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Abstract

The extracellular buildup of amyloid beta (AB) plaques in the brain is a hallmark of Alzheimer’s disease (AD). Detection
of AR pathology is essential for AD diagnosis and for identifying and recruiting research participants for clinical trials
evaluating disease-modifying therapies. Currently, AD diagnoses are usually made by clinical assessments, although
detection of AD pathology with positron emission tomography (PET) scans or cerebrospinal fluid (CSF) analysis can
be used by specialty clinics. These measures of A aggregation, e.g. plaques, protofibrils, and oligomers, are medically
invasive and often only available at specialized medical centers or not covered by medical insurance, and PET scans
are costly. Therefore, a major goal in recent years has been to identify blood-based biomarkers that can accurately
detect AD pathology with cost-effective, minimally invasive procedures.

To assess the performance of plasma AR assays in predicting amyloid burden in the central nervous system (CNS), this
review compares twenty-one different manuscripts that used measurements of 42 and 40 amino acid-long A3 (AB42
and ABR40) in plasma to predict CNS amyloid status. Methodologies that quantitate AR42 and 40 peptides in blood

via immunoassay or immunoprecipitation-mass spectrometry (IP-MS) were considered, and their ability to distinguish
participants with amyloidosis compared to amyloid PET and CSF AR measures as reference standards was evaluated.
Recent studies indicate that some IP-MS assays perform well in accurately and precisely measuring AP and detecting
brain amyloid aggregates.
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Background

Diagnoses for Alzheimer’s disease are assisted with the
detection of pathology by measures of amyloid beta (Af)
aggregates. These measures are often obtained through
brain scans or collection of spinal fluid with lumbar
punctures, which are not readily accessible to a large por-
tion of the population. To combat this, researchers have
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studied technologies to measure AP in the blood yet have
encountered long-standing challenges in accuracy, sensi-
tivity, and specificity of these measures. By searching the
literature for plasma AP biomarker studies with appro-
priate sample sizes and analyses from 2014 to 2022, this
review aims to assess the current technologies that meas-
ure blood plasma Af and compare their clinical utilities
for identifying amyloid plaques.
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Main text

Introduction

The amyloid beta (AP) protein is a naturally occurring
protein in the body formed from the proteolytic cleav-
age of the amyloid precursor protein. In Alzheimer’s
disease (AD), abnormal levels of AP aggregate to form
plaques in the brain which disrupt neuronal function.
An increased level of AP aggregates in the brain is asso-
ciated with increased progression of AD pathology and
rates of cognitive decline [1]. The current standards for
AD diagnosis are amyloid positron emission tomography
(PET) imaging and cerebrospinal fluid (CSF) measure-
ments of AP, sometimes used in combination with meas-
urements of CSF tau forms [2]. However, these standards
are medically invasive, require specially trained staff, and
PET scans in particular are costly with low accessibility.
This ultimately limits the application of these standards
in a broad range of clinical care settings. Therefore, a
reliable blood plasma-based biomarker for AD is critical
for widespread clinical diagnosis and screening for clini-
cal studies to investigate the effects of disease-modifying
therapies, non-drug interventions, risk management, and
lifestyles on AD progression [3-5].

There have been long-standing challenges to obtaining
accurate plasma A measurements because concentra-
tions of AB are 50—100 times lower in the plasma than in
CSF [6]. In addition, there is a difference of less than 20%
between plasma AP42/40 ratios in the disease state versus
the non-disease state, compared with a 50% difference in
CSF [2, 7, 8]. With prior high assay variability, it was dif-
ficult to determine group differences in AD vs. non-AD
plasma A due to the assays’ lack of sufficient precision.
Consequently, studies of plasma AP as a biomarker for
AD produced conflicting results and its utility was widely
questioned for many years [9]. However, recent techno-
logical advancements in mass spectrometry have led to
improvements in instrument sensitivity and precision
which can detect femtomolar concentrations of protein
with a coefficient of variation of less than 4%, resulting
in the development of improved plasma AP assays. In
the past few years, many studies reported encouraging
results for plasma A use as a biomarker for AD (Fig. 1).
This review of twenty-one manuscripts evaluates the cur-
rent potential of plasma A as a diagnostic tool for AD.

