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Abstract 

Background:  Chronic inflammation is a central feature of several forms of dementia. However, few details on the 
associations of blood-based inflammation-related proteins with dementia incidence have been explored yet.

Methods:  The Olink Target 96 Inflammation panel was measured in baseline serum samples (collected 07/2000–
06/2002) of 1782 older adults from a German, population-based cohort study in a case-cohort design. Logistic regres-
sion models were used to assess the associations of biomarkers with all-cause dementia, Alzheimer’s disease, and 
vascular dementia incidence.

Results:  During 17 years of follow-up, 504 participants were diagnosed with dementia, including 163 Alzheimer’s 
disease and 195 vascular dementia cases. After correction for multiple testing, 58 out of 72 tested (80.6%) biomarkers 
were statistically significantly associated with all-cause dementia, 22 with Alzheimer’s disease, and 33 with vascular 
dementia incidence. We identified four biomarker clusters, among which the strongest representatives, CX3CL1, 
EN-RAGE, LAP TGF-beta-1, and VEGF-A, were significantly associated with dementia endpoints independently from 
other inflammation-related proteins. CX3CL1 (odds ratio [95% confidence interval] per 1 standard deviation increase: 
1.41 [1.24–1.60]) and EN-RAGE (1.41 [1.25–1.60]) were associated with all-cause dementia incidence, EN-RAGE (1.51 
[1.25–1.83]) and LAP TGF-beta-1 (1.46 [1.21–1.76]) with Alzheimer’s disease incidence, and VEGF-A (1.43 [1.20–1.70]) 
with vascular dementia incidence. All named associations were stronger among APOE ε4-negative subjects.

Conclusion:  With this large, population-based cohort study, we show for the first time that the majority of inflamma-
tion-related proteins measured in blood samples are associated with total dementia incidence. Future studies should 
concentrate not only on single biomarkers but also on the complex relationships in biomarker clusters.
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Introduction
Dementia is a major challenge for global public health 
and social care systems. As the number of dementia cases 
increases with rising life expectancy, it has been esti-
mated that almost 75 million people worldwide will live 
with dementia in 2030 [1]. Therefore, research on how to 
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prevent or delay the onset of dementia is one of the major 
challenges globally [2].

Inflammation likely plays a key role in the development 
and progression of dementia [3]. In the brain, inflamma-
tory processes are a defence mechanism against infec-
tion, toxins, or injury. Persistent systemic inflammation, 
occurring outside the central nervous system (CNS), 
might disrupt the equilibrium of pro- and anti-inflam-
matory signalling. Released products can then cross the 
blood-brain barrier and lead to neuroinflammation. In 
neuroinflammation, microglia and astrocytes are acti-
vated and release various pro-inflammatory products 
causing chronic inflammation and neurodegeneration 
[4, 5]. Several studies have found increased levels of 
pro-inflammatory cytokines and proteins like interleu-
kin-6 (IL-6), interleukin-1β (IL-1β), C-reactive protein 
(CRP), or α1-antichymotrypsin (α1-AT) to be associated 
with the onset of all-cause dementia [6, 7]. Further stud-
ies also revealed that CRP, IL-1ß, IL-2, IL-4, IL-6, IL-8, 
IL-10, IL-12, IL-18, monocyte protein-1 (MCP-1), MCP-
3, interferon-γ-inducible protein 10 (IP-10), and tumour 
necrosis factor α (TNF-α) are associated with the inci-
dence of Alzheimer’s disease, the most common form 
of dementia, accounting for 60–80% of all cases [8, 9]. 
However, longitudinal studies on the association between 
biomarkers of the inflammation-related proteome and 
dementia are scarce [10].

As biomarkers can be measured at an early stage of 
dementia, they have the potential to be used for an early 
diagnosis [11, 12]. Furthermore, identified new biomark-
ers could deepen our understanding of the pathogenetic 
processes leading to dementia and might represent novel 
drug targets [13, 14]. The current challenge of biomarker 
research in dementia in general and distinct forms is to 
find reliable diagnostic and predictive biomarkers easily 
accessible in fluids like blood [15, 16].

This study aims for the first time to identify blood-
based biomarkers from a set of 92 inflammatory 
biomarkers as risk factors for all-cause dementia, Alzhei-
mer’s disease, or vascular dementia incidence in a large, 
prospective cohort study with a 17-year follow-up.

Methods
Study population
We conducted a case-cohort study based on the ESTHER 
study (Epidemiologische Studie zu Chancen der Ver-
hütung, Früherkennung und optimierten Therapie 
chronischer Erkrankungen in der älteren Bevölkerung 
[German]). In this prospective cohort study imple-
mented in Saarland, Germany, 9940 women and men 
aged 50 to 75 years at baseline were recruited during a 
general health checkup by their general practitioners 
between 2000 and 2002. Besides an age of 50–75 years, 

the inclusion criteria for the ESTHER study were physi-
cal and mental ability to participate in the study as well 
as knowledge of the German language. Participants were 
followed up concerning the incidence of major diseases 
and mortality 2, 5, 8, 11, 14, and 17 years after baseline. 
For details, see Löw et  al. [17]. The sociodemographic 
baseline characteristics and common prevalent chronic 
diseases were similarly distributed in the respective age 
categories as in the German National Health Survey, a 
representative sample of the German population [17].

Dementia ascertainment
Information about a dementia diagnosis was collected 
during the 14- and 17-year follow-ups of the ESTHER 
study. The median follow-up time was 16.3 years (inter-
quartile range: 13.5–17.0 years), and the maximum was 
19.4 years due to the 2-year period of baseline recruit-
ment. In brief, the collection of dementia diagnoses 
included sending standardized questionnaires to the 
study participants’ general practitioners (GPs). Partici-
pants who had dropped out during previous follow-ups 
due to ill health or had died were included in the demen-
tia ascertainment through the GPs as well. If the GPs 
were aware of a dementia diagnosis for their patients, 
they were asked to provide a date of diagnosis and all 
available medical records documenting a dementia diag-
nosis. The latter included records from neurologists, psy-
chiatrists, memory clinics, or other specialized providers. 
If the GP provided a mixed dementia diagnosis, available 
medical records were screened for an underlying Alz-
heimer’s disease or vascular dementia background and 
considered as Alzheimer’s disease, vascular dementia, or 
both. The Alzheimer’s disease diagnosis guideline used 
in Germany during the follow-up period of the ESTHER 
study was the one of the National Institute on Aging and 
the Alzheimer’s Association [18].

Biomarker measurements
Inflammation-related, blood-based proteins were meas-
ured from serum samples collected during the health 
checkup at baseline (2000–2002). Blood samples were 
sent to the study centre and stored at −80°C until bio-
marker measurements took place in three waves in 
March 2018, December 2018, and September 2020 
(referred to as time points t1, t2, and t3 in the following). 
At the time of the measurements, 10–25 μl of serum was 
extracted from different aliquots that had been thawed 
twice and sent with dry ice to the laboratories, which 
analysed the samples with the Olink Target 96 Inflam-
mation panel, Olink Proteomics, Uppsala, Sweden. At t1 
and t2, samples were analysed in the laboratory of Olink 
Proteomics, Uppsala Science Park, SE-75183 Uppsala, 
Sweden. At t3, the measurements were performed in the 
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Research Unit Protein Science, German Research Center 
for Environmental Health, Helmholtz Center Munich, 
Heidemannstraße 1, 80939 München, Germany.

