002), and bvFTD scored worse than AD in cogPC2 (p=0.031). At the network level, the 
DMN showed a significant association in the whole group with cogPC1 and cogPC2 and the VAN with cogPC2. By 
contrast, DAN and FPN showed a divergent pattern between diagnosis and connectivity for cogPC2. We confirmed 
these results by means of a multivariate analysis (canonical correlation).

Conclusions:  A low-dimensional representation can account for a large variance in cognitive scores in the con-
tinuum from normal to pathological aging. Moreover, cognitive components showed both convergent and divergent 
patterns with connectivity across AD and bvFTD. The convergent pattern was observed across the networks primarily 
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involved in these diseases (i.e., the DMN and VAN), while a divergent FC-cognitive pattern was mainly observed 
between attention/executive networks and the language/emotion cognitive component, suggesting the co-exist-
ence of compensatory and detrimental mechanisms underlying these components.

Keywords:  Brain network, Low dimensionality, Cognitive-network association, Functional imaging

Background
Neurodegenerative disorders are among the top lead-
ing cause of death and disabilities worldwide [1]. Among 
people aged more than 65 years old, Alzheimer’s disease 
(AD) is the most common form of neurodegeneration, 
while frontotemporal dementia (FTD) represents the 
first cause of cognitive impairment in younger individu-
als. In AD, memory is typically the earliest sign of cog-
nitive deterioration. FTD serves as an umbrella term 
for several clinical syndromes, including the behavioral 
variant FTD (bvFTD), usually characterized by behav-
ioral disturbances in the earliest stages [2, 3]. To date, 
no cure is available for these diseases. Recent signifi-
cant advancement in the pharmacological field has been 
done, although findings are still far from being conclusive 
[4–6]. A better understanding of the pathophysiologi-
cal mechanisms underlying these cognitive/behavioral 
symptoms might pave the way to novel treatments and 
rehabilitation options [7].

Resting-state functional magnetic resonance imag-
ing (rs-fMRI) is widely used to assess the putative func-
tional architecture of the brain at rest. This technique can 
investigate in vivo brain oscillations in the blood oxygen 
level-dependent (BOLD) signal between different brain 
regions. Brain areas showing temporal BOLD synchro-
nization are assumed to be functionally grouped into 
neural networks. Functional connectivity (FC) exhibits 
a low-dimensional spatiotemporal pattern [8, 9]. This 
functional scaffold might have a representational role 
for cognitive abilities [10, 11]. The default mode network 
(DMN) is associated with episodic memory performance 
and shows a gradual shrinking with aging, in line with 
the natural decline of memory performance in the elderly 
[12]. Similarly, a group of “attentional networks” is linked 
with executive, language, and attentional abilities, that is 
the frontoparietal (FPN), the dorsal attention (DAN), and 
the ventral attention (VAN) networks.

In typical AD, breakdown of DMN is linked with core 
symptoms, i.e., impaired episodic memory [13]. By con-
trast, bvFTD manifests reduced FC of the VAN (also 
referred to as salience network) that is linked with clini-
cal severity [14]. Other cognitive functions and networks 
are involved during disease progression, such as atten-
tional networks/functions in both conditions [15, 16]. 
However, a simple 1:1 relationship between (lower) FC 
and (impaired) cognition is too simplistic to explain the 

complex pattern of cognitive and brain changes. Large-
scale networks are closely interconnected and altera-
tions in one network can have effects on other networks 
and undermine the balance of this functional scaffold. 
The triple network theory states that aberrant dynamic 
cross-network interactions of the VAN, FPN, and DMN 
underlie a wide range of cognitive/behavioral distur-
bances [17]. This theory posits that VAN integrates exter-
nal information acting as an interface between DMN and 
FPN, regulating their competing inter-network activity 
and promoting appropriate behavioral response. Simi-
larly, the VAN acts as a circuit breaker when attention 
is reoriented to relevant environmental stimuli, inter-
rupting ongoing activity in the DAN, which in turn 
shifts attention to the new source of information [18, 
19]. These studies suggested a general role in switch-
ing between networks supporting cognitive functions, 
which may explain previous evidence of between-net-
work alterations in neurological disorders. Brain stroke 
lesions increase connectivity between networks com-
monly anti-correlated, such as the DMN and the DAN, 
with detrimental consequences on cognitive abilities 
[20]. In neurodegenerative disorders, the pivotal study 
of Zhou et al. [14] reported a divergent connectivity pat-
tern in AD and bvFTD, whereby reduced connectivity of 
the DMN in AD was accompanied by hyper-connectivity 
of the salience network, while the opposite was seen in 
bvFTD. More recently, the same group observed that AD 
and bvFTD show divergent abnormalities in the topo-
logical organization of functional brain networks extend-
ing into subcortical and inter-network connections [21]. 
These studies pointed out a complex pattern of network 
connectivity alterations within the connectivity gradient. 
However, the relationship between this divergent func-
tional pattern in AD and bvFTD and cognition is still 
unclear. A “classical” cognitive-network approach, which 
considers the relationship between a single test score 
(or a composite score across apriori defined domains) 
with FC might mask some latent relationships, consid-
ering also that cognitive scores are highly correlated. 
Here, we aimed at identifying the latent cognitive space 
in the continuum from normal to pathological aging. A 
low latent behavioral space was previously reported in 
stroke patients, supporting the validity of this approach 
in neurological diseases. These studies showed that three 
main cognitive components explained the large majority 
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of variance in cognitive performance [22, 23], linked with 
a specific spatiotemporal trajectory of functional net-
works [24]. Based on these premises, in the present study, 
we sought to investigate whether each cognitive “motif” 
may capture a specific spatiotemporal pattern of neural 
cortical connectivity across different neurodegenerative 
diseases. To this aim, we used (i) a principal component 
analysis (PCA) to identify low-dimensional represen-
tations of cognition and (ii) a connectome analysis to 
assess FC patterns in core cognitive networks. We then 
assessed convergent and divergent cognitive-connectivity 
relationships using univariate and multivariate analyses. 
We hypothesize to find, within a latent low-dimensional 
space, both shared and divergent cognitive-FC patterns.

