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Abstract 

Background:  Sex is increasingly recognized as a significant factor contributing to the biological and clinical het-
erogeneity in AD. There is also growing evidence for the prominent role of DNA methylation (DNAm) in Alzheimer’s 
disease (AD).

Methods:  We studied sex-specific DNA methylation differences in the blood samples of AD subjects compared to 
cognitively normal subjects, by performing sex-specific meta-analyses of two large blood-based epigenome-wide 
association studies (ADNI and AIBL), which included DNA methylation data for a total of 1284 whole blood samples 
(632 females and 652 males). Within each dataset, we used two complementary analytical strategies, a sex-stratified 
analysis that examined methylation to AD associations in male and female samples separately, and a methylation-by-
sex interaction analysis that compared the magnitude of these associations between different sexes. After adjusting 
for age, estimated immune cell type proportions, batch effects, and correcting for inflation, the inverse-variance fixed-
effects meta-analysis model was used to identify the most consistent DNAm differences across datasets. In addition, 
we also evaluated the performance of the sex-specific methylation-based risk prediction models for AD diagnosis 
using an independent external dataset.

Results:  In the sex-stratified analysis, we identified 2 CpGs, mapped to the PRRC2A and RPS8 genes, significantly 
associated with AD in females at a 5% false discovery rate, and an additional 25 significant CpGs (21 in females, 4 in 
males) at P-value < 1×10−5. In methylation-by-sex interaction analysis, we identified 5 significant CpGs at P-value 
< 10−5. Out-of-sample validations using the AddNeuroMed dataset showed in females, the best logistic prediction 
model included age, estimated immune cell-type proportions, and methylation risk scores (MRS) computed from 9 
of the 23 CpGs identified in AD vs. CN analysis that are also available in AddNeuroMed dataset (AUC = 0.74, 95% CI: 
0.65–0.83). In males, the best logistic prediction model included only age and MRS computed from 2 of the 5 CpGs 
identified in methylation-by-sex interaction analysis that are also available in the AddNeuroMed dataset (AUC = 0.70, 
95% CI: 0.56–0.82).

Conclusions:  Overall, our results show that the DNA methylation differences in AD are largely distinct between 
males and females. Our best-performing sex-specific methylation-based prediction model in females performed 
better than that for males and additionally included estimated cell-type proportions. The significant discriminatory 
classification of AD samples with our methylation-based prediction models demonstrates that sex-specific DNA 
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Introduction
As the US population ages, Alzheimer’s disease (AD), 
which occurs in approximately one out every nine people 
over 65 years old [1], has become one of the most promi-
nent and most costly public health problems for older 
adults [2]. AD is characterized by great heterogeneity in 
clinical presentation, progression, and neuropathology 
[3]. Sex has increasingly been recognized as an important 
factor contributing to the phenotypic heterogeneity in 
AD [4–8]. Almost two thirds of AD patients in the USA 
are women [9]. After diagnosis, women also progress 
faster with more rapid cognitive and functional decline 
[10, 11]. On the other hand, it has also been reported 
men with AD have an increased risk of death [12–14].

AD is a complex disease, with the disease likely influ-
enced by a complicated interplay of genetic and envi-
ronmental factors such as smoking [15], diet [16], and 
exercise [17]. DNA methylation (DNAm) is an epigenetic 
mechanism that regulates gene expression without alter-
ing DNA sequence, and it is susceptible to environmental 
factors that modify the risk of diseases [18]. Alterations of 
DNA methylation levels have been shown to be involved 
in many diseases, including AD [19–24]. Encouragingly, 
from a biomarker perspective, dysregulated DNAm has 
been observed as an early feature of AD neuropathology 
in the brain [19] and can also be detected in the blood of 
AD subjects [25–31].

Several previous studies have examined differential 
methylation between the sexes. McCarthy et  al. meta-
analyzed 76 DNAm studies across different tissues and 
identified 184 autosomal CpGs significantly associated 
with sex, which were enriched in RNA splicing and DNA 
repair [32]. More recently, Xu et al. and Xia et  al. iden-
tified genes with differential methylation between males 
and females in the brain prefrontal cortex and found that 
many of these genes participate in protein synthesis [33] 
and overlap with genes and pathways involved in psychi-
atric disorders (autism, depression, and schizophrenia) 
[34]. To understand the sex-specific regulatory mecha-
nisms in aging, the strongest risk factor for AD, McCa-
rtney et  al. analyzed large cohorts of the Generation 
Scotland study and identified DNAm loci in the blood 
having sex-specific associations with age, many of which 
were located on the X-chromosome [35]. With regard 
to AD, we recently meta-analyzed more than 1000 pre-
frontal cortex brain samples and identified a number of 

sex-specific AD neuropathology-associated DNAm dif-
ferences, which were enriched in divergent biological 
processes such as integrin activation in females and com-
plement activation in males [36].

However, currently, sex-specific DNAm differences in 
the blood samples of AD subjects, which can be accessed 
relatively easily in living individuals, are still not well 
characterized, and the feasibility of their use as biomark-
ers for AD remains to be determined. To fill this knowl-
edge gap, we performed sex-specific meta-analyses of 
DNAm data from two large AD epigenome-wide asso-
ciation studies (EWAS) measured in blood samples to 
identify DNAm differences associated with AD in a sex-
specific manner, and then evaluated methylation-based 
risk prediction models as potential biomarkers for diag-
nosing AD using an independent dataset. Therefore, this 
study falls in the realm of description and prediction [37]. 
Within each dataset, to identify sex-specific differences 
in AD, we employed two complementary approaches, a 
sex-stratified analysis that examined methylation to AD 
associations in female and male samples separately, and 
a methylation-by-sex interaction analysis that compared 
the magnitude of these associations between different 
sexes. To identify sex-specific DNAm differences associ-
ated with both AD neuropathology in the brain as well 
as AD diagnosis in the blood, we also integrated the 
blood sample datasets with four additional cohorts of 
brain samples in a cross-tissue meta-analysis. Moreover, 
we performed integrative analyses with gene expression 
data and GWAS data to prioritize the DNA methyla-
tion differences with functional significance. Finally, we 
developed sex-specific methylation-based risk prediction 
models for AD and evaluated their feasibility for diagnos-
ing AD in an external blood sample dataset. As sex is a 
strong factor in influencing inter-personal variabilities in 
AD, the results of this study provide a valuable resource 
for promoting precision medicine in AD.

Methods
Study cohorts
For sex-specific meta-analysis of blood samples, we ana-
lyzed data from a total of 1284 whole blood samples (632 
females and 652 males) from the ADNI [38] (adni.loni.
usc.edu) and AIBL [24] (GEO accession: GSE153712) 
studies. The external validation samples included 171 
whole blood samples (107 females and 64 males) from the 

methylation could be a predictive biomarker for AD. As sex is a strong factor underlying phenotypic variability in AD, 
the results of our study are particularly relevant for a better understanding of the epigenetic architecture that underlie 
AD and for promoting precision medicine in AD.
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AddNeuroMed study [28] (GEO accession: GSE144858). 
To avoid including early-onset AD patients, we included 
only samples from subjects older than 65 years.

Preprocessing of DNA methylation data
All DNAm samples from AIBL and ADNI were measured 
by the same Illumina HumanMethylation EPIC bead-
chip, which included more than 850,000 CpGs, and all 
DNAm samples from AddNeuroMed were measured by 
the Illumina HumanMethylation450 beadchip. Supple-
mentary Table 1 shows the number of CpGs and samples 
removed at each quality control (QC) step. QC for CpG 
probes included several steps. First, we selected probes 
with a detection P-value < 0.01 for all the samples in the 
cohort. A small detection P-value corresponds to a signif-
icant difference between signals in the probes compared 
to background noise. Next, using function rmSNPandCH 
from the DMRcate R package (version 2.10.0), we 
removed probes that are cross-reactive [39], located close 
to single nucleotide polymorphism (SNPs) (i.e., a SNP 
with minor allele frequency (MAF) ≥ 0.01 was present 
in the last five base pairs of the probe). QC for samples 
included restricting our analysis to samples with good 
bisulfite conversion efficiency (i.e., ≥ 85%). In addition, 
principal component analysis (PCA) was used to exclude 
outlier samples. To this end, PCA was performed using 
the 50,000 most variable CpGs for each cohort, and sam-
ples within 3 standard deviations from the mean of PC1 
and PC2 were selected to be included in the final sam-
ple set. For the ADNI dataset, we additionally removed 
samples without methylation plate information or clinical 
data, and randomly selected one sample among multiple 
technical replicates.

The quality-controlled methylation datasets were next 
subjected to the QN.BMIQ normalization procedure 
[40]. More specifically, we first applied quantile normali-
zation as implemented in the lumi R package (version 
2.48.0) to remove systematic effects between samples. 
Next, we applied the β-mixture quantile normalization 
(BMIQ) procedure as implemented in the wateRmelon R 
package (version 2.2.0) to normalize beta values of type 1 
and type 2 design probes in the Illumina arrays.

Immune cell type proportions (B lymphocytes, natural 
killer cells, CD4+ T lymphocytes, monocytes, granulo-
cytes) were estimated using the EpiDISH [41] R package 
(version 2.12.0). Here, as in previous analyses of blood 
samples [24, 38], granulocyte proportions were com-
puted as the sum of neutrophiles and eosinophils propor-
tions since both neutrophils and eosinophils are classified 
as granular leukocytes. In the AIBL dataset, because 
age information was not available, sample ages were 
estimated using the DNAm-based-age-predictor [42] 
(https://​github.​com/​qzhan​g314/​DNAm-​based-​age-​predi​

ctor/, elastic net method). For ADNI samples, age was 
calculated as the difference between the date on which 
blood was drawn and the birthdate of the subject. We 
also estimated sex status using the estimateSex() func-
tion in wateRmelon R package, which agreed with the 
recorded sex for all the samples. For sensitivity analysis 
that evaluated the impact of smoking on DNAm to AD 
associations, we estimated smoking scores using the 
SSc method described in Bollepalli et al. [43] and imple-
mented in the R package EpiSmokEr.

