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Abstract 

Background:  The clinical features of Alzheimer’s disease (AD) vary substantially depending on whether the onset of 
cognitive deficits is early or late. The amount and distribution patterns of tau pathology are thought to play a key role 
in the clinical characteristics of AD, which spreads throughout the large-scale brain network. Here, we describe the 
differences between tau-spreading processes in early- and late-onset symptomatic individuals on the AD spectrum.

Methods:  We divided 74 cognitively unimpaired (CU) and 68 cognitively impaired (CI) patients receiving 18F-flo‑
rtaucipir positron emission tomography scans into two groups by age and age at onset. Members of each group 
were arranged in a pseudo-longitudinal order based on baseline tau pathology severity, and potential interregional 
tau-spreading pathways were defined following the order using longitudinal tau uptake. We detected a multilayer 
community structure through consecutive tau-spreading networks to identify spatio-temporal changes in the propa‑
gation hubs.

Results:  In each group, ordered tau-spreading networks revealed the stage-dependent dynamics of tau propagation, 
supporting distinct tau accumulation patterns. In the young CU/early-onset CI group, tau appears to spread through 
a combination of three independent communities with partially overlapped territories, whose specific driving regions 
were the basal temporal regions, left medial and lateral temporal regions, and left parietal regions. For the old CU/late-
onset CI group, however, continuation of major communities occurs in line with the appearance of hub regions in the 
order of bilateral entorhinal cortices, parahippocampal and fusiform gyri, and lateral temporal regions.

Conclusion:  Longitudinal tau propagation depicts distinct spreading pathways of the early- and late-onset AD spec‑
trum characterized by the specific location and appearance period of several hub regions that dominantly provide 
tau.
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Introduction
Although an age-related increase in the incidence and 
prevalence of clinically diagnosed Alzheimer’s disease 
(AD) has been noted [1–3], up to 5% of AD patients 
develop symptoms before the age of 65 years. Such 
patients are considered to have a distinct AD subtype 
called early-onset AD (EOAD) [4]. Compared to the late-
onset AD (LOAD), which predominantly presents with 
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memory dysfunction, EOAD patients are more likely to 
show greater impairment in non-memory functions such 
as language, visuospatial, executive, and attention func-
tions [5–10], all of which deteriorate more rapidly [7].

Although the underlying biological mechanisms for 
these distinct clinical characteristics have yet to be con-
firmed, recent studies have proposed several models 
explaining such mechanisms. Patients with EOAD show 
more prominent hypometabolism in the diffuse lateral 
temporo-parietal, occipital, precuneus, and posterior 
cingulate cortices [11, 12] and greater cortical atrophy, 
particularly in the parieto-occipital cortex [5, 13], while 
LOAD patients tend to suffer from dominant hypo-
metabolism and cortical atrophy in the medial tempo-
ral regions. Moreover, compared with members of the 
LOAD group, EOAD patients in a postmortem study 
exhibited greater neurofibrillary tangle (NFT) burden in 
the middle frontal and inferior parietal cortices [14] and 
greater tau positron emission tomography (PET) tracer 
uptake in the frontal and parieto-occipital cortex, while 
showing no clear difference in the regions corresponding 
to Braak’s NFT stage I–IV [9, 15, 16]. In a longitudinal tau 
PET study, younger patients exhibited greater increases 
in tau tracer uptake in the temporal meta-region of inter-
est [17]. Tau burden and its topographic distribution pat-
tern are reportedly closely related to clinical severity and 
phenotype [18, 19]. Given that cortical hypermetabolism 
and atrophy are also locally associated with tau distribu-
tion and mediate the effects of tau pathology on cognitive 
deficits [18–25], a distinct pattern of cortical tau pathol-
ogy can be expected to be a key factor in the clinical and 
neuroimaging characteristics of EOAD.

Pathological tau protein travels across synapses [26, 
27], and tau distribution patterns spatially overlap with 
large-scale brain network [28, 29]. Functionally inter-
connected brain regions exhibited similar levels of tau 
burden in cross-sectional tau PET studies and were cor-
related with an increase in tau accumulation in a longi-
tudinal study [30–32], and even the future accumulation 
of tau has been predicted by functional connectivity [32]. 
These observations suggest that pathological tau pro-
teins may spread throughout large-scale brain networks. 
However, little is known about the intrinsic networks 
through which tau spreading occurs during EOAD and 
LOAD progression. Moreover, a tau distribution pattern 
predicted by a spreading model based on a predefined 
brain network exhibits discrepancies when compared 
with a real network [33, 34]. These discrepancies can 
be partially explained by the effects of regional amyloid 
distribution [34], microglial activation [35], or regional 
vulnerability in genetic factors [33], but intrinsic tau-
spreading pathways that reflect those components have 
yet to be identified.

