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ApoJ/Clusterin concentrations are 
determinants of cerebrospinal fluid cholesterol 
efflux capacity and reduced levels are 
associated with Alzheimer’s disease
Yi‑An Ko1†, Jeffrey T. Billheimer1†, Nicholas N. Lyssenko2, Alexandra Kueider‑Paisley3, David A. Wolk4, 
Steven E. Arnold5, Yuk Yee Leung6, Leslie M. Shaw7, John Q. Trojanowski1^, Rima F. Kaddurah‑Daouk3,8,9, 
Mitchel A. Kling10,11* and Daniel J. Rader1* 

Abstract 

Background:  Alzheimer’s disease (AD) shares risk factors with cardiovascular disease (CVD) and dysregulated 
cholesterol metabolism is a mechanism common to both diseases. Cholesterol efflux capacity (CEC) is an ex vivo 
metric of plasma high-density lipoprotein (HDL) function and inversely predicts incident CVD independently of other 
risk factors. Cholesterol pools in the central nervous system (CNS) are largely separate from those in blood, and CNS 
cholesterol excess may promote neurodegeneration. CEC of cerebrospinal fluid (CSF) may be a useful measure of 
CNS cholesterol trafficking. We hypothesized that subjects with AD and mild cognitive impairment (MCI) would have 
reduced CSF CEC compared with Cognitively Normal (CN) and that CSF apolipoproteins apoA-I, apoJ, and apoE might 
have associations with CSF CEC.

Methods:  We retrieved CSF and same-day ethylenediaminetetraacetic acid (EDTA) plasma from 108 subjects (40 AD; 
18 MCI; and 50 CN) from the Center for Neurodegenerative Disease Research biobank at the Perelman School of Medi‑
cine, University of Pennsylvania. For CSF CEC assays, we used N9 mouse microglial cells and SH-SY5Y human neuro‑
blastoma cells, and the corresponding plasma assay used J774 cells. Cells were labeled with [3H]-cholesterol for 24 h, 
had ABCA1 expression upregulated for 6 h, were exposed to 33 μl of CSF, and then were incubated for 2.5 h. CEC was 
quantified as percent [3H]-cholesterol counts in medium of total counts medium+cells, normalized to a pool sample. 
ApoA-I, ApoJ, ApoE, and cholesterol were also measured in CSF.
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Results:  We found that CSF CEC was significantly lower in MCI compared with controls and was poorly correlated 
with plasma CEC. CSF levels of ApoJ/Clusterin were also significantly lower in MCI and were significantly associated 
with CSF CEC. While CSF ApoA-I was also associated with CSF CEC, CSF ApoE had no association with CSF CEC. CSF 
CEC is significantly and positively associated with CSF Aβ. Taken together, ApoJ/Clusterin may be an important deter‑
minant of CSF CEC, which in turn could mitigate risk of MCI and AD risk by promoting cellular efflux of cholesterol or 
other lipids. In contrast, CSF ApoE does not appear to play a role in determining CSF CEC.

Introduction
Alzheimer’s disease (AD), the most common cause of 
dementia, is characterized by the abnormal accumula-
tion of amyloid-beta (Aβ) and hyperphosphorylated 
tau proteins, synaptic and neuronal dysfunction, neu-
roinflammation, and brain degeneration. Importantly, 
the brain is the most lipid-rich organ in the body and 
depends on tight regulation of lipid metabolism and 
transport to maintain proper neural signaling and cog-
nitive function. This is particularly pertinent to AD, 
because increased cellular cholesterol content can 
increase Aβ production [1] and changes in cellular cera-
mides have demonstrable effects on Aβ production and 
aggregation into plaques [2–4]. Extensive genetics stud-
ies of AD have identified a number of genes that encode 
proteins associated with lipid metabolism, including 
apolipoproteins E and J and cellular lipid transporters 
ABCA1 and ABCA7 [5]. However, there is a distinct lack 
of information on lipid metabolism in the human brain 
and its relationship to AD.

Cholesterol biosynthesis occurs in all cells within the 
central nervous system (CNS) and some cell types can 
actively take up cholesterol from the extracellular space 
[6, 7]. Experimental evidence suggests that excessive cho-
lesterol in neurons, astrocytes, and microglia promotes 
amyloid-beta (Aβ) accumulation and Aβ-driven inflam-
mation in (AD) [8, 9]. While brain cells can convert cho-
lesterol to 24S-hydroxycholesterol, they otherwise must 
efflux excess cholesterol (and 24S-hydroxycholesterol 
and potentially other lipid species) to acceptors in the 
extracellular space.