Sex‑specific analysis of individual datasets
To identify sex-specific DNA methylation differences in 
AD, we performed both a sex-stratified analysis and a 
methylation-by-sex interaction analysis for each blood 
sample dataset. In the sex-stratified analysis, we tested 
methylation to AD association in female and male 
samples separately. In methylation-by-sex interaction 
analysis, we analyzed both female and male samples 
simultaneously and compared the effects of methylation 
to AD associations in females and males.

More specifically, in sex-stratified analysis, for each 
CpG we applied the logistic regression model to female 
samples and male samples separately: logit (probability 
of AD) ~ methylation.beta + age + methylation plate + 
B + NK + CD4T + Mono + Gran, where the last five 
terms represent estimated immune cell-type proportions. 
In methylation-by-sex interaction analysis, we applied 
the logistic regression model logit (probability of AD) ~ 
methylation.beta + sex + sex * methylation.beta +age + 
methylation plate + B + NK + CD4T + Mono + Gran to 
samples including both sexes.

For the AIBL dataset, logistic regression models were 
fitted using the glm() function in R software (version 
4.2.0). For the ADNI dataset, which is a longitudinal 
study with some subjects contributing multiple observa-
tions, we applied logistic mixed-effects models that addi-
tionally included random subject effects to account for 
correlations from multiple observations generated from 
the same subjects. Logistic mixed-effects models were 
fitted using Procedure GLMMIX in SAS software (ver-
sion 9.4).

Inflation assessment and correction
We estimated genomic inflation factors (lambda values) 
using both the conventional approach [44] and the bacon 
method [45], which is specifically proposed for a more 
accurate assessment of inflations in EWAS. Briefly, the 
bacon method uses a Bayesian algorithm to estimate a 
three-component normal mixture given the observed test 
statistics (e.g., t-statistics corresponding to the effect of 
methylation beta values in regression models) where one 
component reflects the null distribution, and two other 
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components correspond to the positive and negative 
associations in the data. Mean and standard deviations 
of the estimated (empirical) null distribution corre-
spond to bias and inflation of the test statistics. In males, 
the estimated bias are − 0.12 and − 0.006 for ADNI and 
AIBL datasets; in females, the estimated bias are − 0.05 
and 0.04 for ADNI and AIBL datasets. For the estimated 
inflation, in males, the lambda values (λ) by the conven-
tional approach were 0.65 and 1.16, and lambdas based 
on the bacon approach (λ.bacon) were 0.79 and 1.05 for 
the ADNI and AIBL cohorts, respectively. In females, 
the lambda values (λ) by the conventional approach were 
0.51 and 1.15, and lambdas based on the bacon approach 
(λ.bacon) were 0.72 and 1.04 for the ADNI and AIBL 
cohorts, respectively.

These estimated inflation factors showed that the 
P-values of the logistic mixed effects models based on 
analytical formula in the analysis of ADNI dataset is 
overly conservative, while P-values of the logistic regres-
sion models in the analysis of AIBL dataset is overly lib-
eral. Efron et al. showed that in large-scale simultaneous 
testing situations (e.g., when many CpGs are tested in an 
analysis), serious defects in the theoretical null distribu-
tion may become obvious, while empirical Bayes meth-
ods can provide much more realistic null distributions 
[46]. For a more accurate statistical assessment, genomic 
correction using the bacon method [45], as implemented 
in the bacon R package, was applied to obtain bacon-
corrected effect sizes, standard errors, and P-values 
for each cohort. By definition, the bacon-corrected test 
statistics have an estimated bias of 0 and an estimated 
inflation factor of 1 because empirical null distributions 
were used in their estimation. Indeed, after bacon cor-
rection, for males, the estimated bias is − 2.47×10−4 and 
− 8.64×10−6, and the estimated inflation factors were 
λ = 1.03 and 1.05, and λ.bacon = 1.00 and 1.00, for the 
ADNI and AIBL datasets, respectively. For females, the 
estimated bias is 2.85 × 10−3 and 4.75 × 10−5, and the 
estimated inflation factors were λ = 0.98 and 1.05, and 
λ.bacon = 1.00 and 1.00 for the ADNI and AIBL cohorts, 
respectively.

Meta‑analysis
To meta-analyze individual CpG results across both 
AIBL and ADNI datasets, we used the inverse-variance 
weighted fixed-effects model, which was implemented 
in the meta R package (version 5.5.0). The estimated 
effect sizes and standard errors from the meta-analysis 
were then re-scaled to compute odds ratios for a 1% 
increase in beta values (i.e., increase in beta values by 
0.01). We considered CpGs with a false discovery rate 
of less than 5% to be statistically significant. Based on 
our experiences and previous studies in the analysis 

of EWAS measured in blood [22, 38, 47], we expected 
our meta-analysis to be underpowered, given the mod-
est sample sizes of the sex-specific analyses. Therefore, 
we also prioritized CpGs with suggestive significance 
at the pre-specified significance threshold of P-value < 
1×10−5.

Differentially methylated regions analysis
For region-based meta-analysis, we used the comb-p 
method [48]. Briefly, comb-p takes single CpG P-val-
ues and locations of the CpG sites to scan the genome 
for regions enriched with a series of adjacent low 
P-values. In our analysis, we used sex-specific meta-
analysis P-values for the two blood sample datasets 
obtained above as input for comb-p. As comb-p uses 
the Sidak method to account for multiple compari-
sons, we considered DMRs with Sidak P-values less 
than 0.05 to be significant. We used parameter set-
tings with --seed 0.05 and --dist 750 (a P-value of 0.05 
is required to start a region and extend the region if 
another P-value was within 750 base pairs), which 
were shown to have optimal statistical properties in 
our previous comprehensive assessment of the comb-
p software [49]. To help reduce false positives, we 
imposed two additional criteria in our final selection 
of DMRs: (1) the DMR also has a nominal P-value < 
1×10−5; (2) all the CpGs within the DMR have con-
sistent direction of change in estimated effect sizes, 
both in the meta-analyses, as well as in analysis of 
each individual dataset.

Cross‑tissue meta‑analysis
For males, our cross-tissue meta-analysis included data 
from the 652 blood samples in the ADNI (n = 429) and 
AIBL (n = 223) datasets described above, and an addi-
tional 388 prefrontal cortex brain samples from four 
independent datasets, which included samples from the 
ROSMAP (n = 265), Mt. Sinai (n = 53), London (n = 43), 
and Gasparoni (n = 27) studies that we previously ana-
lyzed in our brain samples meta-analysis [21]. Similarly, 
for females, our cross-tissue meta-analysis included data 
from the 632 blood samples in the ADNI (n = 364) and 
AIBL (n = 268) datasets and an additional 642 prefron-
tal cortex brain samples from the ROSMAP (n = 461), 
Mt. Sinai (n = 88), London (n = 64), and Gasparoni (n 
= 29) studies. We used Stouffer’s Method [50], as imple-
mented in sumz() function of R package metap, to com-
bine weighted z-scores (transformed from P-values) in 
these six datasets. For each study, weights were specified 
based on the square root of the total number of subjects 
in each study [51].
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Functional annotation of significant methylation 
differences
Significant methylation differences at individual CpGs 
and DMRs were annotated using both the Illumina 
(UCSC) gene annotation and GREAT (Genomic Regions 
Enrichment of Annotations Tool) software [52] that asso-
ciates genomic regions to target genes. With the default 
“Basal plus method,” GREAT links each gene to a regu-
latory region consisting of a basal domain that extends 
5 kb upstream and 1 kb downstream from its transcrip-
tion start site and an extension up to the basal regulatory 
region of the nearest upstream and downstream genes 
within 1 Mb. To assess the overlap between significant 
CpGs and DMRs (CpG location ± 250bp or DMR loca-
tion) with enhancers, we used enhancer–gene maps gen-
erated from 131 human cell types and tissues described 
in Nasser et al. [53], available at https://​www.​engre​itzlab.​
org/​resou​rces/. More specifically, we selected enhancer-
gene pairs with “positive” predictions from the ABC 
model, which included only expressed target genes, does 
not include promoter elements, and has an ABC score 
higher than 0.015. In addition, we also required that the 
enhancer-gene pairs be identified in cell lines relevant 
to this study (https://​github.​com/​Trans​BioIn​foLab/​AD-​
meta-​analy​sis-​blood/​blob/​main/​code/​annot​ations/​Nasss​
er%​20stu​dy%​20sel​ected%​20bio​sampl​es.​xlsx).

Correlations between methylation levels of significant 
CpGs in AD with expressions of nearby genes
To evaluate the DNA methylation effect on the gene 
expression of nearby genes, we analyzed matched 
gene expression data (measured by Affymetrix Human 
Genome U 219 arrays) and DNA methylation data (meas-
ured by EPIC arrays) from 145 independent male sub-
jects and 120 independent female subjects in the ADNI 
study. For each sex, we considered both significant indi-
vidual CpGs, CpGs located within the significant DMRs 
in the AD vs. CN comparison, as well as the CpGs nomi-
nated by the cross-tissue analysis.