We hypothesized that distinct tau-propagation net-
works exist between the EOAD and LOAD spectra, and 
attempted to identify the data-driven tau-spreading 
pathways using longitudinal tau PET data. The identified 
tau-spreading network encodes potential interregional 
influences between entire brain regions, and succes-
sive changes across the estimated disease progression 
may reveal the spatiotemporal dynamics involved in tau 
propagation. We therefore aimed to investigate where 
and when does tau spread through gateways that drive 
tau propagation, which might be distinct in EOAD and 
LOAD progression. A multilayer community-detection 
method was employed to examine such gateways among 
the spreading networks.

Materials and methods
Participants
We enrolled 142 participants who completed baseline 
and follow-up tau PET examinations at Gangnam Sev-
erance Hospital from January 2015 to March 2019. All 
participants underwent two PET (18F-flortaucipir for tau 
and 18F-florbetaben for amyloid-beta (Aβ)) and magnetic 
resonance imaging (MRI) scans, and neuropsychologi-
cal tests [36] at both baseline and follow-up. Based on 
baseline Aβ-positivity as determined by the agreement of 
two nuclear medicine specialists, validated visual assess-
ments [37, 38], and neuropsychological tests, baseline 
Aβ-positive cognitively impaired (CI) individuals with 
amnestic presentation were identified using diagnostic 
criteria supplied by the National Institute on Aging and 
Alzheimer’s Association (“mild cognitive impairment due 
to AD with intermediate or high likelihood” for prodro-
mal AD and “probable AD dementia with evidence of the 
AD pathophysiological process” for AD dementia) [39, 
40]. We referred to symptomatic patients included in the 
AD spectrum as CI individuals. Cognitively unimpaired 
(CU) individuals were healthy volunteers who achieved 
normal cognition on neuropsychological tests and for 
whom no abnormality was evident in MRI at baseline. 
According to the age at onset, the CI group was divided 
into early-onset (EOCI: onset age < 65 years) and late-
onset (LOCI: onset age ≥ 65 years) groups. Onset age 
was determined through an interview with family mem-
bers or caregivers of each CI individual. Similarly, the CU 
group was also divided into young (YCU: baseline age < 
65) and old (OCU: baseline age ≥ 65 years) groups. Ulti-
mately, 30 YCU, 44 OCU, 15 EOCI, and 53 LOCI indi-
viduals were enrolled in this study.

Acquisition of PET and MRI scans
Images from PET scans were acquired in a Biograph 
mCT PET/CT scanner (Siemens Medical Solutions, 
Malvern, PA, USA) for 20 min at 80 min after injection 
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of 18F-flortaucipir and 90 min after injection of 18F-flor-
betaben. After correcting for attenuation with com-
puted tomography images, three-dimensional (3D) PET 
images were reconstructed using the ordered-subsets 
expectation maximization algorithm in a 256 × 256 
× 223 matrix with 1.591 × 1.591 × 1 mm voxel size. A 
3.0 Tesla MRI scanner (Discovery MR750; GE Medi-
cal Systems, Milwaukee, WI, USA) was used to produce 
axial T1-weighted brain scans with 3D-spoiled gradient-
recalled sequences (512 × 512 matrix with voxel spacing 
of 0.43 × 0.43 × 1 mm).

Image processing steps
Using FreeSurfer 5.3 software (Massachusetts General 
Hospital, Harvard Medical School; http://​surfer.​nmr.​
mgh.​harva​rd.​edu), participant-specific volumes-of-inter-
est (VOIs) were created with T1-weighted MRI scans as 
described in our previous study [41]. In brief, MRI scans 
were resliced to FreeSurfer space (a 256 × 256 × 256 
matrix with 1 mm isovoxels) and then corrected for inho-
mogeneity. After segmentation of gray and white matter, 
3D surfaces were created with trigons. Finally, partici-
pant-specific composite VOIs were created with the cor-
tical areas parcellated using curvature information under 
the guidance of the Desikan–Killiany atlas [42], and sub-
cortical regions were segmented using probabilistic regis-
tration [43].

