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Abstract 

Background:  Mild cognitive impairment (MCI) is an early stage of cognitive decline which could develop into 
dementia. An early detection of MCI is a crucial step for timely prevention and intervention. Recent studies have 
developed deep learning models to detect MCI and dementia using a bedside task like the classic clock drawing test 
(CDT). However, it remains a challenge to predict the early stage of the disease using the CDT data alone. Moreover, 
the state-of-the-art deep learning techniques still face black box challenges, making it questionable to implement 
them in a clinical setting.

Methods:  We recruited 918 subjects from King Chulalongkorn Memorial Hospital (651 healthy subjects and 267 
MCI patients). We propose a novel deep learning framework that incorporates data from the CDT, cube-copying, and 
trail-making tests. Soft label and self-attention were applied to improve the model performance and provide a visual 
explanation. The interpretability of the visualization of our model and the Grad-CAM approach were rated by experi-
enced medical personnel and quantitatively evaluated using intersection over union (IoU) between the models’ heat 
maps and the regions of interest.

Results:  Rather than using a single CDT image in the baseline VGG16 model, using multiple drawing tasks as inputs 
into our proposed model with soft label significantly improves the classification performance between the healthy 
aging controls and the MCI patients. In particular, the classification accuracy increases from 0.75 (baseline model) to 
0.81. The F1-score increases from 0.36 to 0.65, and the area under the receiver operating characteristic curve (AUC) 
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Introduction
Approximately 50 million people are currently suffering 
from dementia worldwide [1]. Unfortunately, there is no 
cure for such a devastating condition. One of the most 
crucial management strategies for preventing the disease 
from progressing is to detect the initial stage of patholog-
ical cognitive aging as early as possible. This initial stage 
of cognitive decline is known as mild cognitive impair-
ment (MCI), which has a prevalence rate of about 20% of 
the elderly population aged 60 and above [2–4].

The clock drawing test (CDT) is one of the most stud-
ied neuropsychological tests known for its ability to cap-
ture a wide range of neurocognitive disorders including 
Alzheimer’s disease and other types of dementia. Accord-
ingly, it has been included in a rapid population-based 
screening test for dementia [5]. While the CDT could be 
easily implemented in the pen-and-paper format, it still 
requires highly trained medical personnel to administer 
the screening as well as analyze and interpret the test 
results. Recently, research studies have tried to overcome 
these limitations by collecting the data in digital format 
and adopting advanced machine learning (ML) models 
to automate and improve the scoring and disease classi-
fication methods [6–16]. Initially, early ML research has 
demonstrated promising classification results obtained 
from domain knowledge feature construction guided by 
human experts [6–8, 11, 15, 16]. Recent studies use deep 
learning models to avoid the need for such hand-crafted 
features and improve the performances in several neu-
ropsychological tests including digit classification [9], 
digit-and-clock-hand recognition [10], contour-and-hand 
segmentation and digit classification [12], clock score 
prediction [13], and healthy-versus-cognitive-impaired 
classification [14].

In contrast to the case of dementia, the success in 
using digital clock drawing and deep learning to detect 
less severe neurocognitive disorders like MCI is still lim-
ited. To improve the model performance, it is possible to 
combine multiple drawing tasks such as a trail-making 
test and a copy-drawing test as inputs to a deep learn-
ing model. Indeed, a prior study recently demonstrated 
different classification accuracies when different draw-
ing tasks were used [17]. However, deep learning is often 
referred to as a black box approach given that most of 

deep learning models provide only predictions without 
explanation that can be understood by humans. There-
fore, these deep learning models are usually not applica-
ble in clinical settings where the predictions are expected 
to be interpretable by healthcare providers [18].