To test the association of target gene expressions with 
the DNA methylation sites, we considered CpGs located 
in the promoter regions and distal regions separately. 
More specifically, for CpGs located in the promoter 
region (i.e., within ± 2 kb of the transcription start sites 
or TSS), we tested the association between CpG meth-
ylation with expression levels of the target genes. On the 
other hand, for CpGs in the distal regions (> 2 kb from 
TSS), we tested associations between CpG methylation 
with expression levels of ten genes upstream and down-
stream from the CpG. For gene expression data, when 
multiple probes were mapped to a gene, we used median 
gene expression level over all probes mapped to the gene 
as its gene expression level.

To reduce the effect of potential confounding, when 
testing methylation-gene expression associations, we first 
adjusted age at visit, immune cell-type proportions (for B 
lymphocytes, natural killer cells, CD4+ T lymphocytes, 
monocytes, granulocytes), and batch effects in both 
DNA methylation and gene expression levels separately 
and extracted residuals from the linear models. Immune 
cell-type proportions were estimated using the R/Biocon-
ductor package EpiDISH [41] and Xcell [54] R software 
(https://​github.​com/​dvira​ran/​xCell) for DNA methyla-
tion and gene expression data, respectively. A separate 
robust linear model was then used to test for associa-
tion between methylation residuals and gene expression 
residuals, adjusting for AD status.

To assess differential gene expression of the target 
genes in blood samples, we analyzed the ADNI gene 
expression dataset using a linear regression model with 
log (base 2) transformed gene expression level as the out-
come, AD status as the main independent variable, and 
age, estimated cell-type proportions, and batch as covari-
ate variables. To assess differential expression of the tar-
get genes in brain samples, we performed a fixed-effects 
meta-analysis of two prefrontal cortex datasets in AD 
[55, 56] (GEO GSE33000, n = 350; GEO GSE44772, n = 
152), by combining results from differential expression 
analyses of the individual datasets, which adjusted age, 
sex and surrogate variables for cell types and were imple-
mented using limma R package [57].

Correlation and overlap with genetic susceptibility loci
We searched for mQTLs in the blood using the GoDMC 
database [58], and mQTLs in the brain using the xQTL 
sever [59], downloaded from http://​mqtldb.​godmc.​
org.​uk/​downl​oads and http://​mosta​favil​ab.​stat.​ubc.​ca/​
xQTLS​erve/, respectively. To select significant blood 
mQTLs in GoDMC, we used the same criteria as the 
original study [58], that is, considering a cis P-value 
smaller than 10−8 and a trans P-value smaller than 10−14 
as significant. The 24 LD blocks of genetic variants reach-
ing genome-wide significance were obtained from Sup-
plementary Table 8 of Kunkle et al. [60].

Sex‑specific methylation risk scores
We analyzed the male samples and female samples sepa-
rately to identify the best-performing sex-specific methyl-
ation-based risk prediction models for AD. For each sex, 
the AIBL dataset (training dataset) was used to develop 
logistic regression models, and the prediction results 
were then evaluated using the AddNeuroMed dataset 
(testing dataset). More specifically, for each sample in 
the training dataset, we first computed the Methylation 
Risk Score (MRS) as the sum of methylation beta values 
for significant CpGs from the sex-specific meta-analyses 
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described above, weighted by their estimated effect sizes 
in the blood sample meta-analysis. Because samples in 
the testing dataset (i.e., AddNeuroMed) were measured 
by Illumina 450k while samples in the training datasets 
(i.e., ADNI and AIBL) were measured by EPIC arrays, 
only the subset of the significant CpGs available in both 
training and testing datasets were included for the com-
putation of the MRS. The logistic regression model logit 
(Pr (AD)) ~ MRS + age + B + NK + CD4T + Mono + 
Gran was fitted to the AIBL dataset using the glm() func-
tion, where the last five terms in the model are estimated 
immune cell proportions estimated by the EPIDISH R 
package [41]. Then, predict.glm() was used to apply the 
estimated logistic regression model to samples in the 
AddNeuroMed dataset. The R package pROC was used 
to estimate receiver operating characteristic curves 
(ROCs) and area under the ROC curves (AUCs) [61]. 
Similarly, logistic regression models with a subset of the 
variables (e.g., only MRS or only age) in the above model 
were similarly developed using the AIBL dataset and 
tested on the AddNeuroMed dataset. To determine if a 
logistic regression model predicted AD diagnosis signifi-
cantly better than chance, we used the Wilcoxon rank-
sum test to compare estimated probabilities for AD cases 
versus controls [62].

Sensitivity analysis
In the first analysis, we evaluated the impact of smoking 
on methylation differences in AD. To this end, we com-
puted smoking scores using the SSc method described 
in Bollepalli et al. [43], as implemented in the R package 
EpiSmokEr. Our expanded logistic regression model that 
additionally include smoking score is logit (probability of 
AD) ~ methylation.beta + age + methylation plate + B 
+ NK + CD4T + Mono + Gran + smoking score. For 
the analysis of ADNI dataset, additional random subject 
effects were also included to account for multiple obser-
vations from each subject.

In the second analysis, we evaluated the impact of edu-
cation on methylation differences in AD using the ADNI 
dataset. Our expanded logistic regression model that 
additionally include education is logit (probability of AD) 
~ methylation.beta + age + methylation plate + B + NK 
+ CD4T + Mono + Gran + random (subjects) + years 
of education. The years of education for the AD and CN 
subjects were also compared using Wilcoxon rank-sum 
test.

Internal validation to assess the impact of years 
of education on methylation‑based prediction model
Among the three public datasets (AIBL, AddNeuroMed, 
ADNI) we analyzed, information on subject education is 
only available in the ADNI dataset. To assess the added 

prediction accuracy due to education, we performed 
internal validations (i.e., 10-fold cross-validations) using 
the ADNI dataset, by comparing our best-perform-
ing models (logit (Pr (AD)) ~ MRS + age + B + NK + 
CD4T + Mono + Gran in females, and logit (Pr (AD)) ~ 
MRS + age in males) with the models that additionally 
include education. To obtain an independent set of sam-
ples, only the last visit of each subject in the ADNI data-
set was used for this analysis. The function createFolds() 
in caret R package was used to divide the data into ten 
folds. Average AUCs over the ten iterations in the 10-fold 
cross-validations for the models with and without educa-
tion were then estimated and compared.

Results
Description of study datasets
Our sex-specific meta-analysis included DNA methyla-
tion (DNAm) data measured by the Illumina EPIC arrays 
and generated from blood samples of 889 independent 
subjects (447 females and 442 males) older than 65 years 
of age (Table 1). The samples were collected at baseline, at 
18-months follow-up in the AIBL study, and at multiple 
follow-up visits ranging from 6 months to 60 months in 
the ADNI study [38]. A total of 632 female samples (188 
cases, 444 controls) and 652 male samples (239 cases, 413 
controls) were included in this study. For females, the 
mean ages were 77 and 73 years in the ADNI and AIBL 
studies, respectively. Similarly, for males, the mean ages 
were 79 and 73 years in these two studies.

Sex‑stratified and methylation‑by‑sex interaction analyses 
identified complementary sex‑specific DNA methylation 
differences in AD
In sex-stratified analysis, after adjusting covariate vari-
ables age, batch, and immune cell-type proportions and 
correcting inflation in each dataset (Methods), inverse-
variance fixed-effects meta-analysis identified 2 CpGs, 
mapped to the PRRC2A and RPS8 genes at 5% false 
discovery rate (FDR) (Table  2, Fig.  1) in the analysis of 
female samples. No CpGs reached 5% FDR in males. At 
the predefined suggestive threshold of P < 1×10−5, an 
additional 4 and 21 CpGs were identified in males and 
females, respectively (Fig. 2, Supplementary Table 2, Sup-
plementary Figures 1 and 2).

For these 27 AD-associated CpGs, the odds ratios 
(ORs) for hypermethylated CpGs in AD ranged from 
1.059 to 1.328 in females and 1.181 to 1.199 in males, and 
the ORs for hypomethylated CpGs ranged from 0.839 to 
0.935 in females and was 0.677 for the only hypometh-
ylated CpG in males (Supplementary Table  2). Overall, 
the majority of these CpGs were hypermethylated in 
AD subjects (22 CpGs), located outside CpG islands or 
shores (24 CpGs), or in distal regions located greater than 
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2k bp from the TSS (23 CpGs). Only 4 of these 27 CpGs 
were located in gene promoters (at SLC5A8, DAZAP1, 
C16orf89 and MYOZ1 genes). A total of 10 CpGs (all of 
them in females) overlapped with enhancer regions [53], 
which are regulatory DNA sequences that transcription 
factors bind to activate gene expressions [53, 63].

Using the sex-specific meta-analysis P-values for indi-
vidual CpGs as input, the comb-p software [48] iden-
tified 41 differentially methylated regions (DMRs) in 
females and 24 different DMRs in males at 5% Sidak 
multiple comparisons corrected P-value (Supplemen-
tary Table 3–6). The median numbers of CpGs in these 
DMRs are 5 CpGs in females and 4 CpGs in males. A 
total of 13 DMRs (6 in females, 7 in males) overlap with 
enhancer regions. These DMRs are mostly distinct from 
the AD-associated CpGs; there is no overlap between 

the DMRs and significant individual CpGs in either 
females or males (Supplementary Fig.  3). Among the 
significant DMRs, about half of them (21/41 in females, 
13/24 in males) are hypermethylated in AD (Table  3, 
Supplementary Table 3–6).