Methods
Participants and study design
Patients were enrolled at the IRCCS Istituto Centro San 
Giovanni di Dio Fatebenefratelli in Brescia (Italy) as part 
of the NetCogBS project [25] (ClinicalTrials.gov identi-
fier NCT03422250). Patients underwent a clinical, cog-
nitive, and imaging assessment. Cognitive and imaging 
variables were collected also in a group of age-matched 
healthy controls (HC). The study was conducted in 
accordance with the Declaration of Helsinki principles 
and approved by the local ethics committee of the IRCCS 
Istituto Centro San Giovanni di Dio Fatebenefratelli in 
Brescia (Italy). Written informed consent was obtained 
from all participants.

We included patients with a clinical diagnosis of AD 
or bvFTD [3, 26]. Inclusion criteria for patients were (i) 
age between 50 and 85 years, (ii) ability to provide writ-
ten informed consent, and (iii) availability of a collat-
eral source. We excluded patients with moderate/severe 
dementia (Mini-Mental State Examination (MMSE) 
score < 18), any medical condition that could interfere 
with assessments, and contraindications for MRI (metal 
implants, pacemakers, prosthetic heart valves, claustro-
phobia). Inclusion criteria for HC were a normal neu-
ropsychological performance on the cognitive battery, 
with no personal history of neurological, psychiatric, or 
cerebrovascular disorders. Exclusion criteria are reported 
in Pini et al. [25]. For the present study, we included all 
the patients with available cognitive assessment and MRI 
examination performed at the baseline. The whole proce-
dure of analysis is depicted in Fig. 1.

MRI acquisition
Rs-fMRI and structural MRI data were acquired on a 3T 
Philips Achieva system equipped with an 8-channel head 
coil (University Hospital of Verona, Italy). The following 
sequences and parameters were used: 2D gradient echo 
echo-planar imaging (GRE-EPI) sequence for functional 

connectivity analysis (time repetition; TR/echo time; 
TE=3000/30ms; flip angle=80°, resolution=3mm iso-
tropic; 48 axial slices; volumes=200) and 3D struc-
tural T1-weighted (TR/TE=8/3.7ms; flip angle=8°; 
resolution=1mm isotropic; 180 sagittal slices). Four fMRI 
volumes with reversed phase encoding directions were 
acquired for distortion correction purposes. Subjects 
were instructed to lie still in the scanner and to keep eyes 
closed but not to fall asleep while images were collected.

Imaging processing and computation
The first 5 scans were removed for the stability of the 
signal. Scans were corrected for distortions using the 
FMRIB’s Software Library (FSL, fmrib.ox.ac.uk/fsl/) 
topup tool [27]. Imaging preprocessing was performed 
according to a previously validated approach used by our 
group [28]. Specifically, we (i) computed motion param-
eters through a custom preprocessing script; (ii) com-
puted the affine registration matrix between rs-fMRI 
and the T1 image [29]; (iii) processed the T1 image using 
FreeSurfer version 6.0 (surfer.nmr.mgh.harvard.edu) to 
segment gray and white matter, and parcellate the cor-
tex into 114 cortical regions using a subparcellation of 
the Desikan-Killiany atlas [30]; and (iv) applied the brain 
parcellation to the rs-fMRI data using the computed aff-
ine registration matrix. The BOLD signal was corrected 
by regressing out effects of motion (six motion param-
eters) and mean signal in CSF and left-right white matter 
(from Freesurfer). The signal was additionally band-pass 
filtered (0.01–0.1 Hz) and scrubbed by removing frames 
with potential movement artifacts (framewise displace-
ment larger than 0.25 and a DVARS value 1.5×IQR above 
the third quartile). After this procedure, 1 bvFTD patient 
was excluded due to excessive motion. Additionally, 1 
frame preceding each frame with potential movement 
artifacts was also removed to accommodate temporal 
smoothing of the signal. Finally, for each cognitive net-
work from Yeo’s template, we calculated the average con-
nectivity strength, computed as the correlation average 
of each mean time-course parcel included in the network 
template according to the following formula:

where corr(ij) represents Pearson’s correlation between 
each pair of parcels belonging to a specific cognitive net-
work from Yeo’s template (DMN, DAN, FPN, and VAN), 
and m represents the number of all the pairs belonging to 
the network.