The Olink panels are based on a proximity extension 
assay technology (PEA) [19, 20]. Details on the reliability 
and stability of the technology are described elsewhere 
[21]. In brief, oligonucleotide-labelled antibody probe 
pairs are allowed to bind to their respective target pro-
teins in the samples. Only if two antibodies are in close 
proximity, a polymerase chain reaction (PCR) reporter 
sequence is formed by DNA polymerization. This 
sequence is detected and quantified using high-through-
put real-time quantitative PCR (qPCR) (Fluidigm® 
BiomarkTM HD system). The Olink Target 96 Inflamma-
tion panel allows the measurement of 92 biomarkers per 
sample. A list of all biomarkers of this panel is displayed 
in Supplemental Table 1.

At t1, t2, and t3, 22, 15, and 5 plates were used, respec-
tively. To avoid batch effects, cases and controls were ran-
domly distributed across plates and adjusted according 
to included interpolate controls. The average intra-assay 
coefficient of variance among all 92 measured biomark-
ers was 7%, 4%, and 3% at t1, t2, and t3, respectively. The 
average inter-assay coefficient of variance was 12%, 10%, 
and 10% at t1, t2, and t3, respectively. Furthermore, the 
quality of each serum sample was assessed by Olink tech-
nology [22]. All samples were measured successfully, and 
the number of quality control warnings was below 4% in 
all three timepoints. Of the 1435 randomly selected con-
trols and 393 incident dementia cases, 46 serum samples 
of participants were excluded due to a quality control 
warning by Olink.

Protein levels are reported as Normalized Protein 
eXpression (NPX) values, a relative quantification unit 
logarithmically related to protein concentration. The 
number of samples with values below the lower limit 
of detection (LOD) varied strongly by biomarker and is 
shown in Supplemental Table  1. In total, 20 biomarkers 
with > 25% of the values below LOD were excluded from 
all analyses (grey-shaded biomarkers in Supplemental 
Table 1). Thereby, 72 out of the 92 biomarkers were con-
sidered evaluable markers. Biomarker values below the 
LOD were replaced by LOD/√2. The normalization of 
raw data was conducted with the R (R Core Team, 2020, 
version 3.6.3) package “OlinkAnalyze”, developed and 
maintained by the Olink Proteomics Data Science Team 
[23]. To normalize data from three different measure-
ment points (t1, t2, and t3), reference sample normali-
zation was used based on 17 and 16 bridging samples 
between each two measurement points (t1–t3 and t2–
t3, pair-wise bridging). For details of the procedure, we 
refer to the white paper of OLINK Proteomics [22].

Covariate assessment
Data on sex, age, education, body mass index (BMI), 
physical activity, and life-time history of depression 
were collected during baseline assessment through 
a standardized self-administered questionnaire. The 
history of coronary heart disease (CHD) and diabetes 
mellitus were obtained from physician diagnoses. Fur-
thermore, anti-diabetic drugs reported by the GP were 
used to complement diabetes mellitus diagnoses. Par-
ticipants were considered to have cardiovascular dis-
ease (CVD) based upon CHD diagnoses from GPs or 
self-reported history of myocardial infarction, stroke, 
pulmonary embolism, or revascularization of coronary 
arteries. TaqMan single-nucleotide polymorphism 
(SNP) genotyping assays were used to determine 
apolipoprotein E (APOE) genotypes. More precisely, 
genotypes were analysed in an endpoint allelic dis-
crimination using a PRISM 7000 Sequence detection 
system (Applied Biosystems) [24].

Inclusion and exclusion criteria
The selection of study participants from the ESTHER 
cohort for this case-cohort analysis is shown in Fig.  1. 
ESTHER participants were eligible for selection as cases 
or random controls. Participants were excluded if they 
withdrew consent to contact the GP (n=248), if the GP 
withdrew consent to be contacted (n=304), or if the GP 
could not be reached anymore (n=1035). Thereupon, 
dementia diagnosis information was requested for 8353 
participants and received for 6940 participants (response 
rate: 83.1%). Moreover, participants were excluded if 
dementia incidence status could not be ascertained by 
GP questionnaires (either diagnosis was not available 
(n=412) or not confirmed (n=171)) or if blood samples 
were not available (n=73). Thus, information from 6284 
participants was available for analyses. Except for their 
age, participants with available dementia information 
and blood samples and those who could not be used for 
analyses had comparable baseline characteristics (Sup-
plemental Table  2). Fewer included than excluded par-
ticipants were in the oldest age group of 70 to 75 years 
(13.8% compared to 19.0%) reflecting the challenges to 
obtain dementia information about deceased study par-
ticipants from their GPs.

Olink inflammation panel measurements were per-
formed in a case-cohort design among 1435 randomly 
selected study participants and all incident dementia 
cases of the rest of the cohort (n=393). To check if the 
random selection was successful, we compared the base-
line characteristics of selected and non-selected con-
trols and observed no substantial differences between 
the groups (Supplemental Table  3). After excluding 
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Fig. 1  Flowchart of dementia ascertainment during the 14- and 17-year follow-up of the ESTHER study and selection of the study population for 
this research project. Abbreviations: GP, general practitioner
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participants with quality control warning, 389 incident 
dementia cases and 1393 randomly selected participants 
were available. As the randomly selected participants 
included 115 incident dementia cases, the study popula-
tion comprised 504 participants with incident dementia 
and 1278 randomly selected controls.

Statistical analyses
First, to describe factors associated with dementia risk, 
categorized baseline characteristics of all-cause demen-
tia cases and controls were compared using the χ2-test. 
Second, odds ratios (ORs) for all-cause dementia were 
estimated with a multivariate logistic regression model, 
including all baseline characteristics shown in Table 1.

In a univariate, descriptive analysis, the median and 
interquartile range (IQR) of all inflammation-related 
protein levels of all-cause dementia, Alzheimer’s disease, 
and vascular dementia cases were separately compared 
with those of controls, using the Wilcoxon rank sum 
test. Additionally, in a multivariate approach, the ORs 
per one standard deviation (SD) increase of each inflam-
mation-related protein were assessed separately with 
each outcome (all-cause dementia, Alzheimer’s disease, 
and vascular dementia incidence) in logistic regression 
models adjusted for potential confounders. In models 
for Alzheimer’s disease incidence, study participants 
with other (e.g. vascular dementia) or unknown demen-
tia forms were excluded. The same was applied for the 
outcome vascular dementia incidence by excluding Alz-
heimer’s disease and other non-vascular dementia cases. 
The models were adjusted for age, sex, education, physi-
cal activity, BMI, CVD, diabetes, depression, and APOE 
genotype. All variables were used as categorical variables, 
as described in Table 1, except age, which was modelled 
continuously. The covariates were selected because they 
were statistically significantly associated with all-cause 
dementia, Alzheimer’s disease, or vascular dementia in 
a previous analysis with the ESTHER study participants 
[25]. Statistical test results were corrected for multiple 
testing by the Benjamini and Hochberg method for all 
tests carried out for one outcome [26]. A false discovery 
rate (FDR) < 0.05 was applied as the threshold for statisti-
cal significance. In a sensitivity analysis, the multivariate 
logistic regression model was repeated using weighted 
Cox regression, according to Barlow et al. [27].