Methods

Studies were initially selected from Ashford et al. which
included 73 articles in its systematic review of predictors
of brain amyloid status [1]. This review was chosen due
to its extensive search for studies on cost-effective meth-
ods to predict brain amyloid, all of which underwent a
quality assessment. Ashford et al. categorized studies
by their predictor, namely magnetic resonance imaging
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(MRI), cognitive measures, apolipoprotein E (APOE)
genotype, plasma proteins, plasma amyloid, and various
combined measures. Every study that used plasma amy-
loid as a predictor was evaluated as a candidate for the
current review, and those that did not include receiver
operating characteristic (ROC) analyses for the plasma
AP42/40 ratio alone (in the absence of other factors such
as age and APOE genotype) were excluded, narrowing
the collection to eight manuscripts. ROC analyses are a
useful tool for evaluating diagnostic tests, with the area
under the ROC curve (AUC) as a summary of the test’s
diagnostic accuracy. An AUC of 0.5 is equivalent to a test
of random chance, while an AUC of 1.0 yields perfect
diagnostic accuracy against a standard [26, 27].

Additional literature research was performed to
ensure the inclusion of recent studies measuring plasma
Ap. Using a date range of 2014 to 2022 and keywords
including plasma amyloid beta biomarker and amy-
loidosis, studies with plasma Ap42/40 as the primary
analysis with performance characteristics compared to
PET or CSF with ROC analysis on a sufficient number
of samples (greater than 50) were added to the review.
Since age and APOE genotype alone provide a discrimi-
native accuracy of about 0.75 between amyloid-positive
and -negative individuals [28], only studies that found
an AUC greater than 0.75 by plasma Ap42/40 biomarker
alone in at least one cohort were considered for this
review. Following the additional literature search, four
manuscripts with a head-to-head comparison of multi-
ple assays, six IP-MS manuscripts, two high-sensitivity
chemiluminescence enzyme immunoassay (ECL) manu-
scripts, and one single molecule array (SIMOA) manu-
script were added for a total of twenty-one manuscripts
in this review (see Additional file 1 for list of identified
manuscripts as well as a schematic of the manuscript
compilation strategy).

Each study was evaluated based on the characteristics
of its cohort and the type of reference standard used,
CSF AP or amyloid PET, which groups participants into
positive or negative amyloid status as the ground truth.
Parameters for evaluating the performance of plasma
AB42/40, including the AUC, sensitivity, and specificity,
were summarized.

Results

Many studies included in this review utilize high-preci-
sion IP-MS techniques in which A species are first puri-
fied using antibody beads and then are directly measured
in parallel by mass spectrometry so that Ap42, AB40, and
other species are measured together [7, 17, 18, 21, 22,
24, 28-33]. A similar technique applied by some stud-
ies is known as immunoprecipitation-free liquid chro-
matography-mass spectrometry (IP-free LC-MS), which
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Fig. 1 Timeline of AR studies [7, 10-25]. Timeline denoting significant events surrounding plasma AP use as a biomarker in AD diagnosis,
color-coded by assay type. Results were conflicting for many years, but recent IP-MS studies provide promising AUC values for plasma AB42/40
measures. The diagnostic reference standard used in each study is listed in parentheses. For studies that used PET as a reference, the tracers
include Pittsburg Compound B [7, 17-21, 25], flutemetamol [17, 20, 22, 23], florbetapir [17, 18, 20, 22, 24], and florbetaben [20]. Abbreviations: Disc,,
Discovery; Val,, Validation. Figure created with BioRender.com

measures AP species with mass spectrometry, but without
antibody purification prior to measurement by LC-MS
[22, 34]. Studies that use a bead-based immunoassay,
for example, the SIMOA assay or some high-sensitivity
chemiluminescence assays, use beads for specific Ap spe-
cies antibody binding and indirect quantification, some-
times after amplification [20, 22, 28, 35—-40]. In contrast,
other studies apply plate-based immunoassays (such as
an ELISA assay), in which a binding antibody is adsorbed
onto a plate where it binds the AP species, and a second
antibody binds to another AP antigen, forming what is
known as a “sandwich” between the two antibodies [22,
25, 28, 36]. The AP species is indirectly measured with
an enzyme that generates a color signal, for colorimet-
ric assays, or light, for chemiluminescence assays, pro-
portional to the amount of antibody binding present in
the sample (Fig. 2). One key component of this review
is recognizing the additional error introduced into the
plasma Ap42/40 ratio with immunoassay techniques, as
they measure plasma AP42 and plasma APB40 peptides

separately, while IP-MS methods measure both simul-
taneously. Though immunoassays have been commonly
used due to existing equipment, ease-of-use, and through-
put, the most precise methods for diagnosis are especially
important since the plasma Ap42/40 ratio differs by less
than 20% between the disease state and the non-disease
state [2, 7, 8].