Interestingly, AD-associated DNA methylation dif-
ferences are largely distinct between the sexes. There 
is no overlap between the significant CpGs (or DMRs) 
identified in females and males (Supplementary Fig. 4). 
Among the 27 sex-significant CpGs, there was only 
modest correlations between the effect estimates (i.e., 
odds ratios) obtained from meta-analyses of female 
and male samples (Spearman correlation R = 0.100) 
(Supplementary Fig.  4). About a third (9 out of 27) of 
the CpGs are in the same direction of change in both 
females and males (i.e., hypermethylated across all 

Table 1  Demographic information of the study datasets

1  for the longitudinal ADNI dataset, sample size at last visit
2  for the longitudinal ADNI dataset, age was computed from samples at last visit

Dataset female samples male samples

sample subjects1 age sample  subjects1 age2

(N) (N) mean (SD) (N) (N) mean (SD)

sex-specific meta-analysis 

ADNI
cases 111 69 77.81 (6.57) 180 119 79.08 (6.53)

controls 253 110 76.93 (6.77) 249 100 79.12 (6.21)

Total 364 179 77.27 (6.69) 429 219 79.1 (6.37)

AIBL
cases 77 77 77.1 (6.06) 59 59 76.1 (5.53)

controls 191 191 71.9 (5.07) 164 164 72.2 (4.91)

Total 268 268 73.4 (5.87) 223 223 73.3 (5.36)

validation of methyla-
tion risk scores

AddNeuroMed
cases 53 53 76.38 (5.98) 30 30 77.5 (5.3)

controls 54 54 73.26 (5.44) 34 34 74.53 (5.21)

Total 107 107 74.8 (5.9) 64 64 75.92 (5.42)

Table 2  Results of sex-specific meta-analyses of the blood samples in ADNI and AIBL datasets. Inverse-variance weighted fixed-effects 
meta-analysis models were used to combine dataset-specific results from logistic regression models that included methylation beta 
values and covariate variables age, batch (i.e., methylation plate), and estimated immune cell-type proportions. In females, two CpGs 
were significant in the Alzheimer’s disease (AD) vs. cognitive normal groups comparison at 5% false discovery rate (FDR). No CpG 
reached 5% FDR in males. Annotations include the location of the CpG based on hg19/GRCh37 genomic annotation (Chr, position), 
nearby genes based on GREAT and Illumina gene annotations, and overlap with enhancer regions identified in Nasser et al. [53] study 
(enhancer). Odds ratios and their 95% confidence intervals (OR, 95% CI) describe changes in odds of AD (on the multiplicative scale) 
associated with a one percent increase in methylation beta values (i.e., increase in methylation beta values by 0.01) after adjusting for 
covariate variables. Direction indicates hypermethylation (+) or hypomethylation (−) in AD samples in the ADNI and AIBL datasets
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datasets or hypomethylated across all datasets) (Supple-
mentary Table 2).

In methylation-by-sex interaction analysis, we identi-
fied significant interactions at 5 CpGs with P < 1×10−5 
(Table  4). These CpGs mapped to the MYO19, ESRRB, 
APLNR genes, and intergenic regions. There was no 
overlap between significant CpGs identified in methyl-
ation-by-sex interaction and sex-stratified analyses. To 
understand this discrepancy, note that the interaction 
analysis identifies CpGs with large differences in sex-spe-
cific effect estimates that are in different directions, but 
these effects might not have reached the P < 1×10−5 sig-
nificance threshold in sex-stratified analysis. Therefore, 
the results from sex-stratified analysis and methylation-
by-sex interaction analysis complemented each other.

Cross‑tissue meta‑analysis prioritized sex‑specific 
DNA methylation differences associated with both AD 
neuropathology and AD diagnosis
As changes in the brain are more relevant for cognitive 
disorders such as AD, we next prioritized sex-specific 
DNA methylation differences with changes in both blood 
and the brain, by performing cross-tissue analysis using 
two complementary approaches: (1) cross-tissue meta-
analysis and (2) significant overlap.

In the first approach (i.e., cross-tissue meta-analysis), 
we performed a meta-analysis of the two blood sample 
datasets described above (i.e., AIBL and ADNI) with four 
additional prefrontal cortex datasets measured on brain 
samples, previously described by the ROSMAP [19], Mt. 

Sinai [23], London [20], and Gasparoni EWAS studies 
[64]. Supplementary Table 7 includes additional informa-
tion on Braak stage, CERAD scores, clinical diagnosis, 
and postmortem interval for these brain samples. We 
previously meta-analyzed these four brain sample data-
sets and identified a number of CpGs and DMRs, many 
involved in immune processes, that are significantly asso-
ciated with AD neuropathology [21, 36].

In the cross-tissue meta-analysis, no CpGs reached 
the 5% FDR significance threshold. At P-value < 1 × 
10−5, we identified 28 CpGs and 12 CpGs in females and 
males, respectively (Fig. 3). We then prioritized 13 CpGs 
in females and 6 CpGs in males by additionally requir-
ing these CpGs to also be nominally significant (i.e., 
P-value < 0.05) in the separate sex-specific meta-analyses 
of brain and blood samples (Tables  5a and 6). Among 
them, 8 CpGs were located in enhancer regions [53]. In 
females, 5 CpGs are located in promoter regions of the 
genes AGAP2, SLC44A2, LST1, VPS13D, and BLCAP. In 
males, 2 CpGs are mapped to promoters of the OAT and 
ADORA3 genes.

In the second approach (i.e., significant overlap), we 
identified CpGs that achieved P-value < 1×10−5 in the 
blood sample meta-analysis and nominal significance 
(i.e., P-value < 0.05) in the brain sample meta-analysis, 
and vice versa. In females, for the 23 significant sex-
specific CpGs we discovered in blood sample  meta-
analysis, 4 CpGs, mapped to the promoter region of 
DAZAP1 and intergenic regions, also achieved nominal 
significance in brain meta-analysis (Table  5b). On the 

Fig. 1  Sex-specific meta-analysis of female samples identified 2 CpGs significantly associated with AD diagnosis at 5% false discovery rate (FDR). a 
The CpG cg18020072, located on the PRRC2A gene, is significantly associated with AD diagnosis in females (P-value = 3.02 × 10−8, FDR = 0.023). b 
The CpG cg24276069, located on the RPS8 gene, is also significantly associated with AD diagnosis in females (P-value = 9.62 × 10−8, FDR = 0.036). 
FDR: false discovery rate
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other hand, for the 116 CpGs with P-value < 1×10−5 in 
brain meta-analysis, 13 CpGs, mapped to the promoter 
regions of SLC44A2, AGAP2, RHOB, TRPV4, MTA3 
genes, and intergenic regions, achieved nominal signifi-
cance in blood sample meta-analysis (Table 5c). Among 
these 17 CpGs prioritized by the significant overlap 
approach, 5 CpGs were also identified by the cross-tis-
sue meta-analysis approach.

In male samples, we did not identify any additional 
CpG using the significant overlap approach (Table  6). 
Among the 6 CpGs prioritized by cross-tissue meta-
analysis, two CpGs, mapped to the OAT and ADORA3 
genes, also achieved P-value < 1×10−5 in brain sample 
meta-analysis and nominal significance in blood sample 
meta-analysis.

Intriguingly, among the 25 CpGs in females and 6 
CpGs in males prioritized by these two complemen-
tary analyses, the majority of them (20 in females, 6 in 
males) showed the opposite directions of change in the 
brain and the blood, in which 11 CpGs in females and 2 
CpGs in males were hypermethylated in the brain and 
hypomethylated in the blood of AD samples, and the 
rest were hypomethylated in the brain and hypermeth-
ylated in the blood of AD samples.

Correlation of sex‑specific DNA methylation differences 
in AD with expression levels of nearby genes
To better understand the functional roles of the signifi-
cant DNAm differences, we examined the correlation 
between CpG methylation (both significant individual 

Fig. 2  Sex-specific DNA methylation differences associated with AD diagnosis in males and females. The X-axis are chromosome numbers. The 
Y-axis shows -log10 (P-value) of CpGs associated with AD diagnosis in males (above X-axis) or in females (below X-axis). The genes corresponding to 
the CpGs that reached P-value < 1×10−5 (indicated by the red lines) are highlighted
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CpGs and CpGs within significant DMRs) and the 
expression levels of nearby genes. To this end, we per-
formed integrative analysis using matched methylation 
and expression data measured on blood samples from 
265 independent subjects (120 females and 145 males) 
in the ADNI study. We first removed effects in batch, 
age, and immune cell-type proportions in methylation 
and gene expression data separately. Next, for CpGs in 
the promoter regions (i.e., within ± 2k bp from TSS), 
we tested the association between the CpG with their 
target gene expressions. Similarly, for CpGs in the distal 

regions (i.e., > 2k bp from TSS), we tested the association 
between the CpG with ten genes upstream and ten genes 
downstream and within 1M bp from the CpG location.