We further aimed to identify those inflammation-
related proteins whose association with a dementia 
outcome was independent of other inflammatory bio-
markers. Therefore, all biomarkers, which were signifi-
cantly associated with a dementia endpoint after FDR 
correction, were tested for the independence of the asso-
ciation by forward elimination. Only biomarkers having 
the strongest, independent, positive association with the 

outcome entered the regression model with the thresh-
old for statistical significance of p<0.05 in the following 
logistic regression analysis. Moreover, biomarker clusters 
were built and named based on the identified independ-
ent biomarkers. All other biomarkers of the Olink inflam-
mation panel, which were highly correlated (Spearman’s 
correlation coefficient r > 0.5) [28] with an independent 
biomarker, were put in its cluster. One biomarker might 
be in more than one cluster. We favoured this statistical 
approach over a principal component analysis because it 
has a higher transparency and is easier to reproduce by 
others, its results are easier to interpret, and the associa-
tions of the biomarkers with the dementia outcomes are 
being acknowledged in the decision about the number of 
clusters.

The associations of the independent biomarkers with 
dementia endpoints were further analysed in subgroup 
analyses based on age, sex, obesity, diabetes, history of 
CVD, and APOE ε4 polymorphism. These factors were 
selected a priori because they are important dementia 
risk factors and determinants of inflammation [29]. Apart 
from this, interaction terms were tested. In addition, the 
dose-response relationships between the independent 
biomarkers and dementia endpoints were assessed with 
restricted cubic spline curves [30].

Several sensitivity analyses were performed. To 
check for potential reverse causality, the associations 
between the independent biomarkers and dementia 
endpoints were analysed stratified by time of diagno-
sis (in the first 10 years of follow-up vs later years). 
Competing risk of death was examined by excluding 
subjects without dementia diagnosis who died before 
their 80th birthday, the average life expectancy of the 
cohort’s population. Fractional polynomials with first-
order terms were used to determine each biomarker’s 
best fitting function with the outcomes [31]. The lin-
ear function was the best fitting one for almost all 
biomarkers (67 of 72). Since the low number of bio-
markers with deviations in the best fitting function 
from linearity (6.9%) could have resulted from multiple 
testing, all were modelled linearly. In a sensitivity anal-
ysis, the multivariate logistic regression analysis was 
repeated with the five non-linear biomarkers modelled 
with their best fitting function. Finally, to examine the 
impact of persons with a potential acute infection on 
the overall results, subjects with C-reactive protein 
(CRP) levels > 20 mg/L were excluded.

To our knowledge, missing values of covariates were 
missing at random. The highest proportion of missing 
values was found for APOE polymorphism (7.5%). Thus, 
multiple imputation was used to impute missing values. 
Variables shown in Table 1 were used for the imputation 
model. Twenty data sets were imputed with the Markov 
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Chain Monte Carlo (MCMC) method separately by sex 
with the SAS procedure PROC MI. All analyses were per-
formed based on those 20 datasets with the SAS proce-
dure PROC MIANALYZE.

Statistical tests were two-sided using an alpha level of 
0.05. All statistical analyses were conducted with the Sta-
tistical Analysis System (SAS, version 9.4, Cary, North 
Carolina, USA).

Results
Table  1 shows the baseline characteristics of 504 cases 
with incident dementia from any cause and 1278 con-
trols. The χ2 test revealed significant differences between 
cases and controls in terms of age, physical activity, CVD, 
diabetes, life-time history of depression, and APOE gen-
otype. In the multivariate logistic regression analysis, 
including all baseline characteristics shown in Table  1, 
CVD and diabetes lost statistical significance, but a trend 
towards an increased all-cause dementia risk could still 
be seen in the OR point estimates. Male sex became sta-
tistically significantly associated with all-cause dementia 
incidence while age, physical activity (inversely), depres-
sion with current pharmacotherapy, and the APOE gen-
otypes ɛ2/ɛ4, ɛ3/ɛ4, and ɛ4/ɛ4 remained significantly 
associated with all-cause dementia incidence. The APOE 
genotype ɛ2/ɛ3 as well as a life-time history of depres-
sion without current pharmacotherapy were not associ-
ated with all-cause dementia. The APOE genotype ɛ2/ɛ2, 
school education ≥ 10 years and a BMI ≥ 25 kg/m2 sug-
gested inverse associations with dementia but were not 
statistically significant.

Among the included 504 all-cause dementia cases, 
163 and 195 participants developed Alzheimer’s disease 
and vascular dementia, respectively. The medians of all 
inflammation-related protein levels of all-cause demen-
tia, Alzheimer’s disease, and vascular dementia cases 
were separately compared with those of controls (Supple-
mental Tables 4-6). In this univariate analysis, n = 60, n 
= 51, and n = 52 biomarker levels of the Olink inflam-
mation panel were significantly increased in all-cause 
dementia, Alzheimer’s disease, and vascular dementia 
cases, respectively (FDR < 0.05).

Tables 2, 3, and 4 show the multivariate logistic regres-
sion model results for those 58, 22, and 33 biomarkers, 
significantly associated with all-cause dementia, Alzhei-
mer’s disease, and vascular dementia incidence, respec-
tively, after FDR correction. Supplemental Tables  7–9 
show the non-significant ones. The associations’ 
strengths were comparable and ranged for the various 
biomarker-outcome associations from OR point esti-
mates of 1.12 to 1.51 per 1 SD increase.

In a sensitivity analysis, all biomarkers with strong asso-
ciations (OR ≥ 1.30) were replicated with comparable 

strength of the associations with the dementia outcomes 
with weighted Cox regression (Supplemental Tables 10–
12 for all-cause dementia, Alzheimer’s disease, and vas-
cular dementia). However, for Alzheimer’s disease and 
vascular dementia, not all biomarkers, which were sta-
tistically significant in the logistic regression model, 
reached statistical significance in the weighted Cox 
regression model because the latter had lower statistical 
power. The differences between the results with weighted 
Cox regression and logistic regression were larger for 
biomarkers with weaker associations in the logistic 
regression (OR < 1.30) but with no clear direction (data 
not shown).

The forward selection revealed that only two (CX3CL1 
and EN-RAGE), two (EN-RAGE and LAP TGF-beta-1), 
and one (VEGF-A) inflammation-related proteins were 
independently, positively associated with all-cause 
dementia, Alzheimer’s disease, and vascular dementia, 
respectively. The reason for the low number of independ-
ent inflammation biomarkers was mainly due to high 
inter-correlation. Overall, 18, 26, 16, and 28 biomarkers 
of the Olink inflammation panel had a Spearman’s r > 0.5 
with CX3CL1, EN-RAGE, LAP TGF-beta 1, and VEGF-
A, respectively (Supplemental Tables 13–17).