Statistical parametric mapping 12 (Wellcome Trust 
Centre for Neuroimaging, London, UK) and in-house 
software implemented in MATLAB 2017b (MathWorks, 
Natick, MA, USA) were used for integrative processing 
of 18F-flortaucipir PET images. These images were first 
co-registered to MRI counterparts in FreeSurfer space, 
and then corrected for partial volume effect (PVE) using 
the region-based voxel-wise method [44]. Finally, we 
created PVE-corrected standardized uptake value ratio 
(SUVR) images with the cerebellar crus median obtained 
from spatially normalized PET images as a reference, and 
regional SUVR values for the regions defined by the Desi-
kan–Killiany cortical atlas [42].

Regional 18F-flortaucipir SUVR values were then con-
verted to W-scores representing regional tau burdens 
and compared with controls after adjusting for covari-
ates [45–48]. Multiple linear regression models were 
created for each region with the regional SUVR val-
ues as the outcome and baseline age, sex, and years of 
education as predictor variables in the Aβ-negative CU 
group. Residuals were then calculated for each partici-
pant accompanied by the individual outcome and pre-
dictor variables and divided by the standard deviation 
(SD) of the residuals obtained from the Aβ-negative CU 
individuals. The same regression models were applied 

to calculate W-scores for the follow-up data, and 
annual changes in W-score (ΔW/year) were calculated.

Construction of tau‑spreading networks using 
pseudo‑longitudinal order
An illustrative figure of the proposed methods is rep-
resented in Fig.  1. All participants were sorted in an 
ascending order by the number of regions with a base-
line tau-PET W-score greater than 2.5 [41, 49], creat-
ing a pseudo-longitudinal order of disease progression. 
Participants with the same number of supra-threshold 
regions were sorted additionally by the median value 
of W-scores across all regions. To investigate stage-
dependent tau propagation networks, we selected a 
subgroup of subjects using the sliding window method, 
in which we moved a window for a fixed number of 
ordered subjects. We applied the sliding window to two 
age groups: YCU/EOCI (n = 45) and OCU/LOCI (n 
= 97). The sliding window was designed to include 40 
subjects and moved by one subject from the left (ear-
lier in the pseudo-longitudinal order) to the right (later 
in the pseudo-longitudinal order). In the case of YCU/
EOCI, the window was designed to include 20 subjects 
due to the smaller number of subjects in the group.

Directional graph theory regression (DTGR) was 
applied to all subjects in the pseudo-longitudinal order. 
A longitudinal model of DTGR was used to infer inher-
ent tau spreading networks between two regions tak-
ing into account network temporal directionality [50]. 
For each sliding window, we calculated Spearman cor-
relation coefficients between the baseline W-scores in 
a seed region (i) and the annual W-score change rates 
in another region (j). Because those two regional val-
ues were ordered temporally with each other, the cor-
relation coefficient worked as a weight of an edge 
from region i to j. We called this directed network a 
tau-spreading network for each sliding window. For 
the tau-spreading networks of all sliding windows, we 
selected the edges with a P-value < 0.005, but a range 
of different P-value thresholds were also tested to 
evaluate reliability. We considered only positive coeffi-
cients implying that current accumulation of tau in one 
region may affect future accumulation in the connected 
region, which is referred to as tau spreading. Further-
more, the connecting edges were excluded if the target 
region has a negative mean annual change indicating 
a decrease in tau over time. The sliding windows were 
divided into five segments, and mean tau-spreading 
networks for each segment were constructed using only 
consistent edges that more than half the windows have 
within the segment to prevent analytical disturbances 
from unstable edges along disease progression.

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
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Multilayer community detection
Using the resulting tau-spreading networks, the brain 
regions were grouped into sets such that regions were 
more densely connected to each other than by chance 
(Fig.  1b). A modular structure (community) was identi-
fied based on modularity maximization [51]. To consider 
temporal dependency across the sliding windows, we 
defined a multilayer modularity for the directed graph 
[52, 53]:

where μ is the total edge weight in the network, Aijs is the 
adjacency between node i and j in layer s, γs is the weight 
of intralayer connections (structural resolution param-
eter), Pijs is the component of the corresponding null 
model matrix, δij is the Kronecker delta symbol, Cjsr is the 
connection strength between node j in slice s and slice r 
(interlayer coupling parameter), and gis is the community 
assignment of node i in layer s. We set parameters γ and 
ω to 1, which is a frequently used default value [54–56].