At 5% FDR, among the significant sex-specific AD-
associated CpGs and CpGs located in AD-associated 
DMRs, in females, DNAm at 23 CpGs (mapped to 5 
DMRs) in gene promoter regions were significantly asso-
ciated with the expression of their target genes, including 
LGALS3BP, VAMP5, ALOX12, TAGLN3, and GABRG1 
(Supplementary Table  8). Among CpGs located in dis-
tal regions, only 1 CpG (cg00271210) was significantly 

Table 3  In sex-specific meta-analysis of the blood samples in ADNI and AIBL datasets, the top 10 most significant DMRs 
associated with Alzheimer’s disease diagnosis identified by comb-p software at 5% Sidak adjusted P-values. CpG direction indicates 
hypermethylation (+) or hypomethylation (−) in AD subjects for each CpG located within the DMR, based on effect estimate in meta-
analysis. Annotations include nearby genes based on GREAT and Illumina gene annotations. Highlighted in red are promoter regions 
of the genes mapped by the DMRs

Abbreviation: DMR differentially methylated region

Table 4  Results from meta-analysis of methylation-by-sex interaction effect in the analysis of blood samples in ADNI and AIBL 
datasets. Inverse-variance weighted fixed-effects meta-analysis models were used to combine dataset-specific results from logistic 
regression models that included methylation beta values, sex, methylation beta values*sex and covariate variables age, batch (i.e., 
methylation plate), and estimated immune cell-type proportions. For each CpG, annotations include the location of the CpG based 
on hg19/GRCh37 genomic annotation (chr, position), Illumina gene annotations, overlap with enhancer regions identified in Nasser 
et  al. [53] study (enhancer). Odds ratios and their 95% confidence intervals (OR, 95% CI) describe changes in odds of AD (on the 
multiplicative scale) associated with a one percent increase in methylation beta values (i.e., increase in methylation beta values by 0.01) 
after adjusting for covariate variables. Direction indicates hypermethylation (+) or hypomethylation (−) in AD samples in the ADNI and 
AIBL datasets
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Fig. 3  Workflow for identifying sex-specific DNA methylation differences that are associated with both AD pathology (in prefrontal cortex brain 
samples) and AD diagnosis (in blood samples) using cross-tissue meta-analysis approach. Results for brain sample meta-analysis were obtained 
from Zhang et al. [36] 

Table 5  Cross-tissue analysis of female samples prioritized a total of 25 significant CpGs. (a) A total of 13 CpGs reached a P-value < 
10−5 in cross-tissue meta-analyses that included both brain and blood samples, and nominal significance (i.e., P-value < 0.05) in sex-
specific meta-analyses of each tissue. The brain sample meta-analysis results were obtained from Zhang et al. [36]; (b) A total of 4 CpGs 
achieved P-value < 10-5 in blood sample meta-analysis and nominal significance in brain sample meta-analysis; (c) A total of 13 CpGs 
achieved P-value < 10-5 in brain sample meta-analysis and nominal significance in blood sample meta-analysis. Direction indicates 
hypermethylation (+) or hypomethylation (-) in AD samples in individual brain or blood sample datasets. Annotations include nearby 
genes based on GREAT annotation and overlap with enhancer regions identified in the Nasser et al. [53] study. All but 5 significant CpG 
showed the same direction of change in brain and blood samples (highlighted in gray). Highlighted in red are gene promoter regions 
overlapped with the significant CpGs

*These CpGs were also identified in cross-tissue meta-analysis in (a)
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associated with the expression of its target gene RNA-
SET2 at 5% FDR.

In males, DNAm at 12 CpGs (mapped to 2 DMRs) 
in gene promoter regions were significantly associated 
with the expression of their target genes PM20D1 and 
KCTD11 (Supplementary Table 9). Among CpGs in distal 
regions, 13 CpGs (mapped to 5 DMRs) were significantly 
associated with expressions of their target genes, includ-
ing STK32C, TACSTD2, FANCA, OVGP1, and PGPEP1.

To further prioritize the target genes nominated by 
our sex-specific methylation-gene expression associa-
tion analyses above, we also tested the association of the 
target genes with AD. In ADNI blood samples analy-
sis, we found only 1 target gene, PM20D1, to be signifi-
cantly upregulated in blood samples of male AD subjects 
(P-value = 2.60 ×10−3) (Fig. 4). In prefrontal cortex brain 
samples, we found several of these target genes, includ-
ing LGALS3BP, RNASET2, TAGLN3, VAMP5, ALOX12 
in females, and PGPEP1, KCTD11, STK32C, FANCA in 

males, are differentially expressed in AD (Supplemen-
tary Table  8c, 9c). The greater number of differentially 
expressed genes in brain samples compared to blood 
samples could be due to the larger sample size of brain 
samples available (502 brain samples in the meta-anal-
ysis of GSE33000 and GSE44772 vs. 265 ADNI blood 
samples).

Correlation and overlap with genetic susceptibility loci
To identify methylation quantitative trait loci (mQTLs) 
for the significant DMRs and CpGs, we next performed 
look-up analyses using the GoDMC database [58]. 
In females, among the 266 CpGs mapped to the AD-
associated CpGs or located in AD-associated DMRs 
(Supplementary Tables 2, 3), 145 CpGs had cis mQTLs 
and 24 CpGs had both cis and trans mQTLs. In males, 
among the 126 CpGs mapped to the AD-associated 
CpGs or located in AD-associated DMRs (Supplemen-
tary Tables 2, 5), 67 CpGs had cis mQTLs, and 3 CpGs 

Table 6  Cross-tissue analysis of male samples prioritized a total of 6 significant CpGs. These 6 CpGs reached a P-value < 10−5 in cross-
tissue meta-analyses that included both brain and blood samples, and nominal significance (i.e., P-value < 0.05) in sex-specific meta-
analyses of each tissue. The brain sample meta-analysis results were obtained from Zhang et al. [36]. Among the 6 CpGs, 2 CpGs also 
achieved P-value < 10−5 in brain sample meta-analysis and nominal significance in blood sample meta-analysis. Direction indicates 
hypermethylation (+) or hypomethylation (−) in individual brain or blood sample datasets. Annotations include nearby genes based 
on GREAT annotation and overlap with enhancer regions identified in the Nasser et al. [53] study. Highlighted in red are gene promoter 
regions overlapped with the significant CpGs

*These CpGs also achieved P-value < 10−5 in brain sample meta-analysis and nominal significance in blood sample meta-analysis

Fig. 4  Differential DNA methylation and gene expression at the PM20D1 gene in blood samples of male AD and cognitively normal subjects. We 
first removed effects of age, estimated proportions of immune cell types, and batch effects in both DNA methylation and gene expression data 
separately, by fitting linear regression models and extracting residuals. The results showed that A DNA methylation at chr1:205819088-205819609 in 
the promoter region of PM20D1 is hypomethylated in AD subjects, B PM20D1 gene expression levels are significantly up-regulated in AD subjects, 
and C there is a strong negative association between DNA methylation and gene expression at this locus. Abbreviations: dnam, DNA methylation; 
CN, cognitively normal; rlm, robust linear model
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had both cis [58] and trans mQTLs. Among the 5 sig-
nificant CpGs from interaction analysis, 2 CpGs had 
cis mQTLs. These results are consistent with the pre-
vious observation that a substantial proportion (about 
45%) of the DNA methylation sites targeted by the Illu-
mina 450k array are influenced by genetic variants in 
the blood [58].

Similarly, we also analyzed CpGs nominated by the 
cross-tissue analysis. In females, among the 25 sig-
nificant CpGs prioritized in our cross-tissue analysis 
(Table 5), 19 CpGs had mQTLs in the blood, 7 of the 
19 CpGs also had mQTLs in the brain. In the males, 
among the 6 significant CpGs in cross-tissue analysis 
(Table  6), 5 CpGs had mQTLS in the blood, and 2 of 
the 5 CpGs also had mQTLs in the brain. A total of 64 
and 19 CpG–mQTL pairs in females and males were 
significant both in the analyses of brain and blood 
samples (Supplementary Tables 10–11).

To evaluate if these mQTLs overlapped with genetic 
risk loci implicated in AD, we compared them with 
the 24 LD blocks of genetic variants reaching genome-
wide significance in a recent meta-analysis of AD 
GWAS [60]. We found that in females, 155 mQTLs 
(associated with the CpG cg14324675) overlapped with 
the LD block at 6:32395036-32636434, which included 
genetic variants mapped to the HLA-DRB1, HLA-DRA, 
HLA-DRB5, HLA-DQA1, and HLA-DQB1 genes (Sup-
plementary Table  12). In males, 864 mQTLs (associ-
ated with the CpG cg06363485) overlapped with the 
LD block at chromosome 6:40706366-41365821, which 
included genetic variants mapped to the UNC5CL, 
TSPO2, APOBEC2, OARD1, NFYA, TREML1, TREM2, 
TREML2, TREML3P, TREML4, TREML5P, TREM1, 
and NCR2 genes [60] (Supplementary Table 13).

We also evaluated if the significant methylation dif-
ferences overlapped with the genetic risk loci impli-
cated in AD [60]. We found that in females, there was 
no overlap between AD-associated CpGs or DMRs 
with the genetic risk loci; in males, there was only 1 
DMR that overlapped with the LD block at chromo-
some 6:40706366-41365821, where the TREM2 gene 
is located (Supplementary Table 14). The limited com-
monality between genetic and epigenetic loci in AD 
could be due to the low power in EWAS and/or GWAS 
but could also reflect the relatively independent roles 
of genetic variants and DNA methylation in influenc-
ing AD susceptibility [65, 66].

Out‑of‑sample validation of sex‑specific DNA methylation 
differences in an independent external dataset
To evaluate the feasibility of the significant methylation 
differences for predicting AD diagnosis, we performed 
an out-of-sample validation using an independent 

external DNA methylation dataset measured by Illumina 
450k arrays and generated by the AddNeuroMed study, 
which included 64 males (30 cases, 34 controls) and 
107 females (53 cases and 54 controls) with ages greater 
than 65 years [28] (Table 1). We performed methylation 
risk score (MRS) analysis [67] for samples of each sex 
separately. More specifically, MRS was computed by 
summing methylation beta values of the significant sex-
specific AD-associated CpGs weighted by their estimated 
effect sizes in the meta-analyses. Several logistic regres-
sion models were then estimated using the AIBL data-
set (training dataset) and then tested on samples in the 
AddNeuroMed dataset (testing dataset). We considered 
logistic regression models with three sources of varia-
tions that might affect the prediction for AD diagnosis: 
age, estimated cell-type proportions for each sample, and 
MRS.