When the two independent biomarkers for all-cause 
dementia were added simultaneously to the logis-
tic regression models, the OR point estimates per 1 SD 
increase were attenuated but remained statistically signif-
icant (CX3CL1, OR [95% CI]: 1.29 [1.13–1.47], p=0.0002; 
EN-RAGE, OR [95% CI]: 1.31 [1.15–1.49], p<0.0001). 
This was also the case for the two independent biomark-
ers for Alzheimer’s disease (EN-RAGE, OR [95% CI]: 1.37 
[1.10–1.68], p=0.0048; LAP TGF-beta-1, OR [95% CI]: 
1.28 [1.04–1.58], p=0.0187). For vascular dementia, only 
one independent biomarker was included (VEGF-A, OR 
[95% CI]: 1.43 [1.20–1.70], p<0.0001). The dose-response 
curves of these five biomarker-dementia outcome asso-
ciations are shown in Fig. 2. The risk of vascular dementia 
seems to start to increase only at higher VEGF-A levels 
(> 60th percentile). The other four biomarker-dementia 
associations show a more or less linear risk increase over 
the whole biomarker-level distribution.

The results for these five selected biomarker-dementia 
endpoint associations are shown stratified for age, sex, 
obesity, diabetes, CVD, and APOE ε4 in Supplemental 
Tables 17-21. Generally, results were similar in subgroups 
defined by the first four factors. For APOE ε4, there was 
a consistent pattern towards stronger associations of 
inflammation biomarkers among APOE ε4-negative sub-
jects. In line with this observation, the only statistically 
significant interaction found was between APOE ε4 pol-
ymorphism and the biomarker EN-RAGE for all-cause 
dementia (p=0.024, Supplemental Table 19).
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The results of the sensitivity analyses are also shown 
in Supplemental Tables 17-21. When stratified by time 
of diagnosis, all selected biomarkers had a stronger 
association with dementia diagnoses occurring in the 

first 10 years of follow-up. However, significant asso-
ciations were also observed for diagnoses in later 
years of follow-up. Besides, excluding subjects who 
died before their 80th birthday or had a sign of acute 

Table 1  Baseline characteristics of included study participants (n=1782) and their association with all-cause dementia

Numbers printed in bold are statistically significant (p < 0.05)

Abbreviations: CI, confidence interval; BMI, body mass index; CVD, cardiovascular disease; APOE, apolipoprotein E
a “Inactive” was defined by < 1 h of vigorous or < 1 h light physical activity per week. “Medium or high” was defined by ≥ 2 h of vigorous and ≥ 2 h of light physical 
activity/week. All other amounts of physical activity were grouped into the category “Low”
b CVD was defined as coronary artery disease or a self-reported history of myocardial infarction, stroke, pulmonary embolism, or revascularization of coronary arteries
c Results of multivariate logistic regression model for all-cause dementia including all variables shown in this table (imputed dataset)
d APOE genotypes could not be ascertained for 7.5% of the participants due to problems with DNA extraction in the process of analyses

Baseline characteristics n (%) All-cause dementia 
cases
(n=504)

Controls
(n=1278)

χ2 test
p-value

Multivariate 
odds ratio (95% 
CI)c

Age (years) < 0.0001
  50–64 956 (53.65) 154 (30.56) 802 (62.75) 1.00 Ref.

  65–69 458 (25.70) 157 (31.15) 301 (23.55) 2.57 (1.96–3.37)
  70–75 368 (20.65) 193 (38.29) 175 (13.69) 5.37 (4.03–7.15)
Sex 0.2486

  Female 965 (54.15) 262 (51.98) 703 (55.01) 1.00 Ref.

  Male 817 (45.85) 242 (48.02) 575 (44.99) 1.28 (1.01–1.63)
Education (years) 0.0868

  ≤ 9 1344 (77.42) 391 (80.79) 953 (76.12) 1.00 Ref.

  10–11 216 (12.44) 48 (9.92) 168 (13.42) 0.84 (0.58–1.23)

  ≥ 12 176 (10.14) 45 (9.30) 131 (10.46) 0.93 (0.62–1.38)

Physical activitya < 0.0001
  Inactive 383 (21.54) 150 (29.82) 233 (18.27) 1.00 Ref.

  Low 814 (45.78) 220 (43.74) 594 (46.59) 0.65 (0.49–0.86)
  Medium or high 581 (32.68) 133 (26.44) 448 (35.14) 0.60 (0.44–0.83)
BMI (kg/m2) 0.5708

  < 25 478 (26.91) 144 (28.63) 334 (26.24) 1.00 Ref.

  25–<30 832 (46.85) 228 (45.33) 604 (47.45) 0.85 (0.65–1.12)

  ≥30 466 (26.24) 131 (26.04) 335 (26.32) 0.85 (0.62–1.17)

CVDb < 0.0001
  No 1373 (77.05) 350 (69.44) 1023 (80.05) 1.00 Ref.

  Yes 409 (22.95) 154 (30.56) 255 (19.95) 1.20 (0.92–1.56)

Diabetes 0.0001
  No 1469 (83.61) 386 (78.14) 1083 (85.75) 1.00 Ref.

  Yes 288 (16.39) 108 (21.86) 180 (14.25) 1.29 (0.96–1.74)

Life-time history of depression 0.0225
  No 1527 (85.69) 427 (84.72) 1100 (86.07) 1.00 Ref.

  Yes, without current pharmacotherapy 184 (10.33) 47 (9.33) 137 (10.72) 1.01 (0.69–1.49)

  Yes, with current pharmacotherapy 71 (3.98) 30 (5.95) 41 (3.21) 2.26 (1.33–3.85)
APOE genotypesd < 0.0001
  ɛ2/ɛ2 18 (1.09) 1 (0.22) 17 (1.42) 0.25 (0.04–1.47)

  ɛ2/ɛ3 238 (14.43) 57 (12.58) 181 (15.13) 1.06 (0.75–1.52)

  ɛ2/ɛ4 55 (3.34) 22 (4.86) 33 (2.76) 2.77 (1.52–5.06)
  ɛ3/ɛ3 929 (56.34) 218 (48.12) 711 (59.45) 1.00 Ref.

  ɛ3/ɛ4 379 (22.98) 135 (29.80) 244 (20.40) 1.79 (1.35–2.37)
  ɛ4/ɛ4 30 (1.82) 20 (4.42) 10 (0.84) 7.15 (3.18–16.08)
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Table 2  Associations of significantly associated Olink Biomarker levels with all-cause dementia incidence. For associations of not 
significantly associated biomarkers, see Supplemental Table 6

Olink Biomarker Value of 1 SD All-cause dementia (n=504 cases)