A Louvain-like greedy community-detection algorithm 
[52, 57, 58] was used to determine the optimal modu-
larity function, Q. This optimizing method was iterated 
until the resulting community structure did not change 

Q =
1

2µ ijsr
Aijs − γ sPijs δsr + δijCjsr δ gis, gjr ,

from one iteration to the next, and a post-processor func-
tion was applied to ensure convergence [59]. Due to the 
heuristic nature of the algorithm, we repeated the opti-
mization process 1000 times for each group. We then 
constructed a representative community structure based 
on a comparison with null models to deal with the degen-
eracy [60]. We first constructed a regional association 
matrix (a frequency matrix in which any two regions 
are assigned to the same community across the repeti-
tions) from original assignments and randomly permuted 
assignments. We obtained a thresholded regional asso-
ciation matrix by subtracting the maximum value of the 
random association matrix from the original association 
matrix. A representative assignment was determined by 
conducting a Louvain-like algorithm with the thresh-
olded association matrix.

Each community was then characterized by its hub 
regions, which were expected to lead overall spreading 
of tau pathology within the community. We performed a 
seed-based analysis for a community of each tau-spread-
ing network. Assuming that a higher number of paths 
departing from a seed region indicates a greater ability to 
provide pathology to the connected regions, the regional 
out-degree was calculated as the number of edges that 
originated from the seed region. We considered a region 

Fig. 1  Study overview. a All individuals in each age group were sorted by the extent of baseline tau burden to present a pseudo-longitudinal 
order of disease progression. For all subjects involved in each window moving across the pseudo-longitudinal order, DTGR approach was applied 
between baseline W-scores of a seed region and annual changes in W-score of another region to construct a tau spreading network. b We 
optimized community structures by maximizing a modularity function, considering internetwork connections between the consecutive tau 
spreading networks. Due to the heuristic nature of the optimization algorithm, the optimization process was repeated 1000 times and every 
single node of each network was assigned a community at each iteration. A regional association matrix was then constructed from 1000 original 
assignments and 1000 randomly permuted assignments, respectively. The original association matrix was thresholded by a maximum value of 
the random association matrix, and a representative assignment was determined by applying community detection algorithm to the thresholded 
association matrix
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with a relatively higher out-degree (> mean + 1.5 SD of 
out-degrees from all intracommunity seed regions) as 
a tau-providing hub. Because a region with only a few 
influential connections can be identified as a hub due to 
a low number of pathways overall within the community, 
we excluded regions with fewer than three connections 
or those appearing as hubs only in a single window.

Statistical analysis
We used MATLAB 2019a for statistical analysis of demo-
graphic data. For between-group comparisons, a Wil-
coxon rank sum test was used for continuous variables, 
and chi-square tests were used for categorical variables.

Results
Demographic characteristics
Although the OC group exhibited slightly lower mini-
mental state examination (MMSE) scores compared with 
the YC group (p = 0.0036), no differences in sex ratio, 
years of education, clinical dementia rating sum-of-
boxes (CDR-SB), frequencies of the ApoE ε4 genotype, 
or follow-up intervals between the older groups (OCU 
or LOCI) and their corresponding younger groups (YCU 
or EOCI) were evident. The ranges of cognitive decline 
(MMSE and CDR-SB) in both CI groups are detailed in 
Fig. S1. Sex and years of education did not differ between 
the CI and corresponding CU groups, but the CI groups 
were older (younger group: p = 0.0052, older group: p = 
5e−4) and had worse MMSE (younger group: p = 6e−6, 
older group: p = 3e−10) and CDR-SB (younger group: 
p = 1e−10, older group: p = 7e−19) scores, higher fre-
quencies of the ApoE ε4 genotype (younger group: p 
[statistics] = 8e−4 [11.250], older group: p [statistics] 
= 0.0015 [10.067]), and shorter follow-up intervals 

(younger group: p = 0.0038, older group: p = 6e−5) 
compared with their corresponding CU groups. Detailed 
demographic characteristics are provided in Table 1.

Distinct tau accumulation patterns for AD onset age
Figure 2 depicts the differential accumulation pattern for 
tau between the YCU/EOCI and OCU/LOCI groups. 
When descriptively compared with the baseline W-score 
and its annual change rate maps within the first seg-
ment of the YCU/EOCI group, tau first accumulated in 
the medial and lateral temporal and the inferior parietal 
cortex, and extended to the precuneus and posterior 
cingulate cortices in segment 3 to 4. The annual change 
rate in the parietal cortex was similar to that of the tem-
poral cortex. Overall, YCU/EOCI group experienced 
more dramatic accumulation of tau in the diffuse corti-
cal regions (Fig.  2a). However, tau first appeared in the 
medial temporal lobes of members of the OCU/LOCI 
group, followed by the inferior temporal and fusiform 
cortex in segment 2 and 3. It then expanded to the pos-
terior cingulate and inferior parietal cortex in segment 4 
and finally reached the remaining cortical regions in seg-
ment 5. The maps for the annual change rate in W-scores 
exhibited patterns similar to those of the baseline maps, 
but prominent changes were restricted to the temporal 
regions (Fig. 2b).