Cerebrospinal fluid (CSF) contains at least three apoli-
poproteins that are known to be lipid transport proteins 
and could serve as extracellular acceptors of cellular cho-
lesterol and other lipids in the brain. ApoA-I, the major 
protein in plasma high density lipoproteins (HDL), is not 
synthesized in the brain, and CSF ApoA-I is derived from 
the plasma and is in concentrations in CSF approximately 
1% of those in plasma [10] (and Supplemental Table  1). 
ApoE and ApoJ (also known as Clusterin) are both syn-
thesized in the brain.

The cholesterol efflux capacity (CEC) assay was first 
developed by the Rader lab, using plasma [11] in order 
to measure the capacity of circulating plasma HDL 

to remove cholesterol from cholesterol-loaded mac-
rophages. The assay is dependent on both the source 
cells and the acceptor media. With respect to cardio-
vascular disease, the source cells are cholesterol-rich 
macrophages that are a high source of transporters (e.g., 
ABCA1, ABCG1, and SRB1), which aid in the transport 
of the hydrophobic cholesterol molecule out of the mem-
brane. Ex  vivo analysis of serum CEC has been shown 
to be inversely and independently correlated with CVD 
[12–15]. Recently, we have shown that reverse cholesterol 
transport (RCT) can be measured in vivo [16]. In serum, 
ApoA1-containing lipoproteins are the main accep-
tors and are much higher in concentration than ApoE 
or ApoJ. Because cellular cholesterol is thought to play 
a role in AD, we adapted the CEC assay to use neuronal 
cells as source and CSF as acceptor [17]. Unlike serum, 
the concentration of ApoA1 is similar to that of ApoE 
and ApoJ in CSF such that all three may play a major role 
in efflux. Initial studies have shown that among the cells 
and conditions used, neuronal cells are a less important 
source cell than microglia, showing less efflux to ApoA1 
and HDL [17].

We hypothesized that CSF CEC may be inversely asso-
ciated with AD: high CSF CEC may facilitate cellular 
efflux of cholesterol (or other lipids) in a manner that is 
protective against AD, while low CSF CEC may have an 
opposite effect, potentially contributing to Aβ accumu-
lation and the development of amyloid plaques in AD. 
We adapted our plasma CEC assay for CSF and showed 
that it is reproducible using several cell lines relevant to 
the CNS [17]. In that study, we found strong correlations 
between cholesterol efflux to CSF from the mouse micro-
glial N9 cell line in our laboratory for assessing CEC in 
blood-based fluids. Here, we used this assay to measure 
CSF (and plasma) CEC in patients with AD, with mild 
cognitive impairment (MCI), and in cognitively normal 
(CN) controls, and also measured lipids, apolipoproteins, 
and known AD biomarkers in the same CSF samples.

Methods
Study design
CSF and plasma samples were obtained from the Biosa-
mple Repository of the Center for Neurodegenerative 
Disease Research (CNDR) at the Perelman School of 
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Medicine (PSOM), University of Pennsylvania (Philadel-
phia, PA, USA). This case-control study examined partic-
ipants enrolled in a prospective longitudinal study under 
the auspices of the National Institute on Aging (NIA)-
funded Alzheimer’s Disease Clinical Center (ADCC) 
at PSOM. The participants were recruited at the Penn 
Memory Center, PSOM, and the Maria de los Santos 
Health Center (Philadelphia, PA, USA), following writ-
ten informed consent under approval of the University of 
Pennsylvania Institutional Review Board.

Cases were classified as AD or MCI based on standard 
diagnostic criteria according to procedures established 
for ADCCs and the National Alzheimer’s Coordinating 
Center (NACC) [18–21]. From this cohort, we identified 
a subset of 127 CSF and plasma samples obtained on the 
same day from 112 unique participants and other CSF 
biomarker data (AD = 42, MCI = 20, and CN = 50). Four 
subjects were further removed due to major disruption of 
the blood brain barrier as adjudged by albumin and ApoB 
serum to CSF ratio (2 AD and 2 MCI samples, AD = 40, 
MCI = 18, and CN = 50). The total number of subjects 
used in this study is 108.

Subjects were selected from the Integrated Neuro-
degenerative Diseases Database (INDD) of the CNDR, 
using the web-based query tool INQUERY developed 
at CNDR. Neuropsychological testing was conducted 
including the Mini-Mental State Examination (MMSE) 
and/or tests of frontal executive function, memory, 

language, praxis, visuospatial construction, motor per-
formance, mood, and function, based on the NACC Uni-
form Data Set (UDS) [21–23]. Details for CSF samples 
collection and for standardized Luminex assay for amy-
loid-beta (Aβ1-42), total tau (TTau), and phosphorylated 
tau (pTau) at the threonine 181 are available in previous 
publications [24–26].