Of the six manuscripts that used CSF A as the ref-
erence standard for amyloid status, all studies utilized
the CSF AP42/40 ratio as the standard except for the
Verberk et al. study, which used CSF AP42 levels. In
a head-to-head comparison of five different assays
on one cohort, the Washington University (WashU)-
developed IP-MS assay outperformed all other assays
with an AUC of 0.86 (95% CI 0.81-0.90) [22]. The IP-
free LC-MS assay in this study had an AUC of 0.78
(95% CI 0.72-0.83), the bead-based SIMOA immuno-
assay had an AUC of 0.69 (95% CI 0.63-0.75), and the
chemiluminescence and ELISA assays had AUCs of
0.78 (95% CI 0.73-0.83) and 0.70 (95% CI 0.64-0.76)
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Fig. 2 Contrasting methods to measure plasma AB. Two common methods to measure plasma A are IP-MS assays (left) and immunoassays (right).
In IP-MS assays, the detector measures AR species directly and quantitation is performed with an internal standard of stable isotope-labeled AB. In
immunoassays, AR species are measured indirectly with antibody binding, and a different detection antibody must be used for each AR isoform.
Immunoassays perform quantitation with an external standard. The immunoassay depicted in this figure is a plate-based sandwich immunoassay;
bead-based immunoassays are also common, using fluorescently barcoded beads bound to an antibody for indirect measuring of a target. Figure
created with BioRender.com

respectively [22]. For all studies that used CSF as the
reference standard, the weighted average of AUC val-
ues for IP-MS assays was 0.866 across four cohorts [22,
30, 31]. The weighted average AUC for chemilumines-
cence assays was 0.803 across four cohorts [26, 39, 40]
and the weighted average AUC for SIMOA assays was
0.726 across two cohorts [20, 22]. The IP-free LC-MS
assays had a weighted average AUC of 0.752 across five
cohorts [22, 34] (Table 1, Fig. 3).

The weighted average of AUC values for all studies
that used an IP-MS assay with a PET reference is 0.834
across twenty-one cohorts [7, 17, 18, 21, 22, 24, 28-34].
The weighted average AUC for studies using the WashU-
developed IP-MS assay with a PET standard is slightly
higher, with a value of 0.846 across fourteen cohorts. In
general, the immunoassays displayed lower AUCs across
most studies that used a PET reference standard. Stud-
ies using a SIMOA assay had a weighted average AUC
value of 0.690 across ten cohorts [20, 22, 24, 28, 35-37],
chemiluminescence assays had a weighted average AUC
of 0.818 across six cohorts [22, 28, 38, 40], IP-free LC-MS
assays had a weighted average AUC of 0.742 across five
cohorts [22, 34], and ELISA assays had a weighted aver-
age AUC of 0.734 across three cohorts [22, 25, 36]
(Table 1, Fig. 3).

Within a head-to-head study of five different assays
compared in the same cohort, the IP-MS assay outper-
formed all immunoassays against the PET standard,
similar to findings when CSF Ap was used as the ref-
erence standard [22]. In this study, the WashU IP-MS
assay had an AUC of 0.83 (95% CI 0.79-0.88), the IP-
free LC-MS assay had an AUC of 0.75 (95% CI 0.70-
0.81), the SIMOA immunoassay had an AUC of 0.66
(95% CI 0.59-0.72), and the chemiluminescence and
ELISA assays had an AUC of 0.73 (95% CI 0.67-0.78)
and 0.67 (95% CI 0.61-0.74) respectively [22]. For the
validation cohort of this study, two IP-MS assays had
an average AUC of 0.755, and two SIMOA assays had
an average AUC of 0.660 [22]. The chemiluminescence
assay had an AUC of 0.74 (95% CI 0.65-0.83) [22]. A
different head-to-head study employed a similar vari-
ety of assays on a cohort, with an average AUC of 0.723
for three IP-MS assays, while the WashU-developed
assay alone had an AUC of 0.814 (95% CI 0.74-0.89)
[28]. The chemiluminescence assay in this study had
an AUC of 0.710 (95% CI 0.62-0.80) and two SIMOA
assays had an average AUC of 0.655 [28] (Table 1,
Fig. 3).