Dynamics of tau spreading through pseudo‑longitudinal 
order
In the identified tau-spreading networks of the YCU/
EOCI group, edges originated primarily in the tempo-
ral cortex, followed by the limbic and parietal cortices, 
but were seldom found in the frontal and occipital cor-
tices. These appearances were generally robust across a 

Table 1  Demographic and clinical characteristics of the study population

Data are presented as mean ± standard deviation. Significant between-group-differences are marked with “a” for YCU vs. EOCI and OCU vs. LOCI, and “b” for YCU vs. 
OCU and EOCI vs. LOCI

Abbreviations: YCU/OCU young and old cognitively unimpaired, EOCI/LOCI cognitively impaired due to early- and late-onset Alzheimer’s disease, MMSE mini-mental 
state examination, CDR-SB clinical dementia rating sum-of-boxes

Variable YCU​ OCU EOCI LOCI

n 30 44 15 53

Age (years) 58.3 ± 5.5 72.8 ± 6.2b 62.8 ± 6.0a 76.4 ± 5.3ab

Age at onset (years) n. a. n. a. 59.4 ± 5.6 73.6 ± 5.3b

Females,n(%) 19 (63.3) 26 (59.1) 10 (66.7) 33 (62.3)

Education (years) 13.3 ± 3.9 11.6 ± 4.7 11.6 ± 5.0 10.5 ± 5.1

MMSE 28.9 ± 1.5 27.8 ± 1.8b 21.5 ± 6.2a 22.8 ± 4.2a

CDR-SB 0.0 ± 0.0 0.0 ± 0.0 3.3 ± 2.3a 2.9 ± 1.8a

APOEε4 carrier,n(%) 5 (16.7) 8 (18.2) 10 (66.7)a 26 (49.1)a

Amyloid positivity,n(%) 1 (3.3) 6 (13.6) 15 (100)a 53 (100)a

Follow-up interval (months) 26.0 ± 3.6 25.1 ± 3.6 23.4 ± 1.5a 23.0 ± 1.4a
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range of different P-value thresholds for edge selection 
(Fig. S2). In segment 4, tau extended from the temporal 
cortex to the parahippocampal and insula cortices, and 
weakly to some regions in the parietal cortex, including 
the inferior parietal cortex, precuneus, and supramar-
ginal gyrus. Conversely, some of the edges that departed 
from the entorhinal and isthmus cingulate cortex of the 
limbic cortex reached the temporal cortex. Several path-
ways originating in the parietal cortex were also remark-
able. In segment 5, tau spreading became much more 
active between the widespread brain regions, even in 

connections to the frontal or occipital cortices, while 
keeping the source regions relatively active in the earlier 
segments (Fig. 3a).

Scans of the OCU/LOCI group revealed different pat-
terns. Most of the out-edges appeared first in the limbic 
and temporal cortices and predominated in the tempo-
ral cortex in the latter part of the windows, which was 
similarly reproduced at other edge thresholds (Fig. S2). 
Tau began to spread from the entorhinal and parahip-
pocampal cortices to the inferior temporal and fusi-
form cortices. Edges between those regions were most 

Fig. 2  Baseline and annual changes in tau burden in the imaginary spectrum of disease progression in EOAD and LOAD patients. For each YCU/
EOCI (a) and OCU/LOCI (b) group, we divided all individuals across the entire spectrum into five segments. Baseline W-score maps (Wbl) are 
displayed in the upper rows and the maps for the annual change in W-score (ΔW/year) are in the lower rows. The y-axis of the horizontal spectrum 
bars represents each region, and the x-axis represents individual subjects. Abbreviations: YCU, OCU, young and old cognitively unimpaired; EOCI, 
LOCI, cognitively impaired due to early- and late-onset Alzheimer’s disease; pAD, prodromal Alzheimer’s disease; AD, Alzheimer’s disease dementia
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active even in segment 4. In segment 5, tau spreading 
was widespread, predominantly from the temporal cor-
tex, and from the inferior temporal gyrus in particular. 
Tau burden in the temporal cortex affected the amount 
of accumulation in the frontal regions, inferior parietal, 
supramarginal, and cingulate cortices (Fig. 3b). To rule 
out the possible influence of the different proportion of 

CI participants and sliding window size, we reproduced 
these findings using randomly chosen participants from 
the OCU/LOCI group with the same number and pro-
portion with those of the YCU/EOCI group (see Fig. 
S3).