In females, the most predictive model include MRS, 
age, and estimated immune cell-type proportions (AUC 
= 0.74, 95% CI: 0.65–0.83), significantly more predic-
tive than a random classifier (P-value = 8.42×10−6). In 
contrast, the model without MRS (i.e., only age and esti-
mated immune cell-type proportions) has an AUC of 
0.68 (Fig. 5). Because samples in the testing dataset (i.e., 
AddNeuroMed) are measured by Illumina 450k arrays 
while samples in the training datasets (i.e., ADNI and 
AIBL) are measured by EPIC arrays, the MRS in the best-
performing model included 9 of the 23 significant CpGs 
with P-value < 10−5 in meta-analysis of female samples 
(Supplementary Table 2) that are available in both train-
ing and testing datasets.

In males, the most predictive model include MRS 
and age (AUC = 0.70, 95% CI: 0.56–0.82), significantly 
more predictive than a random classifier (P-value = 
5.62×10−3). In contrast, the model without MRS (i.e., 
only age) has an AUC of 0.64 (Fig.  5). In the best-per-
forming model, the MRS included 2 of the 5 significant 
CpGs with P-value < 1×10−5 in the meta-analysis of 
methylation-by-sex interaction effect (Table  4) that are 
available in both training and testing datasets.

Interestingly, while the best-performing prediction 
model for females included age, immune cell type pro-
portions, and MRS, the best-performing prediction 
model for males included only age and MRS. When con-
sidered alone, immune cell type proportions achieved 
slightly higher prediction accuracy in females than in 
males (AUC​female = 0.59, AUC​male = 0.55) (Supplemen-
tary Fig.  5), which might be due to a greater change in 
AD-associated B cell type proportions in females (Sup-
plementary Fig. 6). To confirm this result, we also fitted 
a logistic regression model to data from all three datasets 
(ADNI, AIBL, AddNeuroMed). This model included AD 
status as the outcome, main effects B cell type proportion, 
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sex, and B cell type proportion × sex, as well as covariate 
variables datasets and age. The results showed a signifi-
cant B cell type proportion × sex interaction (P-value = 
0.017), indicating the associations between B-cell type 
proportions and AD were significantly different between 
males and females. While previous studies observed a 
decrease in B cells in the blood samples of AD patients 
[68–70], our findings revealed that the diminishing B 
cells in AD is more pronounced in females, which is also 
consistent with the results of another recent sex-specific 
analysis of gene expression data in AD [71].

We also evaluated the robustness of the best-perform-
ing sex-specific logistic regression models with additional 
analyses. The results indicated the prediction perfor-
mance of these models in males and females remained 
very similar when the ADNI dataset was additionally 
included as a training dataset in the development of the 
logistic regression models, or when CpGs from AD-
associated DMRs and/or significant CpGs in cross-tissue 
analyses are also included in the computation of MRS, 

where MRS weights are based on effect sizes estimated in 
meta-analysis of ADNI and AIBL.

Additional sensitivity analyses
In additional to age, sex, and estimated cell-type propor-
tions that we modeled, additional risk factors such as 
smoking, and education could also influence AD risk [15, 
72, 73], thus may confound the methylation to AD asso-
ciation. To evaluate the impact of smoking on our analy-
ses results, we repeated our meta-analysis by additionally 
adjusting smoking in our sex-specific logistic regres-
sion models. Because we did not have access to smoking 
information in the AIBL and AddNeuroMed datasets, 
we computed smoking scores using the SSc method, an 
objective measure shown to discriminate subjects with 
different smoking status in three independent data-
sets [43]. The results of our expanded logistic regres-
sion model that additionally included smoking score 
showed all 27 sex-specific CpGs (Supplementary Table 2) 
remained highly significant, with meta-analysis P-values 

Fig. 5  Receiver Operating Characteristic curves (ROCs) for out-of-sample validation of logistic regression models predicting AD diagnosis in 
males and females. The training and testing samples included sex-specific samples from AIBL and AddNeuroMed datasets, respectively. In males, 
the best-performing logistic regression model included age and methylation risk score (MRS) (AUC = 0.70), compared to the model with age 
alone (AUC = 0.64), or the model with age and estimated immune cell-type proportions (AUC = 0.57). In females, the best-performing model 
included age, MRS, and estimated immune cell-type proportions (AUC = 0.74), compared to the model with age and estimated immune cell-type 
proportions (AUC = 0.68). MRS was computed as the sum of methylation beta values for significant CpGs weighted by their estimated effect sizes 
from sex-specific meta-analysis of AIBL and ADNI datasets. In males, significant CpGs for the MRS included 2 CpGs with P-value < 10−5 identified 
in the interaction analysis that are also available in the AddNeuroMed dataset; in females, significant CpGs for MRS included 9 CpGs with P-value 
< 10−5 identified in AD vs. CN comparison that are also available in AddNeuroMed dataset. Abbreviations: AUC = Area Under ROC curve, AD = 
Alzheimer’s disease, CN = cognitive normal
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ranging from 2.59 × 10−5 to 5.83 × 10−8 (Supplementary 
Table 15), indicating these CpGs are associated with AD 
independent of smoking.

Similarly, we also evaluated the impact of education 
by additionally including a covariate variable for years of 
education in the logistic regression model. Among the 
three public datasets (ADNI, AIBL, AddNeuroMed), we 
only had access to information on education in the ADNI 
dataset. Therefore, we compared results for the ADNI 
dataset using expanded model that additionally include 
years of education with those from our primary analysis 
that did not adjust for education. We found the estimated 
odds ratios (ORs) and P-values for all 27 sex-specific 
CpGs (Supplementary Table  2) based on the original 
model and expanded model to be very similar (Supple-
mentary Table  16). Also, in the ADNI dataset, years of 
education did not differ significantly between CN and 
AD subjects in females or males (Supplementary Fig. 7), 
therefore is unlikely to be a confounder for AD.

Discussion
We performed a comprehensive meta-analysis of two 
large independent AD blood EWAS using two comple-
mentary analyses, to identify DNA methylation differ-
ences associated with AD in a sex-specific manner. In 
the sex-stratified analysis, we obtained 2 CpGs, mapped 
to PRRC2A and RPS8 genes, that reached 5% FDR in 
females (Table 2). An additional 21 CpGs in females and 
4 CpGs in males reached P-value < 1×10−5 (Supplemen-
tary Table  2). In methylation-by-sex interaction analy-
sis, we identified 5 CpGs, mapped to MYO19, ESRRB, 
APLNR genes, and intergenic regions with P-value < 
1×10−5 (Table  4). Moreover, in region-based analysis, 
we also identified 41 DMRs in females and 24 DMRs in 
males (Supplementary Tables  3 and 5). Interestingly, 
there was no overlap between the significant DNA meth-
ylation differences in females and males, highlighting the 
distinct sex-specific epigenetic architecture underlying 
AD (Fig. 2, Supplementary Fig. 4).

Among genes associated with these significant DNAm 
differences, many were previously implicated in brain 
diseases. In sex-stratified analysis, the most significant 
CpG in females is located near the promoter region of 
the PRRC2A gene, with significant hypermethylation in 
AD subjects (Table 2). This result is consistent with the 
previous observation that deficiency in PRRC2A reduces 
the oligodendroglia population in the brain and induces 
hypomyelination, which leads to an impaired locomotive 
and cognitive functions [74–76]. The second most signifi-
cant CpG is located on the RPS8 gene, which encodes a 
ribosomal protein and was recently found to be signifi-
cantly down-regulated in blood samples of AD patients 
[77]. Among genes associated with the most significant 

CpGs in methylation-by-sex interaction analysis, MYO19 
encodes a type of myosin associated with mitochondria 
[78], which are critical signaling organelles involved in 
the regulation of cellular metabolism and energy homeo-
stasis. Dysregulated mitochondria dynamics have been 
recognized as an important contributor to AD [79, 80]. 
ESRRB encodes an estrogen-related receptor, which 
is involved in early development, pluripotency, and 
reprogramming [81]. In a recent GWAS meta-analysis, 
a SNP at the ESRRB loci was among the top 25 genetic 
variants most strongly associated with cognitive perfor-
mance in subjects with psychotic disorders [82]. Finally, 
the APLNR gene encodes a G protein-coupled receptor 
(GPCR), which is a membrane protein regulating cell 
responses to hormones, neurotransmitters, and sensory 
signals. Previously, GPCRs have been implicated in the 
pathogenesis of Alzheimer’s disease (AD) by multiple 
studies [83, 84].

Also, in females, 6 out of the top 10 DMRs were 
mapped to promoter regions of the CCDC169- ARH-
GEF15, LPAR5, ZNF595, TAGLN3, and ALOX12 genes 
(Table  3). Among them, ARHGEF15 is involved in the 
regulation of synapse development and is significantly 
upregulated in AD brains [85]; LPAR5 encodes a trans-
membrane receptor that is significantly downregulated 
during aging in human microglia, the resident immune 
cells of the brain [86]. In males, 3 out of the top 10 
DMRs were mapped to promoter regions of the MCCC1, 
PM20D1, and KCTD11 genes (Table  3). Among them, 
the MCCC1 gene is involved in mitochondrial homeo-
stasis and was shown to be associated with sporadic Par-
kinson’s disease in multiple GWAS [87–90]; PM20D1 is 
associated with response to accumulation of amyloid-β 
in AD brains [91, 92]. Taken together, these results dem-
onstrated our sex-specific meta-analyses are consistent 
with recent literature in brain research. In addition to 
implicating sex-specificity for methylation differences in 
genes previously known in AD (e.g., PM20D1), we also 
nominated additional differentially methylated genes 
that might be associated with AD (e.g., PRRC2A and 
MCCC1).