Due to the differences in cohorts between studies, no
formal statistical analyses could be performed for this
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Fig. 3 Forest plots of all AUC values with PET and CSF references. The points are categorized and color-coded by assay type, and the horizontal
bars represent a 95% confidence interval. Blue is IP-MS assay, yellow is ECL, orange is an antibody-free LC-MS assay, green is ELISA, and red is SIMOA.
The black diamond symbols represent the weighted average of the assays for each category, and within categories, the assay name is listed on the
y-axis. The size of each point corresponds to the sample size of the cohort and the diagnostic accuracy of AUC values is depicted on a scale below
the x-axis [27]. Abbreviations: WashU, Washington University; Univ. Got,, University of Gothenburg

review. However, all studies reported AUC values that
reflect the ability of each assay to predict amyloid sta-
tus that is in agreement with the reference standard
diagnosis.

Discussion

Recent reviews of blood plasma tests broadly cover the
various types of high-performance blood-based bio-
markers that are utilized in research, including one that
focused on mass spectrometry-based methods [8, 41-43].
These reviews have covered recent developments in amy-
loid, tau, neurodegeneration, and other biomarkers, but
have not included in-depth reviews of blood Ap meas-
ures, the relationships between AP assays, studies, and
performance, and the implications for use in diagnostics
and therapeutic programs. Because there are now clini-
cally available blood tests for AP and an FDA-approved
drug to remove amyloid plaques requiring clinical test-
ing for amyloid, we chose to perform an extensive review
comparing the different kinds of blood plasma Ap42/40
ratio tests that have been developed.

In this review of plasma AP assays that assess AP42
and 40 values to predict amyloidosis, the IP-MS
assays outperformed the immunoassays most times
both in comparisons across studies and in the same
cohort. One advantage to the IP-MS technique is the

simultaneous quantification of the AB42 and AP40 pep-
tides with an internal standard. This allows for only one
opportunity for variance in the measurement, which is
controlled by the internal standard, in contrast to the
immunoassay methods which quantify each peptide
separately and have independent errors associated with
each because different antibodies must be used for each
AP isoform with external standards [44]. In addition,
the IP-MS method has superior analytical specificity
to the immunoassays because the mass spectrometer
measures AP species directly, while detection of Ap is
indirect with immunoassays (Fig. 2). Though immuno-
assays carry the benefit of being more widely used and
somewhat less expensive, the diseased versus non-dis-
eased plasma AP42/40 ratios differ by less than 20% in
AD, so the most precise and accurate measure of the
AP42/40 ratio is crucial to accurate diagnoses [2, 7, 8].
The enhanced precision and multiplexing capacity of
the IP-MS methods have a definitive impact on the total
error associated with the measurement of the two iso-
forms of AP that are used to derive the AB42/40 ratio.
A recent study comparing IP-MS assays and immuno-
assays measuring plasma tau isoforms as a biomarker
for AD has found that mass spectrometry-based tau
phosphorylated at threonine 217 (p-tau217) performed
significantly better than all plasma phosphorylated tau
immunoassays when detecting abnormal AP status
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[45]. Higher precision and the fact that immunoassay
antibody detection methods are more prone to blood
plasma interferences are speculated as an explana-
tion for why IP-MS assays have performed better than
immunoassays in these studies.

With most assays, the plasma Ap42/40 ratio had
stronger predictive abilities when compared to the
CSF AP standard than when compared to the PET AP
standard. This is clearly illustrated in the Janelidze et al.
(2021) study of five assays, the Verberk et al. study, the
Janelidze et al. study (2022, BioFINDER-2 cohort), and
the Li et al. study (ADNI cohort), all of which evaluated
both standards in their respective cohorts (Table 1). This
trend aligns with findings that CSF AP changes earlier
in the disease process than amyloid PET, as well as find-
ings that suggest plasma A changes precede changes in
amyloid PET [18, 46]. Exceptions to this trend include
the Schindler et al. (2022) study, where the two standards
performed equally, in addition to the Li et al. BloFINDER
cohort, the Janelidze et al. 2022 BioFINDER-1 cohort (for
the MCI group), and the Palmqvist et al. BioFINDER-1
cohort where the PET reference standard outperformed
the CSF reference standard (Table 1). It is unclear why
the CSF reference standard had a lower AUC than the
PET reference in these groups, and the same assay
showed better discriminative accuracy with the CSF
reference standard on other cohorts included in these
manuscripts. Additionally, different PET tracers cor-
relate with plasma AB42/40 measures differently, and in
future studies the PET tracer should be considered when
interpreting results given that the percent of amyloid-
positive individuals could account for variance between
studies. In the Nakamura et al. study, PiB had higher
AUC and correlation values with AP than other PET trac-
ers (Table 1), consistent with findings that PiB is a more
sensitive tracer than florbetapir [28, 47]. Considerations
of the reference standards are important to note when
evaluating AD biomarker studies, and independent com-
parisons of plasma Af, CSF AP, and amyloid PET should
be made with pathology, clinical predictors, and response
to treatment, as the most predictive measure is still not
established.