Finally, hippocampal volume was computed through 
FreeSurfer. For each subject, left and right hippocampal 
volumes were first corrected for intracranial volume and 
then averaged to compute a unique hippocampal metric. 

FC net =

m

k=1 corr(ij)

m
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This metric was used to investigate the association with 
cognitive components.

Cognitive and clinical assessments
The neuropsychological evaluation included the follow-
ing tests: Auditory Verbal Learning Test, immediate and 
delayed recall [31], Rey–Osterrieth Complex Figure recall 
[32], story recall [33], paired associates learning test 
(PAL) [34], digit span backward test [35], verbal fluency 
(phonemic and semantic) tasks [36], Token Test [37], 
Trail Making Test part A (TMT-A) and part B (TMT-
B) [38, 39], Rey–Osterrieth Complex Figure copy [32], 
Reading the Mind in the Eyes [40], and the 60 Ekman 
faces tests [41]. Patients’ score at each test was z-trans-
formed based on the performance distribution of the 
whole sample (patients and age-matched HC). z-scores 
for reaction times (i.e., PAL, TMT-A, and TMT-B) were 

inverted for congruency with performance scores of the 
other tests, i.e., higher scores representing better perfor-
mance. Due to the high proportion of missing value in 
the TMT-B (50% missing data in AD and 34% in bvFTD), 
this test was excluded from the PCA analysis, to avoid 
possible biases. The clinical assessment included the 
Clinical Dementia Rating (CDR) Scale (global and Sum 
of Boxes (CDR-SOB) scores) [42], the Neuropsychiat-
ric Inventory (NPI) [43], the Frontal Behavior Inventory 
(only for bvFTD) [44], and the Instrumental Activities of 
Daily Living scale (IADL) [45]. Whole-population-based 
cognitive z-scores were then used to compute both PCA 
and composite scores.

Cognitive component characterization
The subjects × cognitive z-scores matrix was fed into a 
PCA using the Statistical Package for the Social Sciences 

Fig. 1  Workflow of the methodology. Patients and controls underwent an extensive cognitive and clinical assessment and a 3T magnetic 
resonance imaging (MRI) exam. MRI functional data were preprocessed, registered to the subject surface, and parcellated. From these parcels, 
we computed the functional connectivity strength according to Yeo’s network template. Each cognitive test score was z-scored and entered 
in a principal component analysis (PCA) to identify the main cognitive components. Both univariate and multivariate approaches were applied 
to investigate the relationship between cognition and functional connectivity. Abbreviations: AD, Alzheimer’s disease; bvFTD, behavioral 
frontotemporal dementia; HC, healthy controls; TR, time repetition; PC, principal component



Page 5 of 14Pini et al. Alzheimer’s Research & Therapy          (2022) 14:199 	

(SPSS – Inc., version 23.0. Chicago). We expected the 
components to be correlated, so an oblique rotation was 
used, in line with the previous literature [23]. Compo-
nents had to satisfy two criteria: (i) the eigenvalues had to 
be > 1; (ii) the percentage of variance accounted for had 
to be > 5%. We excluded 1 AD and 1 bvFTD patient due 
to cognitive data missing to avoid possible biases in the 
PCA computation.

We further compared the cognitive components 
(referred to as cogPC) with cognitive composite scores. 
z-scores from each test within a specific domain were 
averaged to compute 5 different composite scores, 
according to previously published procedure [25]: mem-
ory included the Auditory Verbal Learning Test, imme-
diate and delayed recall, the Rey–Osterrieth Complex 
Figure recall, the story recall, the digit span backward 
test, and the paired associates learning test; language 
included the verbal fluency (phonemic and semantic) 
tasks and the Token Test; executive functions included 
the Trail Making Test part A and part B; visuo-con-
structional abilities included the Rey–Osterrieth Com-
plex Figure copy and the clock test; emotion recognition 
included the Reading the Mind in the Eyes and the 60 
Ekman faces tests. We compared each cogPC with the 
composite scores by means of a linear regression analysis. 
Different models were computed, each one having cogPC 
and composite scores as dependent and independent var-
iables, respectively. We further investigated Spearman’s 
correlation between each cogPC with clinical outcomes 
(i.e., IADL, NPI, CDR-SOB, and FBI (only in bvFTD) out-
comes). Statistical differences among groups in cogPC 
scores were assessed with the nonparametric Kruskal–
Wallis test (AD vs bvFTD vs HC). Finally, to further char-
acterize cogPC scores, we investigated the (Spearman’s) 
relationship between each component and hippocampal 
volume.

Relationship between cognitive components and cognitive 
networks
Baseline sociodemographic and cognitive profile of 
patients and controls were assessed with the Kruskal–
Wallis or chi-squared tests as appropriate. A Mann–
Whitney test was performed to investigate FC network 
differences between each patient group and HC (AD vs 
HC; bvFTD vs HC). We investigated both convergent and 
divergent associations between cogPC scores and net-
work FC in the whole cohort. Statistical analyses and fig-
ures were done with Python v.3.