To better understand the relevancy of these significant 
CpGs, we performed several integrative analyses. Our 
cross-tissue meta-analysis that integrated blood DNAm 
samples with over 1000 additional brain samples prior-
itized 31 CpGs with the most significant differences in 
both tissues. Intriguingly, we found the majority of the 
CpGs (26 out of 31) had opposite directions of changes 
in brain and blood (Tables 5 and 6), consistent with pre-
vious studies in AD that also found DNA methylation 
variations in the blood, by and large, did not recapitu-
late those in the brain [20, 22, 93]. In addition, we also 
performed an integrative analysis of DNAm data with 
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matched gene expression data in the ADNI blood sam-
ples and ROSMAP brain samples to narrow down tar-
get genes associated with the DNAm differences. We 
observed the strongest sex-specific association signals in 
a cluster of CpGs located in the promoter region of the 
PM20D1 gene, which showed a strong negative associa-
tion with target gene expression level (P-values ranging 
from 5.11 ×10−15 to 1.48×10−10, FDRs ranging from 
2.14×10−13 to 5.67×10−10) in males (Supplementary 
Table 9). Moreover, the target gene PM20D1 was also sig-
nificantly upregulated in blood samples of AD subjects 
compared to cognitively normal subjects (Fig.  4). Previ-
ously, it was shown that in response to the neurotoxic 
insults in AD brains, overexpression of PM20D1 is asso-
ciated with decreased amyloid-β levels and reduces cell 
death both in vitro and in vivo; thus, it may have a neuro-
protective role against AD [91, 92].

Moreover, we also analyzed an additional independent 
DNAm dataset, the AddNeuroMed dataset, to assess the 
predictive power of the sex-specific methylation-based 
prediction models, which showed higher prediction accu-
racy for AD diagnosis in females than males (AUC​female = 
0.74 vs. AUC​male = 0.70) (Fig. 5). Our results are consistent 
with another recent study on sex-specific analysis of gene 
expression changes in AD, which found gene expression-
based prediction models also performed better in females 
than in males [71], suggesting molecular differences in 
females are more predicative of AD. Another possibility 
for the better prediction performance could also be the 
larger number of female samples in the validation dataset 
(107 female samples vs. 64 male samples). Future valida-
tion datasets with a larger number of both female and male 
samples will help clarify the difference in prediction perfor-
mances of the sex-specific methylation-based risk models.

To help interpret our findings, we compared our 
analysis results with several previous studies. The com-
parison with our previous sex-combined analysis of 
AIBL and ADNI EWAS [22] showed a small number of 
AD-associated CpGs and DMRs (4/23 CpGs and 1/41 
DMRs in females, 1/4 CpGs, and 3/24 DMRs in males), 
including the DMR located in the promoter of the 
PM20D1 gene we described above, were identified by 
both analyses (Supplementary Tables  2, 3, and 5), sug-
gesting that DNA methylation differences at these loci 
were predominately driven by effects in only one sex. In 
contrast, the comparison with our previous sex-specific 
analysis of brain samples EWAS [36] showed sex-spe-
cific DNAm differences are largely distinct in the brain 
and the blood. Among the AD-associated CpGs and 
DMRs, only 1 CpG (cg02354658), located on 3’UTR of 
the GLRX gene, was significantly associated with both 
AD diagnosis and AD neuropathology in females. As 

advanced aging is the strongest factor for AD, we also 
compared our results with those from Yusipov et  al. 
[94] and McCartney et  al. [35], which identified 8 and 
52 autosomal CpGs differentially affected by aging, but 
we did not find any overlap with these previous stud-
ies. A possible cause could be the small number of loci 
detected by these studies and ours.

This study has several limitations. First, we analyzed 
methylation data generated from bulk whole blood sam-
ples, which contain a complex mixture of cell types, and 
might have introduced substantial variability in the sam-
ples and reduced the power of our study. To reduce con-
founding effects due to different cell types, we included 
estimated cell-type proportions as covariate variables 
in all our analyses. Future studies that utilize single-cell 
technology for gene expression and DNA methylation 
might improve power and shed more light on the par-
ticular cell types affected by the AD-associated DNA 
methylation differences discovered in this study. Sec-
ond, based on our previous experiences with the analy-
sis of blood samples in AD, we pre-defined a more 
liberal significance threshold (i.e., P-value < 10−5) for 
our meta-analysis to select a small number of loci, which 
were then further prioritized using integrative analy-
ses. Future studies with larger sample sizes are needed 
to identify DNAm differences at more stringent signifi-
cance thresholds.

In the analysis of DMRs, the meta-analysis design 
of our study precluded many DMR analysis tools that 
require methylation data as input. To this end, we used 
comb-p software, which only required CpG locations 
and P-values as input. However, because the comb-p 
software may have an inflated false-positive rate [95], the 
resulting DMRs need to be interpreted cautiously. Third, 
we did not consider MCI subjects in this study because 
there is considerable heterogeneity among MCI subjects, 
with subjects converting to AD at different trajectories. 
As ADNI is currently conducting additional phases of 
the study, future analyses with a larger sample size will 
make it possible to detect more DNA methylation dif-
ferences in AD as well as in MCI subjects. Fourth, the 
methylation-based prediction model could be further 
improved. Because DNA methylation samples in the 
testing dataset (AddNeuroMed) were measured by 450k 
arrays, which are different from the EPIC arrays used 
by the AIBL study, we only included the subset of sig-
nificant CpGs that mapped to both types of arrays in the 
computation of MRS. The performance of our meth-
ylation-based prediction models can be assessed more 
accurately using future testing datasets measured by the 
EPIC arrays. Fifth, we did not include other important 
factors such as education attainment in our analysis, 
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which might also influence AD [73] because we did not 
have access to additional covariate information in the 
AIBL and AddNeuroMed datasets beyond age and sex. 
In the ADNI dataset, we did not identify significant 
differences in years of education in AD subjects com-
pared to cognitively normal controls in either females 
or males, which could be due to the relatively homoge-
neous cohort of highly educated subjects in this data-
set [96] (Supplementary Fig. 7). Our internal validation 
using the ADNI dataset suggested additionally including 
years of education into our best-performing MRS-based 
logistic regression models did not improve prediction 
performance in females, and only slightly improved it in 
males. More specifically, a 10-fold cross-validation using 
the ADNI dataset showed the estimated average AUCs 
for the best-performing logistic regression models with 
and without years of education were 0.707 and 0.710 for 
females, and 0.650 and 0.604 for males (Supplementary 
Table  17). Future analysis of more diverse cohorts are 
needed to evaluate the impact of education on AD risk 
more accurately. Finally, we cannot be certain that the 
DNA methylation samples were obtained prior to AD 
diagnosis in all three publicly available datasets; there-
fore, the DNA methylation may represent both cause 
and consequence of AD, so the associations we identi-
fied do not necessarily reflect causal relationships. Addi-
tional studies are needed to establish the causality of the 
nominated DNA methylation markers.

Conclusions
In summary, our meta-analysis discovered a number of 
novel sex-specific DNA methylation differences associ-
ated with AD in a sex-specific manner. Because of the 
cancelation of effects in different directions, or dilu-
tion from samples with no effect, many of the sex-spe-
cific effects were missed in our previous sex-combined 
analysis [22]. To assess the relevancy of our sex-specific 
DNAm differences, we performed several integrative 
analyses with additional gene expression data, DNAm 
data generated from brain samples, as well as assess-
ing the feasibility of methylation-based risk score with 
an independent dataset. Despite the relatively modest 
sample size of our training dataset, the significant dis-
criminatory classification of AD samples with our meth-
ylation-based risk prediction models demonstrated that 
sex-specific DNA methylation is a predictive biomarker 
for AD. Future studies that validate our findings in larger 
and more diverse community-based cohorts are needed. 
Overall, our study highlighted distinct sex-specific epi-
genetic architectures underlie AD, pointing to a pressing 
need for considering sex differences in the development 
of diagnosis and treatment strategies for AD.
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Additional file 1: Supplementary Figure 1. Forest plots for the 5 most 
significant CpGs in female samples meta-analysis of ADNI and AIBL blood 
sample datasets. Shown are odds ratios and confidence intervals that 
describe changes in odds of AD (on the multiplicative scale) associated 
with a one percent increase in DNA methylation beta values (i.e., increase 
in beta values by 0.01) after adjusting for covariate variables age at visit, 
batches and proportions of different blood cell types in each sample. 
Supplementary Figure 2. Forest plots for the 4 significant CpGs with 
P < 10-5 in male samples meta-analysis of ADNI and AIBL blood sample 
datasets. Shown are odds ratios and confidence intervals that describe 
changes in odds of AD (on the multiplicative scale) associated with a one 
percent increase in DNA methylation beta values (i.e., increase in beta 
values by 0.01) after adjusting for covariate variables age at visit, batches, 
and proportions of different blood cell types in each sample. Sup‑
plementary Figure 3. Overlap between DMRs and CpGs in males and 
females. There was no overlap between significant sex-specific DMRs and 
significant sex-specific individual CpGs in either (A) males or (B) females. 
Supplementary Figure 4. Comparison of results for DNA methylation 
differences in female sample meta-analysis vs. male sample meta- analysis. 
(A) overlap of AD-associated CpGs (B) overlap of AD-associated DMRs 
and (C) there was only modest correlation between effect estimates for 
CpG to AD associations in female meta-analysis vs. those from male meta-
analysis. Supplementary Figure 5. Performance of different sex-specific 
logistic regression models for predicting AD diagnosis in out-of-sample 
validation. The training and testing datasets included samples from the 
AIBL and AddNeuroMed datasets, respectively. MRS was computed as the 
sum of methylation beta values for significant CpGs weighted by their 
estimated effect sizes from the sex-specific meta-analysis of AIBL and 
ADNI datasets. In males, significant CpGs for the MRS included 2 CpGs 
with P < 10-5 identified in the interaction analysis that are also available in 
the AddNeuroMed dataset; in females, significant CpGs for MRS included 
9 CpGs with P < 10-5 identified in AD vs. CN comparison that are also 
available in AddNeuroMed dataset. Abbreviations: AUC = Area Under ROC 
curve, AD = Alzheimer’s disease, CN = cognitive normal. Supplemen‑
tary Figure 6. The changes in AD-associated B cell type proportions in 
females were more pronounced than in males in all three datasets (ADNI, 
AIBL, AddNeuroMed). Supplementary Figure 7. Comparison of years of 
education (PTEDUCAT) in cognitive normal (CN) and AD subjects from 
ADNI dataset. There was not significant association between AD status 
and years of education in females (P = 0.23) or males (P = 0.12), using 
Wilcoxon rank-sum test.