OR (95% CI)
per 1 SD*

p-value
per 1 SD

FDR corrected
p-value†

ADA 0.635 1.17 (1.05-1.32) 0.0055 0.0098

AXIN1 1.140 1.14 (1.02-1.28) 0.0257 0.0352

CASP-8 1.364 1.15 (1.02-1.29) 0.0194 0.0279

CCL3 1.508 1.14 (1.02-1.27) 0.0259 0.0352

CCL4 1.099 1.19 (1.06-1.33) 0.0032 0.0066

CCL11 0.697 1.29 (1.14-1.46) 0.0001 0.0003

CCL19 1.199 1.17 (1.05-1.32) 0.0063 0.0108

CCL20 1.540 1.18 (1.05-1.32) 0.0041 0.0082

CCL23 0.732 1.29 (1.14-1.46) <0.0001 0.0003

CCL25 0.763 1.17 (1.03-1.32) 0.0122 0.0187

CCL28 0.548 1.27 (1.13-1.43) <0.0001 0.0003

CD5 0.523 1.26 (1.12-1.42) 0.0002 0.0007

CD6 0.757 1.19 (1.05-1.34) 0.0048 0.0093

CD40 0.734 1.20 (1.07-1.36) 0.0022 0.0050

CD244 0.587 1.38 (1.22-1.57) <0.0001 0.0003

CDCP1 0.894 1.20 (1.06-1.36) 0.0030 0.0064

CSF-1 0.425 1.24 (1.09-1.41) 0.0013 0.0032

CST5 0.698 1.17 (1.04-1.32) 0.0112 0.0179

CX3CL1 0.669 1.41 (1.24-1.60) <0.0001 0.0003
CXCL1 0.901 1.17 (1.05-1.32) 0.0065 0.0109

CXCL5 0.957 1.33 (1.17-1.51) <0.0001 0.0003

CXCL6 0.848 1.28 (1.14-1.44) 0.0001 0.0003

CXCL9 0.953 1.19 (1.05-1.34) 0.0052 0.0096

CXCL10 0.953 1.16 (1.03-1.30) 0.0138 0.0207

CXCL11 1.051 1.18 (1.05-1.33) 0.0051 0.0096

DNER 0.488 1.36 (1.20-1.55) <0.0001 0.0003

EN-RAGE 1.307 1.41 (1.25-1.60) <0.0001 0.0003
FGF-19 1.089 1.21 (1.08-1.35) 0.0013 0.0032

Flt3L 0.629 1.21 (1.07-1.36) 0.0018 0.0042

GDNF 0.506 1.16 (1.03-1.30) 0.0149 0.0219

HGF 0.719 1.34 (1.18-1.52) <0.0001 0.0003

IL-7 0.798 1.14 (1.02-1.28) 0.0246 0.0347

IL-10 0.863 1.20 (1.07-1.35) 0.0023 0.0050

IL-18 0.763 1.33 (1.17-1.50) <0.0001 0.0003

IL-10RA 0.788 1.12 (1.01-1.25) 0.0362 0.0461

IL-10RB 0.533 1.29 (1.14-1.46) 0.0001 0.0003

IL-15RA 0.359 1.22 (1.09-1.38) 0.0009 0.0026

IL-18R1 0.602 1.27 (1.13-1.44) 0.0001 0.0003

LAP TGF-beta-1 0.574 1.37 (1.21-1.55) <0.0001 0.0003

LIF-R 0.503 1.37 (1.21-1.56) <0.0001 0.0003

MCP-2 0.769 1.18 (1.05-1.33) 0.0069 0.0113

MCP-4 0.927 1.23 (1.08-1.39) 0.0015 0.0036

MMP-10 0.761 1.22 (1.08-1.37) 0.0010 0.0028

NT-3 0.544 1.24 (1.10-1.39) 0.0003 0.0009

OPG 0.609 1.39 (1.22-1.58) <0.0001 0.0003

PD-L1 0.600 1.30 (1.15-1.47) <0.0001 0.0003
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infection (CRP level >20mg/L) did not alter the results 
to any relevant extent. When those five biomark-
ers whose best fitting function was not the linear one 
were modelled with their best fitting polynomial, they 
showed stronger associations with the respective out-
comes, but this mostly did not change the conclusions 
about their associations with the dementia outcomes 
(Supplemental Table 22). Exceptions were the associa-
tion for Beta-NGF and all-cause dementia as well as 
the associations of CCL3, CCL20, and IL20-RA with 
vascular dementia, which became statistically signifi-
cant with the best fitting function.

Discussion
To our knowledge, this is the first prospective cohort 
study to analyse a whole panel of inflammation-related, 
blood-based biomarkers for all-cause dementia, Alz-
heimer’s disease, and vascular dementia incidence. We 
identified a high number of statistically significantly asso-
ciated proteins with at least one of the outcomes, even 
after FDR correction. However, only a few biomarkers 
were strongly and independently associated with demen-
tia outcomes because of a high inter-correlation between 
the biomarkers. The identified independent biomarkers 
include CX3CL1 (associated with all-cause dementia), 
EN-RAGE (associated with all-cause dementia and Alz-
heimer’s disease), LAP TGF-beta-1 (associated with Alz-
heimer’s disease), and VEGF-A (associated with vascular 

dementia). Each of these biomarkers is only one marker 
of an inflammatory protein cluster, in which the majority 
of biomarkers are associated with dementia.

Previous studies examining a set of inflammatory 
biomarkers
A few previous studies, mostly with a cross-sectional 
study design, investigated the association between sin-
gle inflammatory biomarkers and all-cause dementia or 
Alzheimer’s disease [6–9]. To our knowledge, only two 
previous studies examined a whole panel of inflamma-
tory biomarkers for dementia as the outcome in a cross-
sectional design. In the BioFINDER study, Whelan and 
colleagues [32] measured 270 proteins with the Olink 
immunoassay in cerebrospinal fluid (CSF) and plasma of 
161 Alzheimer’s disease patients, 75 amyloid beta positive 
(Aβ+) patients with mild cognitive impairment (MCI+), 
and 415 amyloid beta negative (Aβ−) cognitively normal 
individuals (MCI−). Interestingly, approximately half of 
the CSF proteins correlated at least modestly with their 
analogues in plasma, indicating that findings in plasma 
samples partially reflected the situation in CSF. Compared 
to Aβ−/MCI− individuals, CSF levels of 32 proteins and 
plasma levels of 33 proteins were statistically significantly 
associated with Alzheimer’s disease (false discovery cor-
rected p-value < 0.05). The comparison of Aβ+/MCI+ 
patients with Aβ−/MCI− individuals was replicated in 
an independent cohort. Thereby, 10 CSF and six plasma 

Table 2  (continued)

Olink Biomarker Value of 1 SD All-cause dementia (n=504 cases)

OR (95% CI)
per 1 SD*

p-value
per 1 SD

FDR corrected
p-value†

SCF 0.624 1.15 (1.01-1.29) 0.0281 0.0375

SIRT2 1.157 1.13 (1.01-1.27) 0.0371 0.0461

ST1A1 1.304 1.13 (1.01-1.27) 0.0365 0.0461

STAMBP 0.833 1.18 (1.05-1.32) 0.0056 0.0098

TGF-alpha 0.829 1.21 (1.08-1.37) 0.0011 0.0029

TNFRSF9 0.636 1.23 (1.09-1.39) 0.0006 0.0018

TNFSF14 1.064 1.16 (1.03-1.30) 0.0119 0.0186

TRAIL 0.513 1.31 (1.16-1.49) <0.0001 0.0003

TRANCE 0.753 1.14 (1.01-1.28) 0.0344 0.0450

TWEAK 0.647 1.35 (1.19-1.53) <0.0001 0.0003

VEGF-A 0.794 1.40 (1.24-1.59) <0.0001 0.0003

uPA 0.604 1.36 (1.20-1.54) <0.0001 0.0003

Abbreviations: SD standard deviation, CI confidence interval, FDR false discovery rate, For biomarker abbreviations, see Supplemental Table 1