Fig. 3  Dynamics of tau spreading across the pseudo-longitudinal order in YCU/EOCI and OCU/LOCI. Left column displays mean number of edges 
departed from each lobar area and group composition across tau spreading networks for YCU/EOCI (a) and OCU/LOCI (b) groups. Averaged 
brain-wide network for each segment is represented using connectogram in right column. Regions are labeled with the abbreviations of the region 
names in the Desikan-Killiany cortical atlas and colors for their corresponding cortical lobes. Lines connecting two regions (out-edges) are marked 
with the lobar colors for their origin. Abbreviations: YCU and OCU, young and old cognitively unimpaired; EOCI and LOCI, cognitively impaired 
due to early- and late-onset Alzheimer’s disease; pAD, prodromal Alzheimer’s disease; AD, Alzheimer’s disease dementia; LH, left hemisphere; RH, 
right hemisphere. Region labels: frontal (CMF = caudal middle frontal, LOF = lateral orbitofrontal, MOF = medial orbitofrontal, PaC = paracentral, 
POp = pars opercularis, POr = pars orbitalis, PTr = pars triangularis, PrC = precentral, RMF = rostral middle frontal, SF = superior frontal, FPo = 
frontal pole), temporal (BSTS = banks of the superior temporal sulcus, Fu = fusiform, IT = inferior temporal, MT = middle temporal, ST = superior 
temporal, TPo = temporal pole, TT = transverse temporal), parietal (IP = inferior parietal, PoC = postcentral, PC = precuneus, SP = superior parietal, 
SM = supramarginal), occipital (Cu = cuneus, LO = lateral occipital, Li = lingual, PCa = pericalcarine), and limbic (CACg = caudal anterior cingulate, 
En = entorhinal, IsCg = isthmus cingulate, PH = parahippocampal, PCg = posterior cingulate, RACg = rostral anterior cingulate, In = insula) lobes
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Community structure in tau‑spreading networks
Across the sliding windows in each group, the tau-
spreading networks presented as a converged community 
structure. The YCU/EOCI group was characterized by 
three major communities. The regional composition for 
each community changed slightly across the windows, 
but presented as a mostly exclusive collection that pro-
vided hubs (Figs.  4 and 5). For the first community, the 
hubs were found mainly in the temporal cortex, includ-
ing the fusiform and inferior temporal gyri in the win-
dows for segment 4 (“Fu-IT driven”). Left banks of the 
superior temporal sulcus (BSTS), entorhinal (En), and 

temporal pole cortices were selected as hubs for the sec-
ond community (“En-BSTS driven”), and left inferior 
parietal, isthmus cingulate, middle temporal, precuneus, 
and supramarginal cortices were identified for the third 
community (“parietal driven”). As shown in Fig.  4, tau 
spreading increased first within the Fu-IT driven com-
munity along with the earliest emergence of its hubs. The 
En-BSTS and parietal driven communities followed the 
Fu-IT driven community in the latter part of the segment 
5.

On the other hand, three major communities were 
identified in the OCU/LOCI group. Left and right 

Fig. 4  Dynamic community structures in a tau spreading network. Three major communities were found in the latter part of the sliding windows 
in YCU/EOCI group (upper) and four were found in the OCU/LOCI group (lower), which have distinct changing patterns in the number of overall 
spreading pathways. For each community, an example map and spreading directions for a specific window are presented in an inset based on the 
community assignment of that window. The x-axes represent each sliding window and the y axes represent total intracommunity edges normalized 
by the maximum number of regions comprising each community across sliding windows. The yellow circles indicate tau-providing hubs within the 
corresponding community and the red wedges indicate the boundaries of each segment. Abbreviations: YCU and OCU, young and old cognitively 
unimpaired; EOCI and LOCI, cognitively impaired due to early- and late-onset Alzheimer’s disease. Abbreviations for the region labels are described 
in the legend of Fig. 3
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entorhinal cortices explained other regions’ tau accumu-
lation changes within the first community in the middle 
part of segments 2 and 3 (“En-PH(L) driven”) but did not 
persist in the latter part. By contrast, left/right parahip-
pocampal (PH) cortices, which were identified for the 
first and second communities, remained active in the 
middle to last windows (“En-PH[L]/PH[R] driven”). In 
the latter windows, providing hubs were found for the 
third community, including both the inferior and middle 
temporal and right temporal pole cortices (“lateral tem-
poral driven”). Each community in the OCU/LOCI group 
appeared at different periods, while three major commu-
nities of the YCU/EOCI group exhibited nearly identical 

rising and fading patterns throughout the course of dis-
ease severity. These findings were broadly replicated in a 
subset of participants for the OCU/LOCI group adjusted 
for the proportion of CI participants and sliding window 
size in the YCU/EOCI group (see Fig. S3).