Although using plasma AP as an AD biomarker was
long questioned, recent studies have validated results for
using plasma AB42/40 as a diagnostic tool for the detec-
tion of AD amyloid plaques. The weighted average of AUC
values for all cohorts using an IP-MS assay in this review
is 0.834 using PET as a reference standard and 0.866 using
CSF as a reference standard. When diagnosing disease in
patients, an AUC between 0.8 and 0.9 is considered very
good [26, 27]. Even further, using plasma Af as a diag-
nostic tool for AD would confer significant benefits to
the patient and healthcare community through decreased
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cost, invasiveness, and need for specially trained staff
resulting in broader accessibility, diversity in research
cohorts, and clinical access to diagnostic tests.

Mass spectrometry has been used in clinical labs for
decades, and its use has expanded with commercial
groups that can run millions of tests per year [48—51]. As
automated and simplified clinical systems are available
for sample processing and mass spectrometry analysis,
specially trained staff are not required to run a devel-
oped clinical protocol and the ease of use approaches
that of immunoassays [52-54]. Though the upfront cost
of equipment for mass spectrometry assays is higher, the
cost per sample is typically lower than that of immuno-
assays with similar materials (such as antibody, beads,
enzyme, and solvent) and especially economical when
screening for multiple analytes at one time [55, 56].
Therefore, the use of mass spectrometry assays on a wide
scale is a practical choice for highly sensitive and accu-
rate clinical blood tests.

Head-to-head comparisons similar to those described
here enable statistical comparisons of assay perfor-
mances that cannot be applied to studies utilizing dif-
ferent cohorts. Cross-sectional studies (AIBL, ADNI,
NCGG, and BioFINDER) included in this review have
compared AP assays in the same cohort; replicating their
findings across cohorts is necessary for a robust conclu-
sion on how assays compare. A challenge with plasma Ap
as a biomarker for cerebral AP pathology is the relatively
small fold change between amyloid-positive and -nega-
tive individuals. This mandates a strong quality control
system to avoid minor (less than 4%) longitudinal drift
in the measurements. This challenge has been met with
stable measures utilizing IP-MS in both the research and
clinical setting demonstrating consistent differentiation
between amyloid-positive and amyloid-negative across
cohorts and years. Longitudinal studies of plasma A
measures should also be prioritized to confirm plasma
AR predictability.

Assays should be tested in cohorts that are similar to
the population expected to use the test. For almost every
cohort evaluated in this review, a self-identified race was
not reported. However, most AD research cohorts are
comprised of individuals who identify as non-Hispanic
White with high socioeconomic status. The assays should
be tested in cohorts that are more representative of the
general population to ensure accurate and consistent
performance across groups, as AD research studies typi-
cally consist of volunteers with a high prevalence of fam-
ily history of AD, high socioeconomic status, and limited
co-morbidities. CSF and PET AP have been examined
in various racial groups and studies have found incon-
sistent results regarding the relationship between amy-
loid biomarkers and race, possibly due to differences in
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recruitment, comorbidities, or other factors [30]. How-
ever, one study found that plasma AP42/40 performed
consistently in the prediction of CSF and PET Ap status
across racial groups [30], and another found consist-
ent results in Japanese and Australian populations [17].
Recent findings suggest each kind of biomarker should
be evaluated for factors which influence it. For exam-
ple, kidney disease has been shown to alter the plasma
levels of neurofilament light chain (NfL), glial fibrillary
acidic protein (GFAP), tau phosphorylated at threonine
181 (p-taul8l), p-tau217, AP42 and AB40 measures, but
the AB42/Ap40 ratio is unaffected and the clinical perfor-
mance of all the plasma markers does not seem to be sig-
nificantly affected [57-60]. The reason for plasma Ap42/
AB40 ratio resilience to co-morbidity effects could be due
to impacts on AP concentrations canceling out between
the similar 42 and 40 amino acid sequences [58], also
potentially the use of other amyloid species (e.g. amy-
loid precursor protein at amino acids 669-711, known as
APP669-711) could be used [17, 21, 61].