Plasma and CSF aliquots (0.5 mL) were retrieved from 
the UPenn biorepository, coded to allow assays to be per-
formed without knowledge of subject characteristics, and 
transported or shipped on dry ice to the respective labo-
ratories for biochemical analysis.

The criteria for selecting CSF and plasma samples 
from the biobank were as follows: (1) subject evaluated 
at Penn Memory Center; (2) diagnosis of AD, MCI, or 
CN; and (3) availability of CSF and plasma from the 
same date.

Biochemistry
Plasma cholesterol (Roche), ApoA-I (Roche), ApoB 
(Roche), and ApoE (Kamiya) concentrations were 
assayed on a Cobas C311 (Roche) and plasma and CSF 
human serum albumin by ELISA (E88-129; Bethyl 
Laboratories, Inc.). CSF cholesterol and triglyceride 
phospholipid were determined by fluorescence assays 
(A12216 (Invitrogen) and MAK122 (Sigma-Aldrich), 
respectively). CSF ApoA-I (DAPA10 (R&D Systems, 
Inc.)), ApoB (ab108807 (Abcam)), ApoE (ab108813 

Table 1  Demographic and clinical characteristics on study subjects

P-values were calculated using ANOVA; significant P-values: *P < 0.05; **P < 0.01; ***P < 0.001; CN cognitive normal, MCI mid cognitive impairment, AD Alzheimer’s 
disease, MMSE Mini-Mental State Examination

CN (n = 50) MCI (n = 18) AD (n = 40) P-value

Age 0.422

  Mean (SD) 68.8 (9.95) 70.5 (5.94) 71.3 (9.37)

  Median [min, max] 68.2 [48.9, 88.1] 67.9 [62.9, 83.1] 72.7 [51.4, 86.9]

Sex 0.044 *

  Female 30 (58.8%) 4 (25.0%) 24 (58.5%)

  Male 21 (41.2%) 12 (75.0%) 17 (41.5%)

Race 0.23

  Black 7 (13.7%) 0 (0%) 2 (4.9%)

  White 44 (86.3%) 16 (100%) 38 (92.7%)

  Asian 0 (0%) 0 (0%) 1 (2.4%)

MMSE Total 9.33E−18***

  Mean (SD) 29.1 (1.20) 27.1 (1.83) 20.6 (5.78)

  Median [min, max] 30.0 [25.0, 30.0] 27.0 [23.0, 30.0] 22.0 [5.00, 30.0]

  Missing 1 (2.0%) 1 (6.2%) 1 (2.4%)

Education 0.424

  Mean (SD) 16.3 (2.75) 15.6 (3.33) 15.6 (2.93)

  Median [min, max] 16.0 [12.0, 20.0] 16.0 [9.00, 20.0] 16.0 [11.0, 20.0]
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(Abcam)), and ApoJ (DCLU00 (R&D Systems, Inc.)) 
were determined by ELISA.

Cholesterol efflux capacity (CEC) assays
The CSF CEC assay using N9 microglial cells and SH-
SY5Y neuroblastoma cells has been described previ-
ously [17]. Briefly, SH-SY5Y cells were maintained in 

DMEM/4.5 g/L D-glucose/4mM L-glutamine/110 mg/L 
sodium pyruvate, and N9 were maintained in RPMI 
1640/2mM L-glutamine (both media from Life Tech-
nologies), supplemented with 10% FBS. In the CSF CEC 
assay, cells were seeded in 96 well plates and labeled with 
2 μCi/mL [1,2-3H(N)] cholesterol overnight. On day 2, 
SH-SY5Y were treated with 2 μM T0901317, and N9 and 

Table 2  One-way ANOVA test of CSF cholesterol efflux capacity, lipids, lipoproteins, and known AD biomarkers

[1] All P-values are derived from one-way ANOVA

[2] All continuous measures are reported as medians with min and max ranges, missing value counts, and corresponding percentage

[3] CSF denotes cerebrospinal fluid, PL phosphorylated lipids, ApoA1 apolipoprotein A-I, ApoE apolipoprotein E, ApoJ Clusterin, Abeta42 42 amino acid form of beta 
amyloid

[4] Cholesterol efflux capacity is expressed as a percentage of efflux in the sample, normalized to a reference sample

[5] The Tukey HSD test was performed post hoc. We used a, b, and c to represent a significant difference in each comparison. a: MCI vs CN, b:AD vs CN, and c: AD vs MCI