Discussion
We found distinct tau-spreading pathways in EOCI and 
LOCI due to AD based on the temporal directionality 
of baseline tau burden and longitudinal tau accumula-
tion rate. Consecutive tau-spreading networks calculated 
through the pseudo-longitudinal order revealed temporal 
changes in tau-spreading patterns for the YCU/EOCI and 

Fig. 5  Intracommunity tau-providing hubs determined in each sliding window. The entire tau-providing hubs identified across whole sliding 
windows were exclusive between the corresponding communities in both YCU/EOCI and OCU/LOCI groups (left). The characteristics of the selected 
hubs were investigated based on where the hub is defined across the windows and how many regions the hub influences (right). The x axes of 
the color-coded matrix represent each sliding window and the y axes represent regions selected as hubs. Colors for the matrices represent the 
out-degrees, normalized by the maximum number of regions comprising each community. The black dots represent the location in which each 
region was qualified as hub and the black tick marks represent the boundaries of each segment. Abbreviations: YCU and OCU, young and old 
cognitively unimpaired; EOCI and LOCI, cognitively impaired due to early- and late-onset Alzheimer’s disease. Abbreviations for the region labels are 
described in the legend of Fig. 3
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OCU/LOCI groups. Each group-specific multilayer com-
munity structure clearly showed how those spreading 
patterns differed. Both community structures consisted 
of some communities with unique out-degree hubs, with 
distinct locations, affecting regions, and active periods 
between the YCU/EOCI and OCU/LOCI groups. These 
findings can partly explain the distinct patterns of tau 
spreading in the EOCI and LOCI groups.

Our results agree with those of previous studies. 
Across the pseudo-longitudinal order within the OCU/
LOCI group, tau pathology first appeared in the medial 
temporal cortex, the entorhinal cortex in particular, and 
then the lateral temporal and cingulate cortices, followed 
by the parietal and frontal areas, showing Braak-like 
progression [16, 61]. Meanwhile, the YCU/EOCI group 
exhibited the first appearance of tau accumulation in 
the diffuse medial and lateral temporal cortices and infe-
rior parietal cortex, along with a higher tau burden and 
accumulation rate in the diffuse cortical areas in the late 
stage. Prior studies have reported a higher burden of tau 
pathology in younger patients [9, 14, 15, 17]. This recon-
firms the differences in tau pathology patterns and sug-
gests different tau-spreading processes.

Sequential networks derived by DTGR can reveal sys-
tematic tau propagation processes across the spectrum 
of disease severity. The most remarkable finding from 
our examination of the YCU/EOCI group involved the 
out-edges from the parietal region and cingulate cortex, 
which were largely absent in the OCU/LOCI group, while 
the edges extending from the medial and lateral temporal 
cortices were common, although there was a difference 
in level. In addition to previous reports that the pari-
eto-occipital area or posterior cingulate cortex showed 
greater tau burden or more-severe atrophying among 
early-onset dementia patients [5, 9, 15, 62], regional tau 
uptake appeared to significantly affect the longitudinal 
pathology accumulation of other brain regions broadly.

In the case of the OCU/LOCI group, the entorhinal 
cortex and parahippocampal gyrus appeared to begin 
providing tau to the nearby area at the early period of 
the spectrum. Within the latter part of the pseudo-lon-
gitudinal order corresponding to segment 5, pathways 
from the temporal lobe emerged markedly and reached 
the remaining frontal, parietal, and limbic regions. The 
influences of the entorhinal or parahippocampal regions 
at relatively earlier periods are consistent with a previous 
report that pathologic retention of NFT often appears in 
medial temporal lobe before the onset of symptoms [63]. 
Meanwhile, the lateral temporal area may play a crucial 
role in spreading tau among CI individuals.