Univariate analysis
Convergence between FC and cognition in the whole 
cohort was investigated by means of a bootstrapping 
approach for Spearman’s correlations with 5000 samples, 

aimed at investigating the association between network 
FC and cognitive components in the whole dataset. Spe-
cifically, this analysis was performed between the four 
cognitive networks from Yeo’s atlas (DMN, FPN, DAN, 
and VAN) with each cogPC score. Moreover, we imple-
mented a stepwise-removal-of-data analysis to confirm 
the bootstrapping results (see the supplementary material 
for the details of this analysis).

Divergent cognitive-connectivity coupling was assessed 
through a general linear model (GLM), assessing the 
diagnosis*network interaction for each cogPC. For the 
interaction analysis, we considered AD, bvFTD, and HC 
as diagnostic factors. For each analysis, we excluded net-
work data points above or below the 1.5 interquartile 
range. Finally, the same GLM model was repeated only 
for the patient cohort (AD and bvFTD).

Multivariate analysis
To confirm the relationship between cognitive scores and 
cognitive networks, we applied a canonical correlation 
analysis (CCA). This approach quantifies the multivari-
ate association between patterns of network connectivity 
measures and cognitive scores, seeking the maximal cor-
relation between linear combinations of variables in two 
different sets, i.e., FC and cognitive performance. Cog-
nitive networks showing robust convergent univariate 
associations (i.e., the convergent correlation-wise analy-
sis) were included as the network dataset. In addition, 
the visual and sensorimotor networks were included as 
control networks, as we did not expect a significant asso-
ciation within a low-dimensional cognitive space in this 
cohort, as one would expect for different brain disorders, 
such as stroke [23, 46]. Before CCA, network FC values 
were z-scored according to the network distribution val-
ues of the whole cohort. The five cognitive z-scored com-
posite scores were included as the cognitive dataset (see 
the “Cognitive component characterization” section). 
CCA modes exhibiting a significant correlation between 
variates from the whole group were compared between 
groups through analysis of variance (ANOVA), testing 
both main effects and interactions.

Results
Twenty-two AD and 23 bvFTD patients were included 
in the study. A sample of 20 age-matched individuals 
was included as the control group. Patients and HC were 
comparable for age (p=0.904), education (p=0.105), and 
gender (p=0.910). As expected, the MMSE scores were 
significantly lower in patients compared to HC (p<0.001), 
without differences between AD and bvFTD (p>0.05). 
Compared to HC, patients showed lower cognitive 
scores in all the cognitive tests (p<0.002 for all scores). As 
expected, bvFTD exhibited lower performance compared 
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to AD for the phonemic fluency test, the Reading the 
Mind in the Eyes, and the 60 Ekman faces tests (Table 1). 
bvFTD compared to AD showed more severe behavio-
ral disturbances (NPI: p<0.001; FBI: p=0.001) and dis-
ease severity (IADL: p=0.012; CDR-SOB: p=0.04). Both 
bvFTD and AD showed significantly lower hippocampal 
volumes compared to HC (around 20% of volume reduc-
tion for both patient groups; p<0.001).

Cognitive components
The PCA analysis revealed 3 main cognitive compo-
nents in the whole dataset. A first component (cogPC1) 
accounted for around 63% of the variance across all 
tests and subjects. A second factor (cogPC2) accounted 
for around 11% of the variance, while a third fac-
tor (cogPC3) accounted for more than 7% of the vari-
ance (Fig. 2). In the whole dataset, the first component 
was significantly associated with hippocampal volume 

(rho=.649; p<0.001), while the second and third com-
ponents were not (p>0.080).

The results for the linear regression analysis com-
paring each cogPC with the composite z-scores are 
reported in Table 2. In AD and bvFTD, the first compo-
nent showed a significant association with the memory 
composite (p<0.001 for both), while the remaining com-
posite scores were not significant (p>0.100 and p>0.20, 
respectively). The second component in AD showed a 
strong association with language and emotion recogni-
tion composite scores (both p<0.001). This result was 
echoed in bvFTD (emotion and language p<0.001), with 
an additional effect for memory (p=0.02). Finally, in 
AD, the third component showed a significant associa-
tion with visuo-spatial abilities (p<0.001) and language 
composite scores (p=.012). In bvFTD, the third com-
ponent showed a strong association with visuo-spatial 
abilities and executive composite scores (p<0.001). 

Table 1  Baseline sociodemographic and cognitive profile of patients and controls

Abbreviations: MMSE Mini-Mental State Examination, RAVLT Rey Auditory Verbal Learning test, PAL paired associates learning test, ROCF Rey–Osterrieth Complex 
Figure, TMT Trail Making Test, RMET Reading the Mind in the Eyes test, EK-60F Ekman 60 Faces Test
a Data from 22 subjects
b Data from 21 subjects
c Data from 11 subjects
d Data from 8 subjects
e Variables statistically different from HC
f Variables significantly different between bvFTD and AD

HC
n=20

AD
n=22

bvFTD
n=23

P

Age 72 ± 6 72 ± 6 71 ± 10 .904

Sex (% female) 50% 55% 57% .910

Education 11 ± 5 9 ± 4 9 ± 4 .105

MMSE 29 ± 2 21 ± 2e 22 ± 4e <.001

Left hippocampus (mm3) 3724 ± 339 2892 ± 433e 2916 ± 684e <.001

Right hippocampus (mm3) 3794 ± 326 2951 ± 451e 3079 ± 708e <.001

Cognitive tests
  RAVLT—immediate 46 ± 7 (33-65) 20 ± 7e (6-33) 21 ± 7e (12-39) < .001