All associations between Olink Biomarkers and the dementia outcome in this table are statistically significant after correction for multiple testing (FDR corrected p < 
0.05). The lines for the most important biomarkers, CX3CL1 and EN-RAGE, which were also independently from other Olink biomarkers associated with the dementia 
outcome, are printed in bold. However, please note that this table shows their association with the outcome when they are put singularly in the multivariate logistic 
regression model
*  Multivariate logistic regression model adjusted for age (continuously), sex, education, physical activity, BMI (categorical), CVD, diabetes, depression, APOE genotype
†  P-values corrected for multiple testing by the Benjamini and Hochberg method
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markers could be replicated. However, a replication 
analysis in an independent sample was not performed 
for Alzheimer’s disease. Six of the identified 33 proteins 
for Alzheimer’s disease in plasma samples corresponded 
with our findings in serum samples and can now be con-
sidered replicated by our study (Casp-8, CXCL5, CXCL6, 
ST1A1, TRAIL, uPA). Gaetani and colleagues measured 
biomarker levels of the Olink inflammation panel in CSF 
samples of 34 AD-MCI cases and 25 controls having other 
neurological diseases (OND) [33]. In univariate analyses, 
11 of 46 analysed biomarkers were found to have the high-
est discriminatory ability between AD-MCI and OND. 
Four of those biomarkers (SIRT2, HGF, MMP-10, CXCL5) 
were also selected as discriminatory factors during penal-
ized logistic regression (LASSO regression).

However, the studies of Whelan and Gaetani were 
cross-sectional, and evidence from longitudinal studies 

on this field is still sparse [10]. The recently published 
longitudinal study of Walker et  al. [34] reported statis-
tically significant associations between inflammatory 
biomarkers measured in midlife (C-reactive protein and 
a composite score of fibrinogen, white blood cell count, 
von Willebrand factor, and factor VIII) and cognitive 
decline over 20 years in a population-based cohort study 
with 12,336 participants. Our longitudinal results with a 
broad panel of inflammatory proteins and the endpoints 
all-cause dementia, Alzheimer’s disease, and vascular 
dementia complement and expand these findings.

Independently associated biomarkers
CX3CL1
The biomarker CX3CL1, which is also commonly known 
as Fractalkine in humans, was independently associated 

Table 3  Associations of significantly associated Olink Biomarker levels with Alzheimer’s disease incidence. For associations of not 
significantly associated biomarkers, see Supplemental Table 7

Abbreviations: SD standard deviation, CI confidence interval, FDR false discovery rate; For biomarker abbreviations, see Supplemental Table 1

All associations between Olink Biomarkers and the dementia outcome in this table are statistically significant after correction for multiple testing (FDR corrected p 
< 0.05). The lines for the most important biomarkers, EN-RAGE and LAP TGF-beta-1, which were also independently from other Olink biomarkers associated with the 
dementia outcome, are printed in bold. However, please note that this table shows their association with the outcome when they are put singularly in the multivariate 
logistic regression model
*  Multivariate logistic regression model adjusted for age (continuously), sex, education, physical activity, BMI (categorical), CVD, diabetes, depression, APOE genotype
†  P-values corrected for multiple testing by the Benjamini and Hochberg method

Olink Biomarker Value of 1 SD Alzheimer’s disease (n=163 cases)

OR (95% CI)
per 1 SD*

p-value
per 1 SD

FDR corrected
p-value†

CASP-8 1.364 1.31 (1.10-1.57) 0.0025 0.0156

CCL23 0.732 1.43 (1.17-1.75) 0.0004 0.0086

CCL28 0.548 1.36 (1.14-1.61) 0.0005 0.0086

CD6 0.757 1.30 (1.08-1.58) 0.0067 0.0254

CD244 0.587 1.39 (1.14-1.70) 0.0010 0.0120

CX3CL1 0.669 1.35 (1.10-1.65) 0.0034 0.0175

CXCL5 0.957 1.37 (1.12-1.68) 0.0023 0.0156

CXCL6 0.848 1.34 (1.11-1.62) 0.0026 0.0156

DNER 0.488 1.37 (1.12-1.68) 0.0025 0.0156

EN-RAGE 1.307 1.51 (1.25-1.83) <0.0001 0.0036
HGF 0.719 1.36 (1.12-1.66) 0.0017 0.0153

IL-10RB 0.533 1.33 (1.08-1.63) 0.0066 0.0254

LAP TGF-beta-1 0.574 1.46 (1.21-1.76) 0.0001 0.0036
LIF-R 0.503 1.31 (1.08-1.60) 0.0062 0.0254

PD-L1 0.600 1.31 (1.09-1.57) 0.0034 0.0175

ST1A1 1.304 1.30 (1.08-1.57) 0.0062 0.0254

STAMBP 0.833 1.26 (1.06-1.51) 0.0108 0.0370

TGF-alpha 0.829 1.26 (1.05-1.52) 0.0140 0.0458

TRAIL 0.513 1.30 (1.06-1.59) 0.0104 0.0370

TWEAK 0.647 1.38 (1.13-1.69) 0.0016 0.0153

VEGF-A 0.794 1.32 (1.09-1.60) 0.0042 0.0202

uPA 0.604 1.40 (1.16-1.71) 0.0006 0.0086
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with all-cause dementia and among the list of statistically 
significant biomarkers for Alzheimer’s disease and vascu-
lar dementia in our study. This biomarker is a chemokine 
binding to its receptor C-X3-C motif chemokine receptor 
1 (CX3CR1) in a one-to-one relationship. While CX3CL1 
is usually expressed in neurons, CX3CR1 is expressed on 
microglia. In the case of neuroinflammation, CX3CL1 

regulates microglial activation by reducing the release 
of pro-inflammatory products [35]. Whether the effect 
of CX3CL1 is neuroprotective or neurotoxic in diseases 
like dementia is still controversially discussed in the lit-
erature. The current opinion is that this depends on the 
disease state, the affected CNS area, and the local con-
centration of the CX3CL1/CX3CR1 complex [35, 36].

Table 4  Associations of significantly associated Olink Biomarker levels with vascular dementia incidence. For associations of not 
significantly associated biomarkers, see Supplemental Table 8

Abbreviations: SD standard deviation, CI confidence interval, FDR false discovery rate; For biomarker abbreviations, see Supplemental Table 1

All associations between Olink Biomarkers and the dementia outcome in this table are statistically significant after correction for multiple testing (FDR corrected p < 
0.05). The line for the most important biomarker, VEGF-A, which is also independently from other Olink biomarkers associated with the dementia outcome, is printed 
in bold. However, please note that this table shows its association with the outcome when the biomarker is put singularly in the multivariate logistic regression model
*  Multivariate logistic regression model adjusted for age (continuously), sex, education, physical activity, BMI (categorical), CVD, diabetes, depression, APOE genotype
†  P-values corrected for multiple testing by the Benjamini and Hochberg method

Olink Biomarker Value of 1 SD Vascular dementia (n=195 cases)