In this work, we developed a novel multi-input deep 
learning model that integrates three different drawing 
tasks to perform an explainable MCI detection. Extend-
ing clock drawing-based detection with deep learning [9, 
10, 12–14] to include a cube-copying drawing and a trail-
making test into model inputs, our convolutional neural 
network (CNN) equipped with the self-attention mecha-
nism (multi-input Conv-Att) achieves an excellent clas-
sification performance. The multi-input Conv-Att model 
enjoys an improvement of 0.051, 0.241, and 0.095 gain 
on the average accuracy, F1-score, and area under the 
receiver operating characteristic curve (AUC), respec-
tively, compared to those of a baseline CNN. While the 
prediction accuracy of the multi-input Conv-Att model is 
comparable to that of the baseline CNN with Grad-CAM 
[19], the multi-input Conv-Att model provides visual cues 
that are more consistent with how clinical experts ana-
lyze drawing tasks. We also examine the standard medical 
criterion for MCI diagnosis—the drawings are classified 
as MCI with certainty if their score drops below a hard 
cutoff. Our data reveal that the scores of the healthy 
population and those of the MCI population strongly 
overlap, especially near the cutoff. Thus, we demand our 
multi-input Conv-Att model to output a class probabil-
ity (i.e., soft labels), rather than a class with certainty, to 
accommodate the classification uncertainty near the cut-
off. With soft labels, we further gain an improvement of 
0.013 and 0.056 on the average accuracy and F1-score. We 
have made our dataset publicly available for interested 
researchers to benchmark their methods at https://​github.​
com/​cccnl​ab/​MCI-​multi​ple-​drawi​ngs.

Results
We assessed the MCI vs. healthy aging control classi-
fication performance of our proposed method, multi-
input Conv-Att with a soft label, on a dataset of 918 
subjects (138 of which were used as unseen test data: 98 
healthy aging controls and 40 MCI patients) acquired 
with informed consents at King Chulalongkorn 

increases from 0.74 to 0.84. Compared to the multi-input model that also offers interpretable visualization, i.e., Grad-
CAM, our model receives higher interpretability scores given by experienced medical experts and higher IoUs.

Conclusions:  Our model achieves better classification performance at detecting MCI compared to the baseline 
model. In addition, the model provides visual explanations that are superior to those of the baseline model as quanti-
tatively evaluated by experienced medical personnel. Thus, our work offers an interpretable machine learning model 
with high classification performance, both of which are crucial aspects of artificial intelligence in medical diagnosis.

https://github.com/cccnlab/MCI-multiple-drawings
https://github.com/cccnlab/MCI-multiple-drawings
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Memorial Hospital, Bangkok, Thailand (see the “Mate-
rials and methods” section for more details). Each sub-
ject was categorized based on a Montreal Cognitive 
Assessment (MoCA) score cutoff of 25 [20], resulting 
in 651 healthy subjects and 267 MCI patients in the 
dataset. We compared the proposed method to a base-
line model, denoted as single-input VGG16 with only 
the clock drawing test, that is closely related to exist-
ing deep learning-based methods [13, 14] on MCI vs. 
healthy aging control classification in terms of the 
framework used: input data, deep learning compo-
nents, and a training procedure.

We reported the classification results in Table 1 and 
assessed the ability of the proposed method to sup-
port its classification decisions (MCI vs. healthy aging 
control) through visual interpretability. In particular, 
we demonstrated that the proposed method yielded 
improved heat maps compared to those generated by 
the multi-input VGG16 model with Grad-CAM visuali-
zation [19], as measured by two metrics: (1) the inter-
pretability scores given by 3 experts (a neurologist and 
two licensed neuropsychologists) (Table 2) and (2) the 
intersection over union (IoU) between the heat maps 
obtained from each method and the corresponding 
ground truth regions-of-interest (ROIs) (Fig. 1).

Since the proposed method strongly deviates from 
existing works by the incorporation of three specially 
designed components, which consist of (1) the multi-
input approach (clock drawing, cube-copying, and 
trail-making inputs), (2) self-attention mechanism, and 
(3) soft labeling technique, we additionally performed 
an ablation study to determine the relative improve-
ment gained from each of the proposed components, 
as quantitatively measured by the classification accura-
cies, F1-scores, and AUC.

MCI vs. healthy aging control classification
As shown in Table  1, the proposed method yielded the 
mean classification accuracy of 0.8116, F1-score of 
0.6539, and AUC of 0.8375 over five repetitions, dem-
onstrating 8.53%, 83%, and 12.7% relative improvements 
in the mean accuracy, F1-score, and AUC, respectively, 
with respect to the baseline method. By extending the 
single-input models (VGG16 and Conv-Att) to their cor-
responding multi-input models (multi-input VGG16 and 
multi-input Conv-Att), we observed significant improve-
ments in the classification accuracies, AUCs, and, more 
remarkably, F1-scores. While the classification accura-
cies, F1-scores, and AUCs obtained from VGG16 and 
Conv-Att were comparable in both the single-input and 
multi-input cases, the self-attention mechanism included 
in the Conv-Att models resulted in improved visual inter-
pretability which will be discussed in the next subsection 
in detail. With the addition of the soft labeling technique, 
both accuracy and F1-score of the proposed multi-input 
Conv-Att model further improved.