Significant P-values: *P < 0.05; **P < 0.01; ***P < 0.001

CN (n = 50) MCI (n = 18) AD (n = 40) F-statistics P-value

Aβ42(pg/mL)a,b

  Mean (SD) 281 (77.8) 214 (90.5) 180 (60.7) 21.57 1.42e−08 ***

  Median [min, max] 266 [140, 449] 192 [105, 354] 169 [76.0, 405]

Total Tau (pg/mL)b

  Mean (SD) 52.2 (19.0) 70.0 (47.2) 105 (65.5) 15.59 1.18e−06 ***

  Median [min, max] 48.0 [16.8, 105] 59.5 [17.0, 195] 85.4 [30.0, 299]

Phosphorylated Tau (pg/mL)b

  Mean (SD) 22.1 (15.1) 29.9 (20.4) 42.9 (27.4) 9.702 1.36e−04 ***

  Median [min, max] 19.0 [0.0400, 67.7] 24.5 [7.00, 77.0] 37.0 [0.0800, 114]

Phosphorylated Tau/Aβ42 ratioa,b

  Mean (SD) 0.0970 (0.0852) 0.180 (0.161) 0.267 (0.170) 16 8.72e−07 ***

  Median [min, max] 0.0700 [0.00700, 0.422] 0.100 [0.0400, 0.530] 0.210 [0.0600, 0.599]

CEC—N9 microglial cells
  Mean (SD) 1.14 (0.319) 1.00 (0.246) 1.06 (0.272) 2.508 0.0863

  Median [min, max] 1.09 [0.660, 2.11] 0.960 [0.600, 1.50] 1.04 [0.600, 1.93]

CEC—SHY5Y neuroblastoma cellsa

  Mean (SD) 1.45 (0.571) 1.14 (0.474) 1.39 (0.473) 3.212 0.0442 *

  Median [min, max] 1.36 [0.570, 2.93] 1.04 [0.460, 2.25] 1.44 [0.740, 2.91]

Cholesterol (ng/mL)
  Mean (SD) 166 (42.4) 176 (68.0) 163 (32.9) 0.442 0.644

  Median [min, max] 160 [77.0, 270] 166 [89.0, 377] 164 [87.0, 230]

  Missing 4 (7.8%) 0 (0%) 3 (7.3%)

PL (nM)
  Mean (SD) 10900 (2130) 9540 (1720) 10400 (1700) 1.651 0.197

  Median [min, max] 11000 [6380, 16900] 10100 [7170, 13100] 10400 [6830, 15600]

ApoA1 (ng/mL)
  Mean (SD) 2280 (1560) 1700 (588) 2190 (1030) 2.208 0.115

  Median [min, max] 1840 [438, 6810] 1450 [1030, 3300] 2100 [601, 6330]

ApoE (ng/mL)b

  Mean (SD) 11000 (1680) 10900 (2130) 9810 (1890) 4.784 0.0103 *

  Median [min, max] 10900 [7390, 16100] 11000 [7310, 15000] 9340 [5910, 14000]

ApoJ (ng/mL)a

  Mean (SD) 9690 (4030) 7350 (2420) 9080 (3210) 3.158 0.0466 *

  Median [min, max] 8890 [2940, 19800] 7240 [3040, 10900] 8800 [2270, 17700]

  Missing 1 (2.0%) 0 (0%) 2 (4.9%)
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J774 cells were treated with 0.3 mM 8-CPT-cAMP to 
upregulate ABCA1. Cells were exposed to 33 μl of indi-
vidual CSF and cholesterol efflux was allowed to pro-
ceed for 2.5 h. Cell medium was counted upon removal 
of floating cells and cell lipids were extracted with iso-
propanol read in a scintillation counter. Cell cholesterol 
efflux was quantified as the percent of [3H]-cholesterol 
counts in the medium relative to the total counts in 
medium and cells. A reference CSF sample was included 
on each plate to decrease inter-assay variability, and CEC 
activity was calculated as a unitless ratio of cholesterol 
efflux to sample CSF normalized to the reference CSF.

A similar assay with J774 mouse macrophages was 
used to determine plasma CEC using 1% ApoB depleted 
plasma in place of CSF and is described in Khera et  al. 
[15] and Horiuchi et al. [27].