It is important to consider the standard for the blood
test may vary with context: in research and clinical trials,
CSF and PET Ap are the reference standards, whereas
when used in the clinic for diagnosis, the clinical accu-
racy is the standard for comparison. Though PET, CSE,
and blood biomarkers are not used as the sole means of
an AD diagnosis, they are essential in determining which
patients likely do or do not have AD amyloid plaques,
and thus are expected to benefit from disease-modifying
drugs. Therefore, the use of these biomarkers optimizes
the inclusion of subjects in clinical trials [41]. Current
estimates are that primary care clinics, which provide the
majority of dementia care, are only 40-60% accurate in
diagnosing AD due to underdiagnoses and misdiagnoses
[2]. Having an accurate measure of AD pathology with a
blood biomarker would improve the ability of clinicians
to accurately diagnose patients and may be required to
start treatments that target amyloid plaques. Accurate
blood biomarker assays will also assist in the recruitment
of more diverse cohorts for clinical trials as a blood draw
is less invasive, less expensive, and more accessible for
patients than a lumbar puncture or PET scan.

Appropriate use guidelines for blood-based biomark-
ers will be helpful to guide the immense and potentially
urgent need for accurate diagnosis of AD in the clinic
[41]. There are currently two clinical tests available in the
U.S.A., and there will likely be more available soon. Some
groups have begun to develop guidelines on blood test
use to ensure the accurate measurement and interpreta-
tion of biomarker results in subjects.

In addition to the emerging role of plasma A as a blood
biomarker for AD, plasma measurements of tau phospho-
rylated at threonine 231 (p-tau231), p-taul8l, p-tau217, and
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potentially others have shown promise in diagnostic capac-
ity [62—64]. Studies show that plasma levels of p-tau217
start to change at the same time as CSF levels of p-tau217
when amyloid plaques first appear by amyloid PET and
precede tau-PET positivity by 15 to 20 years [65, 66]. In
addition, it has been shown that anti-amyloid drugs have
downstream effects on tau metabolism, so plasma p-tau217
could serve as a useful tool in monitoring pharmacody-
namic effects on amyloid pathology from these treatments
[67]. Other emerging blood biomarkers for AD include the
possible use of GFAP and p-synuclein [68—70]. As different
plasma measurements show potential for accurate diagno-
ses of AD, some groups have aimed to use them together.
For example, a study showed combining APP669-711 with
AP improves diagnostic performance [21]. Another study
combining three plasma biomarkers into a composite bio-
marker of plasma p-tau217, plasma Ap42/40, and plasma
NfL showed improved performance in predicting amyloido-
sis over any of the three measures alone [67]. Many studies
have also shown increased performance with the inclusion
of APOE genotype in their biomarker [18, 20, 22, 25, 28-33,
39, 40].

There are several limitations in this review including
the diverse group of assay performances, the range of
cohorts studied that are not directly comparable, and dif-
ferent research groups and analytic approaches. Factors
such as prevalence of amyloid plaques, clinical stage, age,
APOE genotype, and others across cohorts may impact
the results of the study. Differences in preanalytical vari-
ables, such as blood collection and processing methods,
also complicate the comparison across cohorts. Despite
these differences in cohorts, a consistent picture has
emerged about the relationship between blood plasma
AP and amyloid plaques which has been validated across
many cohorts and labs. Future research should study
cross-sectional and longitudinal plasma AP measures in
predicting amyloidosis, clinical use, impact of screening
on research studies and impact on clinical care, diagno-
sis, and management including potential drugs that could
modify amyloid plaques.

Conclusions

Based on this review of twenty-one manuscripts, the per-
formance of some plasma Ap42/40 measures in predicting
amyloidosis promises to aid in the accurate diagnosis of
AD versus non-AD causes of cognitive impairment. There
are already clinically available blood plasma A[42/40 tests
available based on IP-MS technologies for symptomatic
patients. Current guidelines do not recommend predic-
tive testing for asymptomatic patients yet, especially with-
out treatment or prevention options to act on [41]. It has
been shown that screening patients with plasma Ap42/40
could reduce the number of amyloid PET scans required
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by approximately 49-64% [18, 20, 25, 37, 39]. In addition
to the economic benefits to the patient and healthcare
community, an accurate blood biomarker test enables
wide-scale testing of more diverse populations. This could
benefit the diagnosis of AD in a clinical setting, improving
access to accurate diagnosis for marginalized populations
and reducing the financial burden and health risk associ-
ated with current diagnostic procedures for patients. Fur-
ther studies analyzing a combined biomarker with plasma
AB42/40 and other measurements may confer even more
accurate diagnoses from blood samples and is a valuable
future investigation.
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