OR (95% CI) per 1 SD* p-value per 1 SD FDR corrected p-value†

CCL11 0.697 1.30 (1.09-1.56) 0.0042 0.0137

CCL23 0.732 1.24 (1.04-1.48) 0.0148 0.0347

CD5 0.523 1.32 (1.11-1.56) 0.0016 0.0091

CD244 0.587 1.39 (1.16-1.66) 0.0004 0.0072

CDCP1 0.894 1.25 (1.05-1.48) 0.0122 0.0313

CX3CL1 0.669 1.35 (1.13-1.61) 0.0011 0.0072

CXCL1 0.901 1.22 (1.04-1.43) 0.0151 0.0347

CXCL5 0.957 1.39 (1.16-1.67) 0.0004 0.0072

CXCL6 0.848 1.32 (1.11-1.57) 0.0018 0.0091

CXCL9 0.953 1.25 (1.06-1.47) 0.0089 0.0256

CXCL10 0.953 1.28 (1.09-1.50) 0.0029 0.0116

DNER 0.488 1.37 (1.13-1.65) 0.0010 0.0072

EN-RAGE 1.307 1.41 (1.18-1.68) 0.0001 0.0036

Flt3L 0.629 1.22 (1.03-1.45) 0.0226 0.0493

HGF 0.719 1.32 (1.11-1.58) 0.0019 0.0091

IL-7 0.798 1.24 (1.05-1.47) 0.0107 0.0296

IL-10 0.863 1.27 (1.09-1.48) 0.0017 0.0091

IL-18 0.763 1.36 (1.14-1.63) 0.0006 0.0072

IL-18R1 0.602 1.30 (1.09-1.55) 0.0034 0.0122

LAP TGF-beta-1 0.574 1.33 (1.12-1.57) 0.0011 0.0072

LIF-R 0.503 1.36 (1.14-1.63) 0.0007 0.0072

MCP-2 0.769 1.24 (1.04-1.47) 0.0154 0.0347

MCP-4 0.927 1.26 (1.05-1.51) 0.0114 0.0304

MMP-10 0.761 1.30 (1.10-1.54) 0.0022 0.0099

NT-3 0.544 1.26 (1.08-1.46) 0.0025 0.0106

OPG 0.609 1.38 (1.15-1.67) 0.0007 0.0072

PD-L1 0.600 1.26 (1.07-1.49) 0.0056 0.0175

TGF-alpha 0.829 1.23 (1.05-1.46) 0.0126 0.0313

TNFRSF9 0.636 1.26 (1.06-1.49) 0.0073 0.0219

TRAIL 0.513 1.32 (1.09-1.59) 0.0037 0.0127

TWEAK 0.647 1.36 (1.13-1.63) 0.0010 0.0072

VEGF-A 0.794 1.43 (1.20-1.70) 0.0001 0.0036
uPA 0.604 1.30 (1.09-1.55) 0.0034 0.0122
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Nevertheless, due to the regulatory function in inflam-
mation, this biomarker is a promising therapeutic target. 
A recent Polish study reported on the predictive ability 

of CX3CL1 as a biomarker in the early development of 
mild cognitive impairment (MCI) and Alzheimer’s dis-
ease [37]. In this study, significantly higher CSF and 

Fig. 2  Association of all-cause dementia with A CX3CL1 and B EN-RAGE, Alzheimer’s disease with C EN-RAGE and D LAP TGF-beta-1, and 
vascular dementia with E VEGFA in a spline regression model adjusted for age (continuously), sex, education, physical activity, BMI (categorical), 
cardiovascular disease, diabetes, depression, and APOE genotype. Solid lines: estimation; dashed curved lines: 95% confidence interval limits; 
dashed horizontal line: reference line (hazard ratio = 1); dots: knots (20th, 40th, 60th, and 80th percentile). Abbreviations: NPX, Normalized Protein 
eXpression



Page 13 of 17Trares et al. Alzheimer’s Research & Therapy          (2022) 14:128 	

blood levels of CX3CL1 were found in MCI and Alzhei-
mer’s disease patients compared to cognitively healthy 
controls. We now confirm these results with longitudinal 
data, including 17 years of follow-up.

EN‑RAGE
EN-RAGE was independently associated with all-cause 
dementia and Alzheimer’s disease. In addition, EN-
RAGE was significantly associated with vascular demen-
tia. EN-RAGE is also often referenced as S100-A12. The 
S100-protein family has already been shown multiple 
times to be related to Alzheimer’s disease [38]. However, 
the S100-A12 protein (EN-RAGE) is the least studied 
S100 protein in the context of Alzheimer’s disease and 
dementia [38]. In the only available study, Shepherd and 
colleagues [39] revealed associations of EN-RAGE with 
senile plaques, reactive glia, and neurons in brain sam-
ples of sporadic and familial (PS-1) Alzheimer’s disease 
cases in a cross-sectional study. Our study is the first lon-
gitudinal cohort study reporting on this association.

EN-RAGE is a calcium-, zinc-, and copper-binding pro-
tein. In previous studies, it was shown to be associated 
with diseases like heart failure [40] and coronary artery 
disease (CAD) in diabetes patients [41]. Recently, Feng 
and colleagues [42] reported significantly elevated EN-
RAGE concentrations in patients with traumatic brain 
injury compared to controls. In this study, EN-RAGE 
showed great potential as a marker for ongoing inflam-
matory processes in the brain. RAGE, the receptor EN-
RAGE binds to, is additionally known to be involved in 
inflammatory processes related to ageing and neurode-
generation [43, 44].

LAP‑TGF‑beta‑1
LAP TGF-beta-1 is an anti-inflammatory cytokine that 
was independently associated with Alzheimer’s disease in 
our study (OR [95% CI]: 1.46 [1.21–1.76]). Additionally, it 
was significantly associated with all-cause dementia and 
vascular dementia. This biomarker consists of two com-
ponents, latency-associated peptide (LAP) and trans-
forming growth factor beta-1 (TGF-beta-1), which are 
non-covalently linked to each other in the intracellular 
environment. Thereby, LAP keeps TGF-beta-1 biologi-
cally inactive [45]. When activated, TGF-beta-1 binds to 
its receptor transforming growth factor-ß receptor type 
I (TßR-1), protecting neurons against Aß deposits and 
apoptosis [46, 47]. However, controversial findings have 
been reported on concentrations of this biomarker in 
Alzheimer’s disease [48]. The current theory is that the 
level of TGF-beta-1 in the body might depend on disease 
progression [48]. According to this theory, the reported 
elevated levels of TGF-beta-1 in our study might show an 

early response to commencing neurodegenerative pro-
cesses in Alzheimer’s disease. A recent study additionally 
reported on the specificity of TGF-beta-1 for Alzheimer’s 
disease and vascular dementia compared to Parkinson’s 
disease dementia (PDD) [49].

VEGF‑A
In our cohort, VEGF-A was independently associated 
with vascular dementia (OR [95% CI]: 1.43 [1.20–
1.70]) and also significantly associated with all-cause 
dementia and Alzheimer’s disease. VEGF-A belongs 
to the vascular endothelial growth factor (VEGF) fam-
ily and induces endothelial cell growth, cell migra-
tion, and permeabilization of blood vessels. Like other 
members of this family, VEGF-A induces the recep-
tors VEGF receptor 1 and 2 (VEGFR-1 and VEGFR-2) 
[50]. In vascular dementia, VEGF-A is reported to be 
involved in microvessel loss and blood-brain barrier 
breakdown [51]. It was shown in the same study in 
mice that VEGF-A is involved in the hypoxia-inducible 
factor 1α-Lipocalin2-VEGFA (HIF-1α-LCN2-VEGFA) 
axis. Other groups have also shown an involvement of 
VEGF-A in increasing blood-brain barrier permeability 
[52, 53]. Hence, blocking VEGF-A signalling might be a 
promising therapeutic target [54].