Additional file 2: Supplementary Table 1. Quality control (QC) 
information on DNA methylation samples and probes for each dataset 
contributing to the sex-specific meta-analyses. Under Probes QC, shown 
are the number of probes remaining after each QC procedure. Under 
Samples QC, shown are the number of samples remaining after each QC 
procedure. Supplementary Table 2. At P < 10-5, sex-specific meta-analyses 
identified a total of 23 CpGs and 4 CpGs signicantly associated with AD 
diagnosis in female samples and male samples, respectively . For each CpG, 
annotations include the location of the CpG based on hg19/GRCh37 
genomic annotation (chr, position), nearby genes based on GREAT 
(GREAT_annotation), the type of associated genomic feature (RefGene_
Group), Illumina gene annotations, location with respect to CpG islands 
(Relation_to_Island), and overlap with enhancers identified in Nasser et al. 
[53] study (PMID: 33828297). Inverse-variance weighted fixed-effects 
meta-analysis models were used to combine cohort-specific results from 
logistic regression models that included covariate variables age, batch, and 
immune cell-type proportions. A total of 9 CpGs had the same direction of 
change in males and females (highlighted in gray). Odds ratios (OR) 
describe changes in odds of AD (on the multiplicative scale) associated 
with a one percent increase in methylation beta values (i.e., increase in 
methylation beta values by 0.01) after adjusting for covariate variables. 
Highlighted in red are CpGs that mapped to promoter regions. 95% CI = 
95% confidence interval for odds ratio. Supplementary Table 3. In female 
samples, a total of 41 DMRs were significantly associated with AD diagnosis 
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at 5% Sidak corrected P-value. Among them, 6 DMRs overlapped with 
enhancer regions from Nasser et al. study (Nature 2021; PMID: 33828297) 
(Enhancer = TRUE). Highlighted in red are DMRs that mapped to promoter 
regions. Direction indicates hypermethylation (+) or hypomethylation (-) in 
AD subjects, which was determined based on hyper- or hypo- methylation 
of the majority of the CpGs (located within the DMR) in meta-analysis. 
Supplementary Table 4. CpGs within top 10 most significant DMRs in 
females. Direction indicates hypermethylation (+) or hypomethylation (-) in 
AD samples in the ADNI and AIBL datasets. Supplementary Table 5. In 
male samples, a total of 24 DMRs were significantly associated with AD 
diagnosis at 5% Sidak corrected P-value. Among them, 7 DMRs overlapped 
with enhancer regions from Nasser et al. study (Nature 2021; PMID: 
33828297) (Enhancer = TRUE). Highlighted in red are DMRs that mapped 
to promoter regions. Direction indicates hypermethylation (+) or 
hypomethylation (-) in AD subjects, which was determined based on 
hyper- or hypo- methylation of the majority of the CpGs (located within 
the DMR) in meta-analysis. Supplementary Table 6. CpGs within the top 
10 most significant DMRs in males. Direction indicates hypermethylation 
(+) or hypomethylation (-) in AD samples in the ADNI and AIBL datasets. 
Supplementary Table 7. Information on brain samples used in 
cross-tissue meta-analysis. Supplementary Table 8. Results of analysis of 
female samples. In (a) and (b), we analyzed matched DNAm-RNA from the 
ADNI dataset (adni.loni.usc.edu), and tested association of DNA methyla-
tion at significant CpGs with expression levels of genes located nearby. At 
5% FDR, for CpGs in the promoter regions (i.e., within +/- 2k bp from TSS), 
DNAm at 23 CpGs (mapped to 5 DMRs) were significantly associated with 
expressions of their target genes. For CpGs in distal regions (>2k bp from 
TSS), we tested association between the CpGs with 10 genes upstream and 
10 genes downstream from the CpG location. Only 1 CpG was significantly 
associated with expression of its target gene at 5% FDR. In (c), we 
performed a meta-analysis for gene expressions of the target genes using 
two prefrontal cortex brain samples datasets in AD (GEO accessions: 
GSE33000, GSE44772), to test association between gene expression and 
AD, adjusting for age, sex and surrogate variables for cell types. Supple‑
mentary Table 9. Results of analysis of male samples with matched 
DNAm-RNA data in the ADNI dataset. In (a) and (b), we tested association 
of DNA methylation at significant CpGs with expression levels of genes 
located nearby. At 5% FDR, for CpGs in the promoter regions (i.e., within 
+/- 2k bp from TSS), DNAm at 12 CpGs (mapped to 2 DMRs) were 
significantly associated with expressions of their target genes. For CpGs in 
distal regions (>2k bp from TSS), we tested association between the CpGs 
with 10 genes upstream and 10 genes downstream from the CpG location. 
A total of 13 distal CpGs (mapped to 5 DMRs) were significantly associated 
with expressions of their target genes at 5% FDR. In (c), we performed a 
meta-analysis for gene expressions of the target genes using two prefrontal 
cortex brain samples datasets in AD (GEO accessions: GSE33000, 
GSE44772), to test association between gene expression and AD, adjusting 
for age, sex and surrogate variables for cell types. Supplementary 10. In 
femlaes, a total of 64 CpG - mQTL pairs were significant in both brain and 
blood samples analyses. The blood mQTLs and brain mQTLs were obtained 
from the GoDMC database and xQTL server, respectively. Supplementary 
11. In males, a total of 19 CpG - mQTL pairs were significant in both brain 
and blood samples analyses. The blood mQTLs and brain mQTLs were 
obtained from the GoDMC database and xQTL server, respectively. 
Supplementary Table 12. In females, a total of 155 mQTLs in the blood 
overlapped with the 24 GWAS nominated LD blocks in Kunkle et al. [60] 
(PMID: 30820047). The mQTLs in blood were obtained from the GoDMC 
database. Annotations for CpGs include location of the CpG based on 
hg19/GRCh37 genomic annotation (Chr, Position), Illumina gene 
annotation (UCSC_RefGene_Name), the type of associated genomic 
feature (UCSC_RefGene_Group), and location with respect to CpG islands 
(Relation_to_Island). Supplementary Table 13. In males, a total of 864 
mQTLs in the blood overlapped with the 24 GWAS nominated LD blocks in 
Kunkle et al. [60] (PMID: 30820047). The mQTLs in blood were obtained 
from the GoDMC database. Annotations for CpGs include location of the 
CpG based on hg19/GRCh37 genomic annotation (Chr, Position), Illumina 
gene annotation (UCSC_RefGene_Name), the type of associated genomic 
feature (UCSC_RefGene_Group), and location with respect to CpG islands 
(Relation_to_Island). Supplementary Table 14. Overlap of AD-associated 
DMRs with AD GWAS loci reported in Kunkle et al. [60]. Supplementary 

Table 15. Sensitivity analysis for model that additionally adjust for smoking 
scores, which was computed using the SSc method as implemented in R 
package EpiSmokEr (PMID: 31466478). All 27 sex-specific CpGs from 
Supplementary Table 2 remained highly significant, with meta-analysis 
P-values ranging from 5.83 x 10-8 to 2.59 x 10-5. Supplementary Table 16. 
Sensitivity analysis comparing logistic regression model that additionally 
adjusts years of education vs. model not adjust education in the analysis of 
ADNI dataset. Supplementary Table 17. Results of internal validation that 
compared logsitic regression models with or without education effect. A 
10-fold cross-validation using the ADNI dataset showed the estimated 
average AUCs for the best performing logistic regression models with and 
without education were 0.707 and 0.710 in females, and 0.650 and 0.604 in 
males. The MRS was computed as the sum of methylation beta values for 
significant CpGs weighted by their estimated effect sizes obtained in the 
meta-analysis. In males, significant CpGs used for the MRS included 2 out of 
the 5 significant CpGs in the meta-analysis of methylation-by-sex 
interaction effect which were also available in AddNeuroMed dataset. In 
females, significant CpGs used for MRS included 9 out of 23 CpGs in 
meta-analysis that compared AD vs. CN samples which were also available 
in AddNeuroMed dataset.
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