Statistical analysis
For demographics, categorical variables are in percent-
ages, and continuous variables as means with standard 
deviations or medians with range. Demographic statis-
tics were computed using ANOVA and chi-square test 
for the continuous variable and categorical variables, 
respectively. For the post hoc multiple comparisons, we 
used the Tukey honestly significant difference (HSD) 
test. The correlation of efflux capacity between differ-
ent cell lines was assessed with Spearman’s correlation 
coefficients. Correlations with P < 0.05 were considered 
significant. CEC values were log-transformed, and the 
N9 and SH-SY5Y CEC were not significant for the Sha-
piro-Wilk normality test (P = 0.58 for N9 and P = 0.66 for 
SH-SY5Y). For the association analysis, linear regression 
models were used to predict CEC, including lipoproteins 
and CSF biomarkers. Age, sex, race, and CSF (or plasma) 
storage time were incorporated as covariates in all analy-
ses. We assessed the contribution of predictors in multi-
nomial logistic regression, and calculated β, the logistic 
regression coefficient that shows the direction and size of 
the relationship between predictor and diagnosis. Odds 
ratio (OR) is the ratio of the odds that are calculated as 
the exponent of β with 95% confidence interval. The asso-
ciation between plasma CEC and biomarkers were ana-
lyzed using the same model. All analysis was carried out 
in the R application (v 3.6.0).

Results
Study demographics
The characteristics of the study cohort are shown in 
Table  1. Among the 108 participants, 40 (37.0%) were 
diagnosed as AD, 18 (16.7%) as MCI, and 50 (46.3%) 
were CN. Mean age at lumbar puncture was 69.9 years. 
Fifty-three percent were female, and 9% were African 

American. There were no significant differences among 
the three groups except for the MMSE as expected. 
The prevalence of the ApoE ε4 allele was highest in 
the AD group (65%) and lowest in the CN group (24%) 
as expected. AD biomarker CSF Aβ1-42 levels were sig-
nificantly reduced in AD, whereas total Tau (TTau) and 
phosphorylated Tau (pTau) were significantly increased 
in AD. MCI subjects were intermediate between CN and 
AD in all cases (Supplemental Figure 1; Table 2).

CSF CEC, but not plasma CEC, is lower in MCI compared 
with controls
CSF CEC was measured using both N9 microglial cells 
and SH-SY5Y neuroblastoma cells. The correlation 
of CSF CEC between the two cell types was moder-
ate (correlation coefficient = 0.54, P-value = 1.3e−09) 
(Supplemental Figure  2A). Importantly, there was no 
association between CSF CEC and plasma CEC (Sup-
plemental Figure  2B-C). CSF CEC was significantly 
lower in MCI subjects in SH-SY5Y neuroblastoma cells 
(F = 3.212, P = 0.0442). We further investigated the 
relationship between groups using multinomial logis-
tic regression and observed a significant difference 
between MCI and CN for CECs from both cell types 
(Fig.  1 and Table  2). CSF cholesterol was significantly 
associated with CSF CEC from SH-SY5Y neuroblas-
toma cells (B = 26.0, t = 2.289, P = 0.0243) and from 
N9 microglial cells (B = 48.605, t = 2.883, P = 4.9e−03) 
(Supplemental Figure  3). CSF phospholipids were not 
significantly associated with CSF CEC in either cell 
type. There was no difference in CSF phospholipid, CSF 
cholesterol, plasma CEC, or cholesterol by diagnosis 
(Table 2 and Supplemental Table 1).

CSF ApoJ/Clusterin and ApoA-I were significantly 
associated with CEC and were lower in MCI com-
pared to CN. ApoA-I, ApoE, and ApoJ were measured 
in CSF samples and ApoA-I and ApoE were measured 
in plasma samples (Table 2 and Supplemental Table 1). 
CSF ApoA-I and CSF ApoJ were each strongly corre-
lated with both measures of CSF CEC, but ApoE was 
not (Fig. 2). Although we observed that CSF ApoJ and 
ApoA-I are closely correlated (Fig. 3), CSF ApoA-I and 
ApoJ were not significantly correlated with each other 
when we adjust for age, sex, and race (Supplemental 
Figure  4) CSF ApoA-I and ApoJ/Clusterin were both 
significantly lower in MCI than CN but not in AD, 
whereas CSF ApoE was significantly lower in AD sub-
jects than in CN controls but not in MCI (Fig.  4 and 
Table  2). CSF ApoE levels were significantly lower in 
APOE ε4 allele carriers, and the AD group had signifi-
cantly more ε4 allele carriers (Supplemental Figure  5). 
CSF ApoA-I had no correlation with plasma ApoA-I, 
and plasma ApoA-I was not different among CN, MCI, 
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Fig. 1  Multinomial logistic regression analyses for CSF cholesterol efflux capacity (CEC). The predictions were evaluated for MCI and AD groups 
against CN. CSF cholesterol efflux capacity was measured in CN (n = 50), MCI (n = 18), and AD (n = 40). The CEC values were normalized to a 
standard CSF sample that was run on each plate to account for inter-assay variability. We then log normalized the data prior to regression analysis. 
A Multinomial logistic regression analysis showed N9 CEC has a significant prediction of MCI. B Multinomial logistic regression analysis showed 
SHSY-5Y CEC has a significant prediction of MCI Detailed statistics are shown in the lower part of the figure. CN, cognitively normal; MCI, mild 
cognitive impairment; AD, Alzheimer’s disease; CSF, cerebrospinal fluid; CEC, cholesterol efflux capacity