Table 1  The mean and standard deviation of the classification accuracies, F1-scores, and AUCs over 5 different random training-
validation-test data splittings. Our proposed model, which benefits from the incorporation of multiple complementary drawing tasks 
(clock drawing, cube-copying, and trail-making), self-attention mechanism, and soft labeling approach, achieved much higher mean 
accuracy, F1-score, and AUC than the baseline model

Models Accuracy F1-score AUC​

VGG16 with only clock-drawing test 0.7478 ± 0.0071 0.3573 ± 0.0443 0.7429 ± 0.0131

VGG16 with only cube-copying test 0.7739 ± 0.0096 0.4994 ± 0.0477 0.7813 ± 0.0197

VGG16 with only trail-making test 0.7739 ± 0.0249 0.5283 ± 0.0548 0.7722 ± 0.0240

Multi-input VGG16 0.7986 ± 0.0071 0.5938 ± 0.0207 0.8115 ± 0.0192

Conv-Att with only clock-drawing test 0.7522 ± 0.0125 0.3586 ± 0.0309 0.7337 ± 0.0204

Conv-Att with only cube-copying test 0.7768 ± 0.0168 0.5095 ± 0.0515 0.7791 ± 0.0199

Conv-Att with only trail-making test 0.7696 ± 0.0167 0.5211 ± 0.0272 0.7662 ± 0.0231

Multi-input Conv-Att 0.7986 ± 0.0071 0.5981 ± 0.0221 0.8379 ± 0.0176

Multi-input Conv-Att with a soft label (proposed) 0.8116 ± 0.0103 0.6539 ± 0.0097 0.8375 ± 0.0116

Table 2  The mean and standard deviation of the visual 
interpretability scores over all samples in the test set given by 
a neurologist and two licensed neuropsychologists (scores 
from 1 to 5; 1 being the worst and 5 being the best in terms 
of providing a visual interpretability that aligned with their 
experience and knowledge)

Evaluators VGG16 with Grad-CAM Conv-Att with 
a soft label 
(proposed)

Expert 1 1.42 ± 0.74 3.41 ± 0.61

Expert 2 1.86 ± 0.74 2.20 ± 0.93

Expert 3 1.36 ± 0.62 2.87 ± 0.68
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Visual interpretability
An example of visual interpretability of the multi-input 
VGG16 model with Grad-CAM [19] and the proposed 
model is shown in Fig. 2. The visual interpretability scores 
given by the three experts are summarized in Table  2. 
The proposed method was given higher average inter-
pretability scores by all the experts, indicating that the 
heat maps generated by our method were better aligned 
with the experts’ clinical experience, compared to those 
of the multi-input VGG16 model with Grad-CAM. Fur-
thermore, as shown in Fig. 1, the heat maps generated by 
our proposed method yielded significantly higher aver-
age IoUs between the heat maps and the ground truth 
ROIs than those of the multi-input VGG16 model with 
Grad-CAM.

Discussion
By incorporating three specially designed components 
into a standard CNN, consisting of the multi-input 
approach, self-attention mechanism, and soft labe-
ling technique, our proposed model outperformed the 
baseline CNN model as measured by not only several 
quantitative evaluation metrics (accuracy, F1-score, 
and AUC), but also the visual explanation provided by 