  RAVLT—recall 10 ± 2 (4-14) 1.1 ± 1.5e (0-5) 2.4 ± 2.6e (0-8) < .001

  Episodic memory 13 ± 3 (9-21) 2.4 ± 2.2e,a (0-10) 3.9 ± 3.8e (0-14) < .001

  PAL 34 ± 16 (8-64) 166 ± 28e (104-204) 146 ± 54e,a (22-217) < .001

  ROCF—recall 15 ± 4 (9-26) 2.3 ± 3.2e,b (0-9) 5.2 ± 4.6e (0-17) < .001

  Backward digit span 4 ± 1 (0-5) 2.6 ± 1.9 (0-5) 1.8 ± 2.0e (0-5) 0.002

  Clock test 12 ± 1 (8-13) 5. ± 3.4e (0-12) 7.4 ± 3.3e (3-12) < .001

  ROCF—copy 30 ± 4 (22-36) 22 ± 10e,b (0-36) 20 ± 9e (3-32) < .001

  TMT-A 46 ± 10 (26-68) 120 ± 85e,b (40-328) 134 ± 94e (43-443) < .001

  TMT-B 129 ± 46 (60-232) 387 ± 194e,c (85-733) 267 ± 127e,d (121-531) < .001

  Phonemic fluency test 35 ± 8 (23-52) 24 ± 10e (4-40) 13 ± 8e,f (1-28) < .001

  Semantic fluency test 40 ± 6 (29-51) 19 ± 8e (7-33) 16 ± 8e (6-36) < .001

  Token test 34 ± 2 (30-37) 28 ± 5e (17-33) 25 ± 6e (12-34) < .001

  RMET 20 ± 3 (14-26) 16 ± 4e (9-25) 12 ± 4e,f (5-20) < .001

  EK-60F 47 ± 5 (38-54) 39 ± 8e (23-50) 27 ± 10e,f (10-47) < .001
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Based on these results, we interpreted the cogPCs as 
memory component (cogPC1), emotion-language com-
ponent (cogPC2), and visuo-spatial attentional compo-
nent (cogPC3), respectively.

All these cognitive components were different among 
groups. Post hoc analysis showed that cogPC1 and cogPC3 
were different in both patient groups compared to HC 
(p<0.002). By contrast, we reported a gradient in the 
cogPC2, with HC showing the greatest score, followed by 
AD and then by bvFTD (p=0.031). The difference between 
AD and bvFTD was significant (p=0.015) (Fig. 2).

When investigating the relationship between cogPCs 
with clinical outcomes, the first component showed a 
strong relationship with IADL, NPI, and CDR-SOB in 
both patient groups. Lower cognitive scores were posi-
tively associated with IADL (indicating greater functional 
disability) and negatively with NPI and CDR-SOB (indi-
cating greater behavioral disturbances and higher disease 

severity). Notably, in AD, the other two components 
were unrelated with clinical outcomes, while in bvFTD, 
we found an association between the second compo-
nent with both behavioral disturbances (FBI) and disease 
severity (CDR-SOB), and the latter with disease severity 
(CDR-SOB). These associations were positive, indicating 
a relation between lower scores and greater disabilities 
(Fig. 2).

Brain functional networks and connectivity‑cognitive 
coupling
As shown in Supplementary Fig. S1, VAN connectivity 
was lower in bvFTD compared to HC (p=0.01), while 
connectivity values for DAN, FPN, and DMN were lower 
in AD compared to HC (p<0.04).

The bootstrapping analysis revealed a significant cor-
relation between the first two cognitive components 

Fig. 2  Principal component analysis of cognitive scores. A Cognitive z-scores were entered in a principal component analysis (PCA), revealing 3 
main cognitive components (cogPC) explaining more than 80% of the variance (left panel). The matrices in the middle panel report the loadings of 
the PCA. The right matrices report the correlations between cognitive component scores and clinical outcomes in each patient group separately, 
showing specific-disease involvement. B The first component was related with hippocampal volume in the whole sample (p<0.001), while not 
significant relationships were reported between the hippocampus and the other component scores (p>0.05). C Significant differences were 
reported in patients compared to controls in all components. BvFTD patients showed lower scores compared to AD in the second cognitive 
component (cogPC2). Abbreviations: AD, Alzheimer’s disease; bvFTD, behavioral variant frontotemporal dementia; ROCF, Rey–Osterrieth complex 
figure test; RAVLT, Rey Auditory Verbal Learning Test; PAL, paired associative test; EK-60F, The Ekman 60-Faces; RMET, Reading the Mind in the Eyes; 
NPI, neuropsychiatric inventory; FBI, frontal behavioral inventory; IADL, Instrument activity daily life; CDR-SOB, clinical dementia rating—sum of 
boxes; TIV, total intracranial volume
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with the DMN and VAN (Fig.  3). Specifically, we found 
a significant correlation between DMN and cogPC1 (95% 
CI 0.05–0.53) and between both DMN and VAN with 
cogPC2 (95% CI 0.07–0.52 and 0.04–0.51, respectively). 
Conversely, the correlation between cognitive net-
works and cogPC3 was not significant. Results are illus-
trated in Fig.  3. The stepwise-removal analysis echoed 
these results, confirming a robust and stable correlation 
between these components and networks (see Supple-
mentary material; Supplementary Fig. S2).