Fig. 2  Multivariate linear regression of CSF CEC and apolipoproteins CSF. CSF cholesterol efflux capacity was measured in CN (n = 50), MCI (n = 18), 
and AD (n = 40). Association between ApoA1, ApoE, and ApoJ with both CEC in human microglial and neuronal cells (N9 and SH-SY5Y, respectively). 
Association between ApoA1 significantly associated with N9 microglial and SH-SY5Yneuronal cell CEC (**P < 8.96e−11 and ***P < 3.244e−06, 
respectively), ApoJ is significantly associated with N9 microglial and SH-SY5Yneuronal cell CEC (**P < 2.22e−05 and *P < 1.22e−02, respectively). 
ApoE is not associated with either CEC measurement
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and AD subjects (Supplemental Table 1). Similarly, CSF 
and plasma ApoE levels were not correlated, and in 
contrast to CSF ApoE, plasma ApoE levels did not dif-
fer by diagnosis (Supplemental Table 1).

CSF AD biomarkers
We measured Aβ1-42, total Tau (TTau), and phosphoryl-
ated-Tau (pTau) in the same CSF samples. Aβ1-42 had a 
modestly significant association with CSF CEC in SH-
SY5Y cells but not in N9 cells (Supplemental Figure  6). 
None of the other AD CSF biomarkers had an associa-
tion with CSF CEC (Supplemental Figure 6). There was a 
strong and highly significant positive association between 
CSF Aβ1-42 and CSF ApoE and a strong negative associa-
tion between pTau/Aβ1-42 ratio and CSF ApoE (Table  3; 
Supplemental Figure  6). Neither ApoA-I nor ApoJ had 
significant correlations with the AD biomarkers. We per-
formed a pair-wise correlation analysis for all measure-
ments made in the CSF (Fig.  3). ApoA-I, ApoJ, and the 

two CEC measurements clearly clustered together and 
were negatively associated with Tau and pTau. Aβ1-42 was 
positively correlated with ApoE and negatively with Tau 
and pTau.

Discussion
Dysregulation of cholesterol metabolism in the brain 
has been associated with neurodegenerative disorders 
including AD. However, the exact mechanisms linking 
cholesterol metabolism and AD pathogenesis are not well 
understood and current understanding is sometimes con-
flicting. Prior work employing genome-wide association 
studies (GWAS) identified several genes involved in cho-
lesterol movement as risk factors, including ApoE, ApoJ, 
ABCA1, and ABCA7. In this study, we used CSF from 
subjects with AD and MCI as well as cognitively normal 
controls to measure CSF cholesterol efflux capacity from 
two different cell types as well as lipids, apolipoproteins, 

Fig. 3  Heat map and hierarchical clustering of CSF CEC with apolipoproteins and biomarkers of AD. CSF CEC is closely associated with ApoA-I and 
Clusterin. Aβ1-42 is associated with ApoE, and pTau, TTau, and pTau/Aβ1-42 ratio
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and AD biomarkers. We studied whether these data were 
associated with AD/MCI diagnosis as well as with each 
other. We observed that both AD and MCI patients had 
significantly lower CSF Aβ1-42, increased CSF total and 
phosphorylated tau, lower CSF ApoE, and higher fre-
quency of the APOE ε4 genotype, all of which have been 
reported and were positive controls for the experiment.

Our major findings are that reduced CSF CEC is a 
feature of MCI and early-stage AD, and the CSF CEC is 

strongly correlated with CSF ApoA-I and ApoJ, but not 
with CSF ApoE. CSF ApoA-I and ApoJ were significantly 
lower in MCI subjects than in controls, while ApoE is 
significantly lower in AD subjects compared to controls. 
Importantly, neither CSF CEC nor CSF ApoA-I were cor-
related with plasma CEC and ApoA-I; thus, plasma levels 
of ApoA-I and CEC cannot be used as surrogates for CSF.