Inflammatory proteins prominently discussed in dementia 
research and biomarker clusters
Interestingly, the frequently discussed inflammatory 
biomarker IL-6 was not significantly associated with any 
dementia outcome in our study but highly correlated 
with EN-RAGE and VEGF-A [6–8]. However, apart 
from the inflammatory biomarkers discussed above, 
many others were statistically significantly associated 
with dementia outcomes as well but highly correlated 
with the highlighted proteins. IL-10, for example, is 
currently discussed by others as a risk factor for Alz-
heimer’s disease [9]. In our study, IL-10 was also statis-
tically significantly associated with all-cause dementia 
and vascular dementia even after correction for multi-
ple testing. In addition, a subunit of the IL-10 receptor 
(IL-10RB) was significantly associated with all-cause 
dementia and Alzheimer’s disease. Both IL-10 and IL-
10RB were highly correlated with VEGF-A and IL-
10RB, additionally with LAP TGF-beta-1 and CX3CL1. 
Due to the high correlation of these biomarkers, it is not 
possible to decide with our study design which of the 
biomarkers are the most clinically relevant ones and are 
causally associated with the outcome. Basic research is 
needed to elucidate this open question and the role of 
the identified biomarkers in the aetiology of dementia. 
The underlying mechanisms are likely to be complex 
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because it is known that the multifactorial process of 
inflammation comes along with increases in the levels 
of many inflammatory proteins. Therefore, it might be 
necessary to look into inflammatory protein networks/
clusters rather than focusing on single proteins in future 
studies. For example, for Alzheimer’s disease, we identi-
fied two such protein clusters. The EN-RAGE and the 
LAP TGF-beta-1 cluster consist of respectively nine 
inflammatory proteins significantly associated with Alz-
heimer’s disease (Supplemental Tables  14 and 15). The 
overlap of the two clusters is only three proteins (HGF, 
CD244, and uPA).

Role of APOE ε4 polymorphism
APOE ε4-negative subjects had stronger associations 
between inflammation biomarkers and dementia out-
comes than APOE ε4-positive individuals. Interestingly, 
the interaction of APOE ε4 and EN-RAGE for all-cause 
dementia was statistically significant. One explanation 
could be that the absolute Alzheimer’s disease risk of 
APOE ε4 carriers is so pronounced that the additional 
presence or absence of a weaker risk factor, such as 
inflammation, may not have much impact. In contrast, 
the potential impact of inflammation on the total demen-
tia risk of APOE ε4 non-carriers is relatively high com-
pared to other dementia risk factors.

Clinical relevance of the findings
With a 41% increased dementia risk by 1 SD increase 
of either CX3CL1 or EN-RAGE levels, the associations 
of these two inflammatory biomarkers with dementia 
were stronger than the associations of male sex, educa-
tion, CVD, and diabetes with all-cause dementia in our 
cohort. The strengths of the associations were compa-
rable to the one of physical inactivity. Only age, APOE 
ε4 genotype, and a depression treated with anti-depres-
sants (likely as an indicator of a major depression) 
were stronger risk factors for all-cause dementia in our 
study. This highlights the relevance of chronic inflam-
mation as a strong, independent factor associated with 
dementia.

The identified inflammatory biomarkers should be 
further studied in basic science to further elucidate 
mechanisms and how they contribute to dementia patho-
genesis. After this has been done, they may be used as 
drug targets, early diagnostic markers, and components 
of dementia prediction scores. Our results also add 
to current discussions about the potential of the anti-
inflammatory drug low-dose aspirin in dementia pre-
vention. A recent analysis of two cohort studies showed 
that the use of low-dose aspirin for 10 years and more is 

associated with a lower risk for all-cause dementia, Alz-
heimer’s disease, and vascular dementia in patients with 
pre-existing coronary heart disease [55].

Strengths and limitations
The strengths of this study comprise a large sample size, 
the representative sample of an older adult population, 
a long follow-up period (17 years), and the prospective 
cohort design limiting the risk of reverse causality. More-
over, the diversity of inflammatory biomarkers (72 bio-
markers analysed) and the high sensitivity and specificity 
of Olink’s proximity extension assays [19, 20] used for the 
biomarker measurements can be assigned to the study’s 
strengths.

The observational study design is one of the limita-
tions of this study. Although analyses were controlled for 
confounders, residual confounding cannot be entirely 
excluded. Apart from this, the latency between the onset 
and the clinical diagnosis of dementia can be longer than 
the follow-up time of 17 years [56]. However, results were 
still statistically significant after excluding events in the 
first 10 years of follow-up. Thus, we can assume that 
there is no strong indication of reverse causality in our 
study results.

In the ESTHER study, dementia information is col-
lected via GPs. After a referral to various neurologists, 
psychiatrists, memory clinics, or other specialized pro-
viders in the study region, diagnoses were obtained 
from the medical records of specialists. Although this 
process reflects the community-based clinical setting 
in Germany and enhances the generalizability of the 
study, it implicates a possible occurrence of underdi-
agnosed dementia. In addition, dementia diagnostics 
were performed heterogeneously in routine practice 
(not following any study protocol) and dementia sub-
types were often not differentially assessed. This may 
be one reason why the ratio of Alzheimer’s disease to 
vascular dementia diagnoses is not as high in our study 
as in other studies with homogenous subtype diagnos-
tics based on biomarkers of Alzheimer’s disease pathol-
ogy among all study participants.

Due to cost issues, biomarker measurements were 
performed in a case-cohort design and not in the total 
cohort and only in baseline samples and not additionally 
in follow-up samples. The latter point might have led to 
an underestimation of the results because inflammation 
status could change during the follow-up. Furthermore, 
cost issues did not allow replication of the results in 
another independent study yet and this should be aimed 
for by future research. Such an external validation is cru-
cial in studies with omics data to increase the generaliz-
ability of the results.
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The biomarkers TNF and IFN-gamma had to be 
excluded since the proportion of values below LOD was 
>25% in the total study sample. After Olink improved 
the inflammation panel in 2019, better results could be 
achieved for these biomarkers. However, the improved 
panel was only used in a fraction of our study sample (n 
= 388). When analysing the data only in this sub-sample, 
TNF and IFN-gamma showed weak and not statistically 
significant associations with all three dementia outcomes 
(Supplemental Table 23).

Lastly, it has to be stated that our study results refer 
to an almost exclusively Caucasian population with 
blood samples taken between the ages of 50 and 75 
years and may not be generalized to other types of 
populations.

Conclusion
This study showed that 58 out of 72 tested proteins of 
the inflammatory proteome in blood were significantly 
associated with all-cause dementia incidence even after 
correction for multiple testing. Several inflammatory 
proteins were further associated with Alzheimer’s dis-
ease and vascular dementia. The biomarkers CX3CL1, 
EN-RAGE, LAP TGF-beta-1, and VEGF-A had strong 
and independent associations with dementia outcomes 
and may have great potential as drug targets, early diag-
nostic markers, and components of dementia prediction 
scores. However, due to the observed high inter-correla-
tion of inflammatory biomarkers, it should be noted that 
not only single biomarkers but also clusters of increased 
inflammatory protein levels may play a role in dementia 
pathogenesis or risk prediction. The complex interre-
lationships in these clusters are not yet understood and 
require further research.
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