The interaction analysis showed that the lack of a sig-
nificant relationship between cognition and the DAN/
FPN in the whole dataset was due to a divergent cou-
pling effect between groups. Specifically, after the exclu-
sion of two outlier data points (1.5 interquartile network 
distribution range), the GLM showed a significant 
diagnosis*cogPC2 for the DAN (z=−2.389; p=0.029) but 
not for the interaction between diagnosis and cogPC3 
(z=−1.152; p=0.249) (Fig. 3). In bvFTD, lower cognitive 
scores were associated with lower FC, while the opposite 
was seen in AD. Similarly, for the FPN, after the exclu-
sion of one outlier data point, we reported a significant 
diagnosis*cogPC2 effect (z=−2.809; p=0.005), but the 
relationship was reversed: lower scores were linked with 
lower FC in AD and the opposite in bvFTD. The cogPC3 
showed no significant interaction (z=−1.376; p=0.169) 
(Fig. 3). No evidence of an interaction was found between 
diagnosis and cogPC1 with both DAN and FPN (p>0.10 
for all the analysis). DMN and VAN showed no evidence 

of divergent patterns with cogPC scores (p>0.30), in line 
with the convergent analysis. These results were con-
firmed when considering only patients (AD and bvFTD; 
Supplementary Fig. S3).

Within-diagnosis network-cognitive interaction 
effects, that is FPN*DAN interactions separately for AD 
and bvFTD, confirmed the previous results. We found a 
divergent within-diagnosis effect between cogPC2 with 
FPN and DAN in both cohorts (DAN*FPN interaction 
effect p=0.012 for both patient groups). A trend was 
reported for the DAN*FPN interaction with cogPC3 (AD: 
p=0.078; bvFTD: p=0.128) (Supplementary Fig. S4).

Multivariate association between cognitive performance 
and connectivity
We considered cognitive networks showing a robust uni-
variate association with cognition (i.e., DMN and VAN), 
as the CCA seeks the maximal correlation between lin-
ear combinations of variables in two different sets. We 
identified 2 pairs of modes that significantly correlated 
the network variables and cognitive performance (mode 
1: r=0.51, p<0.001; mode 2: r=0.48; p<0.001). The first 
mode mainly loaded on memory, language, and emo-
tion recognition, while the corresponding network mode 
loaded on the DMN. The second mode mainly loaded 
on language and emotion recognition on the cogni-
tive side, and on VAN on the corresponding network 
side (Fig. 4). ANOVA showed a significant difference for 
both cognitive modes (p<0.001) (Fig. 4). Post hoc Tukey’s 

Table 2  Linear regression analysis for composite and component scores from the principal component analysis

Composite scores Beta P-value Beta P-value
AD bvFTD

cogPC 1 R2=0.644, p=.05 R2=0.873, p<.001

  Memory 0.955 < 0.001 1.134 < 0.001

  Executive functions −0.056 0.783 −0.137 0.254

  Visuo-spatial abilities 0.219 0.344 0.026 0.852

  Language −0.091 0.683 −0.184 0.354

  Emotion recognition −0.382 0.107 −0.145 0.431

cogPC 2 R2=0.964, p<.001 R2=975, p<.001

  Memory −0.111 0.095 −0.142 0.019

  Executive functions −0.039 0.547 −0.034 0.525

  Visuo-spatial abilities −0.108 0.150 −0.061 0.337

  Language 0.525 < 0.001 0.596 < 0.001

  Emotion recognition 0.738 < 0.001 0.557 < 0.001

cogPC 3 R2=0.893, p<.001 R2=0.904, p<.001

  Memory 0.044 0.688 −0.064 0.555

  Executive functions 0.140 0.216 0.412 0.001

  Visuo-spatial abilities 0.696 < 0.001 0.691 < 0.001

  Language 0.340 0.012 0.049 0.733

  Emotion recognition −0.169 0.130 −0.120 0.452
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test revealed that the first mode was significantly differ-
ent between HC and both disease groups (AD: p<0.001; 
bvFTD: p<0.001), while AD and bvFTD showed no sig-
nificant differences. The second mode was different 
between groups (p<0.001), mirroring cogPC2 result in 
bvFTD, as this group showed significant differences com-
pared to both AD (p=0.033) and HC (p<0.001). No dif-
ferences were reported between AD and HC (p=0.285).

Finally, we tested the GLM interaction model 
between the second mode (echoing the cogPC2), 

between groups with DAN and FPN connectivity, after 
removing outliers according to the 1.5 interquartile 
range. We confirmed a divergent association between 
this cognitive mode with DAN (p=0.008), while FPN 
did not show a significant effect (p=0.258) (Fig. 4).