Importantly, we measured CSF CEC with a novel 
approach using two different biologically relevant cell 

(A) (B) (C)

(D) (E)

Fig. 4  Multinomial logistic regression analyses for CSF apolipoproteins and AD diagnosis. Apolipoproteins were measured in CN (n = 50), MCI 
(n = 18), and AD (n = 40). A Apo A1 displayed significant prediction of MCI diagnosis. B ApoE is significantly lower in AD (**P < 0.01). C ApoJ 
(Clusterin) is significantly lower in MCI (**P < 0.01) AD denotes Alzheimer’s disease, CSF cerebrospinal fluid, ApoA1 apolipoprotein A-I, ApoE 
apolipoprotein E, ApoJ/Clusterin, PL phosphorylated lipid, and Aβ1-42 42 amino acid form of beta amyloid
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lines—the human microglial N9 cell line and the human 
neuronal SH-SY5Y cell line—by labeling the cells with 
radiolabeled cholesterol and then testing the capacity of 
the CSF samples to promote efflux. While previous stud-
ies have suggested decreased levels of CSF CEC in MCI 
and AD subjects [28, 29], they used different assays with 
murine J774 macrophages, CHO cells, and BHK cells 
that are less biologically relevant. Yassine et  al. specifi-
cally focused on ABCG1-transporter-related efflux, using 
CHO or BHK cells transfected with ABCA1 transporter 
or J774 macrophages which have high ABCA1 relative to 
N9 and SH-SY5Y cells [28].

In our studies, the two independent CEC assays corre-
lated well with each other. The most significant associa-
tion with CSF CEC was with CSF ApoA-I and ApoJ, both 
of which are highly plausible acceptors of cellular choles-
terol efflux. Indeed, ApoA-I and ApoJ are known to occur 
on the same lipoprotein particles in plasma [30]. One 
might postulate that an ApoA1/ApoJ complex is respon-
sible for cholesterol efflux. However, in the CSF where 
ApoJ and ApoA1 are at similar concentrations, much 
of ApoJ is not associated with Apo A1 [10, 30, 31]. It is 

possible that ApoA-I and ApoJ may be important for pro-
moting removal of cholesterol (and possibly other toxic 
lipids) from brain cells in a way that is protective against 
AD, although in CSF, ApoJ is also present on other lipo-
proteins as well as in soluble form [10].

The association between CSF ApoA-I and AD is not 
consistent in the literature [32–36]. Our results aligned 
with Saito et  al. [36] that CSF ApoA-I is not associated 
with AD. Merched et  al. reported a decrease in serum 
ApoA-I in AD subjects (with 59 CN and 98 AD) [37], and 
Smach et al. showed that serum ApoA-I is highly corre-
lated with severity of AD [38], but we did not observe an 
association of plasma ApoA-I with AD or MCI. A notable 
finding of our study is that levels of CSF ApoJ (Clusterin) 
were significantly lower in MCI and trending in AD; they 
were also significantly positively associated with CSF 
CEC. Variants at the ApoJ/Clusterin locus have been sig-
nificantly associated with AD by GWAS [39], suggesting 
that ApoJ/Clusterin has a causal role in influencing AD 
risk. Clusterin binds to Aβ1-42, and the complex is trans-
ported across the blood brain barrier (BBB) into the cir-
culation through low-density lipoprotein receptor related 

Table 3  Results from multivariable linear regression adjusting for age, sex, and race

USC unstandardized regression coefficient, SE standard errors of the regression coefficients, Sig two-sided observed significance levels (P) for the t statistics. Significant 
P-values: *P < 0.05;**P < 0.01;***P < 0.001

95% CI for USC B

Predictor Dependent variable USC B Beta Lower bound Upper bound P R2 R2 adjusted

CEC—N9 Aβ1-42(pg/mL) 27.915 0.0935 − 35.5 91.330 0.385 0.03 − 0.029

CEC—SH-SY5Y Aβ1-42(pg/mL) 39.792 0.237 5.71 73.870 0.0226 * 0.07216 0.01649

ApoA-I (ng/mL) Aβ1-42(pg/mL) 1.97E−05 0.0629 − 4.67E−05 8.61E−05 0.5578 0.02574 − 0.03272

ApoE (ng/mL) Aβ1-42(pg/mL) 0.0193 0.421 0.01 0.03 2.5e−05 *** 0.1822 0.1331

ApoJ (ng/mL) Aβ1-42(pg/mL) 0.00439 0.202 − 4.04E−04 0.010 0.0722 0.0536 − 0.003175