the model’s heat maps. Unlike the previous studies that 
take only a clock drawing image as input to the model 
[13, 14], our proposed multi-input model exploits the 
complementary information provided by the three 
drawing tasks that rely on different combinations of 
fundamental cognitive abilities under the neuropsy-
chological perspective: planning and task-switching in 
the trail-making test, visuospatial ability in the cube-
copying drawing test, and both planning and visuos-
patial ability in the clock drawing test. This approach 
can be considered as an extension of previous research 
that achieved different accuracies when different draw-
ing tasks were used [17]. By replacing the global max-
pooling layer of a standard CNN architecture with a 
stack of self-attention layers, the proposed model was 
able to represent the data more efficiently and provide 
improved heat maps that could be used to support the 
model’s classification decision, compared to the base-
line model visualized using Grad-CAM [19]. In addi-
tion to the multi-input and self-attention components, 
the proposed model benefits from the soft labeling 
technique that takes into account the uncertainty of 
the diagnostic labels (i.e., MCI vs. healthy aging con-
trol) near the MoCA score cutoff, resulting in further 
improvement in the classification performance.

Fig. 1  Quantitative comparisons between the multi-input VGG16 model with Grad-CAM (red) and our multi-input Conv-Att model with soft label 
(blue), as measured by the IoUs between the heat maps and two types of ROIs, (a) whole-drawing ROIs and (b) expert ROIs, as a function of the 
percentage of the number of pixels used in the heat maps. Example images with corresponding ROIs are shown at the top of each panel. Our 
proposed model is more similar to both whole-drawing and expert ROIs than Grad-CAM model and the higher similarity is consistent over broad 
range of % total number of pixels from the models’ outputs (10%-80%)
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While typical model evaluation tends to focus on 
classification performance, there are some other 
important aspects of what counts as a good model. 
In our case, we found that even though applying self-
attention did not lead to better classification perfor-
mance, clinical experts preferred the visual explanation 
provided by our model to those of multi-input VGG16. 
The clinical experts found that our model was able 
to highlight the areas that aligned with their experi-
ence and knowledge. For example, our model was 
able to highlight the clock hands where the locations 
of the short and long hands were incorrectly drawn 
(see Fig. 2). Moreover, the heat maps of our proposed 
model were better aligned with the ground truth ROIs 
(Fig. 1), as indicated by higher IoUs.

Having a machine learning model that can provide 
interpretable outputs instead of only providing diagnos-
tic probability is especially important in a medical condi-
tion with mixed etiologies like MCI. Two MCI patients 

might draw a clock, a cube, and trails differently because 
their MCIs have different underlying pathological mech-
anisms. This capability will be beneficial to healthcare 
personnel since they can synergistically combine such 
interpretable outputs with their clinical judgments to 
potentially gain more insight into the underlying mecha-
nism of MCI. This improved interpretability will become 
even more critical when machine learning is used as a 
decision support system—the direction that is gaining 
more attention.

In this study, we benchmarked our proposed model to 
not only a strong VGG16 baseline, but also several exten-
sions of the baseline through our ablation study. Never-
theless, it is not straightforward to compare our reported 
quantitative metrics to those reported in existing works 
due to many reasons. First, different proxies of neuro-
cognitive disorders have been adopted in different stud-
ies. For example, while the Shulman clock scoring system 
[21] has been used as a surrogate marker for dementia 

Fig. 2  Visual explanations provided by the multi-input VGG16 model with Grad-CAM visualization (2nd column from the right) and the proposed 
model (column on the far-right) on a representative MCI test sample (2nd column from the left). For the clock image (1st row), our model highlights 
the hands of the clock where it says 12:55 instead of 11:10. For the cube-copying image (2nd row), our model highlights unusual paths better. For 
the trail-making test (last row), our model could focus along the paths that should not have been drawn (paths from 2-3, B-4 and C-D), while the 
multi-input VGG16 model with Grad-CAM failed to highlight some of those paths (B-4). Note that the red arrow and asterisks were not drawn by the 
subjects but added here to aid the descriptions
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[13], we used Petersen’s criteria with the MoCA score 
cutoff of 25 [4, 20] for the MCI diagnosis in our study. 
Moreover, different study populations with potentially 
different demographic information and recruiting proce-
dures were involved. Such experimental inconsistencies 
make it difficult for direct comparisons between the stud-
ies (for example, our data came from our healthy geriatric 
clinic where the MCI patients have only mild symptoms), 
warranting the sharing of the datasets of each study for 
better benchmarking. Consequently, we have made our 
dataset publicly available  at https://​github.​com/​cccnl​ab/​
MCI-​multi​ple-​drawi​ngs.