Discussion
The core results of this study are (a) a low-dimensional 
cognitive space in the aging and age-related pathology 
continuum and (b) both divergent and convergent FC 

Fig. 3  Univariate convergent correlation-wise and divergent analyses between cognition and connectivity. Top panel: confidence intervals 
(CI) for the bootstrapping analysis for Spearman’s association between networks and cognitive components. Black diamonds illustrate Spearman’s 
correlation in the full dataset (without bootstrapping). Bottom panel: interaction effect analysis between network, diagnosis, and cognition for 
each cognitive component and functional network. A significant divergent effect between the diagnostic group and network was reported for the 
non-memory cognitive components with the attentional networks. A Bar plots of the diagnosis*cognitive component significance interaction with 
the attentional networks (dorsal attention and frontoparietal networks). B Scatter plot of the interaction for the non-memory components and the 
attentional networks (green: healthy controls (HC); red: behavioral variant frontotemporal (bvFTD) patients; blue: Alzheimer’s disease (AD) patients). 
Analyses were performed after exclusion of network data outliers
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patterns linked with this low cognitive space. These 
findings could shed light into the relationship between 
cognitive alterations and brain alterations in AD and 
bvFTD, suggesting possible detrimental and compensa-
tory mechanisms.

Low cognitive dimensional space
In this study, we identified three main cognitive com-
ponents across normal aging, AD, and bvFTD explain-
ing more than 80% of the variance. The first memory 
component explained the largest amount of variance in 

Fig. 4  Multivariate canonical correlation analysis. Two pairs of modes showed the maximal correlation between cognitive composite scores and 
network connectivity. The first pair of mode loaded on memory, language, and emotion recognition composite scores (cognitive dataset) and DMN 
(network dataset); the second pair of mode loaded mainly on the language and emotion scores and the VAN (left panels). Values and loadings 
from the first mode were inverted to improve the comparison with the second mode. Values associated with the cognitive modes were different 
among groups (right panels). A divergent group effect was reported between these cognitive modes and DAN connectivity (panels bottom-right). 
Abbreviations: DMN, default mode network; EF, executive functions; ER, emotion recognition; LN, language; ME, memory; SMN, sensorimotor 
network; VA, visuo-spatial abilities; VAN, ventral network; VIS, visual network
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our sample and was significantly related to hippocam-
pal volumes, congruently with the previous literature 
[47]. This component was also associated with the clini-
cal severity in both dementia groups and may therefore 
represent a common neuropsychological impairment 
across AD and bvFTD [48, 49]. The second component 
was represented by a language-emotion factor that was 
involved in both AD and bvFTD but was more impaired 
in the latter group and linked with both clinical sever-
ity and behavioral disturbances only in this cohort. This 
component may therefore capture a neuropsychologi-
cal feature specific to bvFTD. Emotion and language 
are indeed two functions highly impacted in this disor-
der [50, 51], and their inclusion within a common fac-
tor is not surprising as language plays a fundamental 
role in emotion. Previous researches highlighted that 
access to the meaning of emotional words (i.e., with 
emotional meaning) is a fundamental component to 
understand emotional facial expressions [52]. Similarly, 
language disturbances commonly co-occur with the 
impairment of the socio-emotional behavior in bvFTD. 
Severity of language deficits seems to be linked with 
disease severity and frontotemporal atrophy suggest-
ing a close link between bvFTD, speech and language 
deficits, and disease’s core neural disruptions [53]. 
Finally, we identified a third component, mainly load-
ing to visuo-spatial executive tests. This component, 
although altered in both patient groups, was linked 
with the clinical severity only in bvFTD, again suggest-
ing that this factor may capture a bvFTD-specific neu-
ropsychological feature. Overall, these findings suggest 
a low-dimensional cognitive pattern within the aging 
and age-related pathology continuum, where only three 
cognitive dimensions explained a large amount of vari-
ance of cognitive outcomes. Previous research identi-
fied a similar low-dimensional pattern in stroke; despite 
the great heterogeneity of brain lesions, it has been sug-
gested a low-dimensional pattern of cognitive deficits, 
involving three main different components [23]. These 
factors might help to identify a low space for behavio-
ral phenotypes in neurodegeneration, moving beyond 
the classical “composite” score approach. Indeed, the 
latter approach is critically dependent upon the apri-
ori definition of the cognitive domains measured by 
the different tests, thereby neglecting the frequent co-
occurrence of deficits within and across domains.

Divergent and convergent relationships between cognition 
and connectivity
This low-dimensional cognitive manifold was linked 
with the FC pattern of higher-order cognitive networks. 
FC of the DMN was positively associated with memory 
and emotion-language scores in the whole cohort, with 

no significant interaction between groups. The associa-
tion between DMN and memory is in line with a vast 
body of literature [54], while the association between 
DMN and emotion-language suggests that this net-
work plays an important role for constructing discrete 
emotional experiences [55]. Additionally, we reported a 
robust association between the VAN and the emotion-
language scores, with no significant interaction between 
groups, linking the VAN with social functioning [56]. 
Previous studies highlighted that the VAN can be briefly 
activated by external stimuli of behavioral relevance 
[19], suggesting that stimuli encoded in VAN areas are 
defined also by emotional experience [57]. These results 
were confirmed by the multivariate analysis, showing a 
robust linear relationship between DMN with a cognitive 
mode represented by memory, language, and emotion 
recognition, and between a cognitive mode mirroring 
the cogPC2 with VAN connectivity (as shown in Fig. 4). 
Although DMN and VAN showed a selective vulner-
ability in AD and bvFTD, respectively, these associations 
suggest shared multi-dimensional network mechanisms 
between these disorders, congruent with the network-
cognitive relationships observed in physiological condi-
tions. The link between DMN with memory and VAN 
with emotion-language might be ubiquitous within the 
aging-pathology continuum, although bvFTD showed 
higher levels of deficit in both language-emotions and 
VAN connectivity, suggesting that failure in these net-
works is associated with the decline of memory and 
social domains.