CEC—N9 Ttau (pg/mL) − 3.209 − 0.0181 − 37.171 30.753 0.852 0.206 0.158

CEC—SH-SY5Y Ttau (pg/mL) 0.535 0.00536 − 18.134 19.204 0.955 0.210 0.163

ApoA-I (ng/mL) Ttau (pg/mL) 3.48E−05 0.187 − 4.35E−09 6.96E−05 0.0500 0.240 0.195

ApoE (ng/mL) Ttau (pg/mL) − 1.28 − 0.0468 − 6.34 3.78 0.617 0.212 0.165

ApoJ (ng/mL) Ttau (pg/mL) 0.00114 0.0881 − 1.45E−03 0.004 0.386 0.2161 0.1691

CEC—N9 Ptau (pg/mL) − 6.827 − 0.0862 − 22.451 8.797 0.388 0.163 0.113

CEC—SH-SY5Y Ptau (pg/mL) − 1.047 − 0.0234 − 9.695 7.6 0.811 0.157 0.106

ApoA-I (ng/mL) Ptau (pg/mL) 8.63E−06 0.104 − 7.72E−06 2.50E−05 0.297 0.1655 0.1154

ApoE (ng/mL) Ptau (pg/mL) − 0.00253 − 0.00 − 4.82E−03 − 2.37E−04 0.0309 * 0.1949 0.1466

ApoJ (ng/mL) Ptau (pg/mL) − 0.0008385 − 0.145 − 1.45E−03 3.73E−03 0.166 0.172 0.123

CEC—N9 Ptau/Aβ1-42ratio − 0.0944 − 0.180 − 0.201 0.013 0.08298 0.1182 0.06417

CEC—SH-SY5Y Ptau/Aβ1-42ratio − 0.0413 − 0.139 − 0.101 0.018 0.170 0.107 0.0532

ApoA-I (ng/mL) Ptau/Aβ1-42ratio 6.96E−08 0.126 − 4.35E−08 1.83E− 07 0.225 0.104 0.0493

ApoE (ng/mL) Ptau/Aβ1-42ratio − 2.39E−05 − 0.295 − 3.94E−05 − 8.38E−06 0.00288 ** 0.169 0.118

ApoJ (ng/mL) Ptau/Aβ1-42ratio − 5.49E−06 − 0.142 − 1.38E−05 2.79E−06 0.191 0.106 0.0516
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protein 2 (LRP2) to promote clearance of Aβ peptides 
from the brain [40, 41]. More recently it has been shown 
that ApoJ/Clusterin can reverse neuroinflammation and 
memory loss in mice [42].

We previously reported that ApoJ/Clusterin predicts 
CSF CEC from microglia and astrocytes [17]. In our 
current analysis, we confirm that CSF ApoJ/Clusterin 
was significantly associated with CSF CEC but not with 
Aβ1-42, similar to a previous study [43]. Our results sug-
gest that CSF ApoJ/Clusterin may protect against AD in 
part by promotion of lipid efflux from brain cells. Further 
studies are needed to investigate this hypothesis.

ApoE has a well-established role in AD [39], though 
the mechanisms remain unclear. CSF ApoE levels were 
lower in AD subjects, likely a reflection of the effect of 
the APOE ε4 allele in reducing CSF ApoE levels. Despite 
the fact that ApoE can act as an acceptor of cellular lipid 
efflux, we found no correlation of CSF CEC with CSF 
ApoE; we did, however, note a significant positive corre-
lation between CSF ApoE and CSF Aβ1-42. In a previous 
study, the concentration of CSF ApoE was not associated 
with Aβ1-42 or clinical dementia diagnosis [44]. Another 
smaller study found CSF ApoE to be significantly asso-
ciated with TTau, tau phosphorylated at Thr181 (pTau), 
and Aβ1-42 [45]. Our study suggests that ApoE does not 
influence AD risk through its effect on CSF CEC.

In summary, we found that CSF CEC measured using 
two different brain-relevant cell types was significantly 
lower in MCI patients than in cognitively normal con-
trols. Both CSF ApoA-I and ApoJ (but not ApoE) were 
significantly associated with CEC. In addition, CSF ApoJ 
was significantly associated with MCI (lower) and trend-
ing in AD. Our major conclusions are that impaired CSF 
CEC, determined in part by CSF ApoJ concentrations, 
is a risk factor for MCI and AD. We speculate that fac-
tors regulating the synthesis and secretion of ApoJ in the 
brain influence the ability to promote efflux of choles-
terol (and possibly other toxic lipids) from brain cells and 
therefore influence the risk of AD.
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