The community structures exhibited two noticeable 
differences between the YCU/EOCI and OCU/LOCI 
groups. First, the community hubs were identified in 

more diffuse cortical regions, including the temporal, 
limbic, and parietal lobes in the YCU/EOCI group, while 
the hubs were confined to the medial and temporal corti-
ces in the OCU/LOCI group. The parietal area, including 
the precuneus, inferior parietal, and isthmus cingulate 
cortices, is in the posterior part of the default mode net-
work (DMN), as defined by resting-state functional MRI 
[64]. An age-related shift of DMN activity from its poste-
rior to anterior part is evident, and younger adults have 
more preserved posterior DMN activity compared with 
the elderly [65]. Relatively preserved posterior DMN may 
therefore induce faster propagation of tau pathology in 
related regions and may partly explain the high tau bur-
den and tau-providing power of hub regions in the EOCI 
group.

In transgenic mice expressing pathological tau protein, 
activated microglia precede the formation `of tau tan-
gles and increased with tau pathology. Conversely, treat-
ment with an immunosuppressant or direct depletion of 
microglia attenuates tau pathology and tau propagation 
[66–68]. A post-mortem study exhibited an increase in 
the tangle burden and number of microglia and astro-
glia across the entire disease course after the plateau of 
amyloid plaque load [69]. A 11C-PBR28 PET study tar-
geting the translocator protein 18kDa found that EOAD 
patients were associated with greater binding in the dif-
fuse association cortices, particularly in the prefrontal, 
inferior parietal, precuneus, and occipital cortices, when 
compared with LOAD patients [70]. These regions largely 
overlapped with the identified tau-providing hubs of the 
YCU/EOCI group in our study. Enhanced neuroinflam-
mation may therefore offer an alternative explanation for 
high tau burden in the EOCI, and there may be a syner-
getic effect between the relatively preserved posterior 
DMN and enhanced neuroinflammation within the hub 
regions.

The second distinct difference is that in the YCU/
EOCI group, three communities seemed to be sustained 
at the similar periods, while three major communities of 
the OCU/LOCI group showed distinct rising and fad-
ing patterns. Three major communities coexisted inde-
pendently in the latter disease stages of the YCU/EOCI 
group, whose tau-providing hub regions maintained high 
intracommunity out-degrees. Hubs of the Fu-IT driven 
community were not identified in the latter part due to 
the overall increasing out-degrees across intracommu-
nity regions, but they retained the highest out-degrees 
(top 5 within the Fu-IT driven community). Given the 
widespread location of community hubs in the YCU/
EOCI group, the coexistence of the three communi-
ties show multiple local distribution centers with their 
own territories. On the other hand, the hub regions for 
tau propagation appeared to move sequentially from the 
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entorhinal cortex to the lateral temporal cortices in the 
case of OCU/LOCI. Although the PH driven and lateral 
temporal driven communities coexisted in the latter peri-
ods, their territories are rather limited on the lateral tem-
poral regions leading a marked edge increases within the 
last segment of the OCU/LOCI group. Spatially confined 
hub regions and alternate rising of major communities 
may imply a relatively limited propagation ability com-
pared with the EOCI group.

Limitation
With respect to study limitations, the number of sub-
jects, particularly for the EOCI group, was small for a 
study with this level of complexity. Moreover, given the 
very small number of preclinical group, our findings 
may not apply to the whole disease spectrum or cover it 
only sparsely. However, even when analyzing in a priori 
defined subgroups stratified by age and AD status, an 
alternative approach to define the spectrum, both YCU/
EOCI and OCU/LOCI groups exhibited markedly differ-
ent tau-spreading characteristics, including a distinct set 
of critical hub regions, and may be worth investigating 
(Fig. S4). Due to imbalance in sample size and the propor-
tion of diagnostic groups between YCU/EOCI and OCU/
LOCI groups, those differences, especially at the earliest 
stages, need to be interpreted with careful consideration. 
But, even in the case that we matched the sample size and 
the proportion of diagnostic subgroups by downsampling 
participants in the OCU/LOCI group, the main findings 
were largely replicated (Fig. S3). Another limitation arises 
from our use of only two consecutive PET scans for each 
subject. Only a few previous studies drew on up to three 
PET scans. However, the proposed method in the cur-
rent study can be easily extended to more than two PET 
scans. Extension of the analysis to more PET scans and a 
greater dataset may be helpful in future studies.

Conclusions
Our community-based dynamic network model system-
atically elucidates the distinct tau-spreading natures of 
the EOCI and LOCI groups. This data-driven approach 
suggests that different dominant communities and spe-
cific continuation periods drive the distinct tau-spread-
ing processes, distinct tau pathology patterns, and 
possibly peculiar clinical features of the patient groups 
showing those distinguishable patterns. Future studies 
should investigate which underlying factors are related 
to which differences, including genetic factors, neuronal 
connectivity, and aging.
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