Along with these commonalities, we reported diver-
gent connectivity-cognitive couplings, confirmed by 
both the univariate and the multivariate analysis. For 
both DAN and FPN, we reported a divergent pattern 
between the emotion-language component and diagno-
sis. This effect was confirmed by the analysis performed 
in the patient cohort, in addition to a significant diver-
gent effect between the DAN and the visuo-spatial com-
ponent. Overall, this pattern suggests that divergent 
network-level effects might emerge as a consequence of 
aberrant connectivity observed in the primary affected 
networks in these disorders. In the last years, it has been 
well established the role of DAN as a “network gate” 
facilitating top-down attention processing by suppressing 
VAN signals to exclude irrelevant bottom-up informa-
tion [18, 58, 59]. We speculate that in bvFTD, given nor-
mal connectivity of the DAN but reduced connectivity 
of the VAN, the positive relationship between DAN and 
non-memory cognitive components may reflect com-
pensatory neural mechanisms for attentional/emotional/
language processing typifying this disorder. Indeed, DAN 
and VAN dynamically interact to control the information 
to be processed [60, 61] indicating that DAN connectivity 
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in bvFTD might compensate VAN failure. On the other 
side, AD showed the opposite pattern, i.e., reduced con-
nectivity of the DAN and normal VAN pattern. This may 
imply in AD a defective role of DAN in facilitating top-
down processes inhibiting irrelevant information as well 
as reduced regulation of attentional networks (i.e., VAN 
and FPN). Thus, a less flexible dynamic response might 
result in a less efficient maintenance of the cognitive set. 
A similar divergent pattern between connectivity, cog-
nition, and diagnosis was observed for the FPN and the 
language/emotion cognitive component. In this case, the 
association was reversed. FPN was significantly reduced 
in AD compared to HC, suggesting that this pattern 
might highlight residual functionality, that is patients 
with lower FC have worse cognition, while those with 
higher cognition show relatively preserved cognitive per-
formance. A coupled activity between DMN and FPN 
supports cognitive demand for goal-directed task [62]. 
Moreover, the positive association between these two 
networks was associated to between-network compensa-
tory mechanisms in mild cognitive impairment patients 
[63], indicating that FPN connectivity might sustain 
DMN failure. Again, in bvFTD, this pattern was reversed, 
suggesting an emerging defective role of FPN over cog-
nitive functions. Overall, these results point to the pres-
ence of both common and divergent patterns among AD 
and bvFTD patients, suggesting that cognitive alterations 
are distributed among a connectivity dysfunctional gra-
dient, which may reflect reduced variability in network 
dynamics. FC of distant cognitive networks represents a 
dynamic process and might influence cognitive demands 
and neural resources, which may reflect either compen-
sation or network failure.

Limitations and strengths
This study has several limitations. First, our sample size 
was relatively small, although the clinical and demo-
graphical characteristics of patients and controls were 
well matched. Second, we did not collect amyloid and 
tau biomarkers; thus, we could not investigate whether 
FC-cognitive associations were driven by molecular 
pathology, as suggested by the cascading network failure 
hypothesis [64]. According to this model, tau-associated 
local network failure may be followed by a global com-
pensatory phenomenon associated with Aβ [64]. Future 
studies examining the relationship between molecu-
lar pathology and divergent network connectivity will 
allow for a more nuanced clarification of the relation-
ship between cognition and FC. Moreover, the inclusion 
of clinical subscales tailored for the different neurode-
generative disorders (e.g., the FTD-CDR for FTD) [65] 
might help future studies  to better unravel the relation-
ship between cognitive components and disease severity. 

Similarly, the number of tests included for each domain 
was different, which might result in “noisier” compo-
nents when fewer tests are included.

Besides these limitations, this study has two main 
strengths: (1) investigating for the first time the cogni-
tive dimensional space within the aging and age-related 
pathology continuum through a dimensionality reduc-
tion approach and (2) assessing the univariate and mul-
tivariate relationships between this new cognitive space 
and neural networks connectivity. Future studies could 
further confirm these patterns. The identification of 
divergent and shared neural mechanisms across neuro-
degenerative diseases would increase our understanding 
of network dynamics. Moreover, these findings would be 
useful to optimize non-invasive electric brain network 
stimulation intervention [7], improving target selection 
for stimulation protocols aiming at rehabilitating specific 
cognitive functions.

Conclusions
In conclusion, a PCA approach revealed a low cognitive 
dimensional space across aging, AD, and bvFTD. Cogni-
tive deficits in patients are more accurately described by 
correlated deficit components rather than the collection 
of individual scores. We identified a few components that 
were consistent across different cohorts. The associated 
network coupling of the identified components showed 
both convergent and divergent patterns, suggesting both 
possible detrimental and compensatory effects, which 
might help to drive new effective interventions [7].
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