It is straightforward to extend our model to add other 
drawing tests since an image from each test is processed 
by its own VGG16 model and a stack of self-attention lay-
ers (called a feature extraction pathway), and the extracted 
features from all the tests are combined at the last layer of 
our model. For example, to accommodate additional draw-
ing tests, more feature extraction pathways can be included 
in our model: one pathway per test. The extracted features 
from all the pathways can then be combined using the 
concatenation operation. To retrain the model, the param-
eters of the already-trained pathways can be used to initial-
ize those in the newly added pathway(s). Additional tests 
added may help alleviate the impaired domains of existing 
tests and improve the accuracy of the overall model.

Switching the MoCA test from pen-and-paper to the 
digital format allows us to store the drawing trajectory 
of each drawing task, which contains both temporal 
and spatial information. While the proposed model, 
which only uses the final drawing as its input (only the 
spatial information) and discards the information-rich 
temporal information provided by the drawing trajec-
tory, already achieved much higher accuracy, F1-score, 
and AUC than those of the baseline model, we project 
that its extension to a spatio-temporal version would 
further improve the classification performance with 
the presence of a larger amount of data. Since there 
exist many drawing trajectories that correspond to the 
same final drawing, having access to the raw drawing 
trajectory would enable the model to come up with 
potentially better data representation in the spatio-
temporal domain. Moreover, exploring hidden struc-
tures in the high-dimensional space of raw drawing 
trajectory using unsupervised learning is also an inter-
esting future direction.

Limitations of the study
Although our sample size is relatively large compared to 
previous studies because we did not specifically screen 
for MCI cases, the fraction of the MCI patients in the 
dataset is low (29%, 267 out of 918 subjects). Moreover, 
our subjects tend to receive higher levels of education 

than the national average and consist of a relatively high 
female proportion. These factors could influence our 
model and should be considered when applying our work 
to a different population.

The diagnosis of MCI in our study is based on Petersen’s 
criteria which is a standard clinical practice. However, 
some research studies added additional biomarkers such 
as cerebrospinal fluid (CSF) total tau protein, phospho-
rylated tau protein, Aβ42, and Positron emission tomog-
raphy (PET) to the clinical criteria. We did not include 
the biomarkers in this study because it would reduce the 
number of subjects even further, and having  sufficient 
data is critical for developing deep learning models.

Conclusion
In summary, we found that, in a challenging scenario 
where the aim is to identify MCI patients among healthy 
aging controls, using multiple inputs to train the model 
with soft labels and the self-attention mechanism leads 
to substantial improvements in model performance. The 
visual explanation provided by our proposed model is 
superior to the baseline model as rated by experienced 
medical personnel and quantitatively evaluated using the 
IoU between the models’ heat maps and ROIs. Thus, our 
model yields better classification performance and inter-
pretability—both of which are critical aspects of the future 
development of artificial intelligence in medical diagnosis.

Materials and methods
Data collection
Under the institutional review board approval, a digital 
version of the MoCA test was administered on a tablet 
with a digital pen to a total of 918 subjects with informed 
consents by trained psychologists at King Chulalongkorn 
Memorial Hospital, Bangkok, Thailand. The population 
came from a healthy elderly cohort which focused on pre-
ventive care for healthy Thai citizens without major medi-
cal conditions (such as organ failures). The median age 
was 67 years old (ranging from 55 to 89 years old), 77% 
female, 44% received bachelor’s degree, and 20% received 
higher education. For the clock drawing task, the subjects 
were instructed to “draw a circular clock face with all the 
numbers and clock hands indicating the time of 10 min 
past 11 o’clock.” In the cube-copying test, the subjects were 
instructed to copy the Necker cube image on an empty 
space. In the trail-making test, the subjects were instructed 
to “draw a line that goes from a number to a letter in an 
ascending order, starting at number 1 (pointing to the 
number 1), to this letter (pointing to the letter A), then go 
to the next number (pointing to the number 2), and so on.”

For each subject, we extracted the drawn clock draw-
ing, cube-copying, and trail-making images along with the 
MoCA score. We then categorized the subjects into healthy 

https://github.com/cccnlab/MCI-multiple-drawings
https://github.com/cccnlab/MCI-multiple-drawings
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aging controls and MCI patients based on their MoCA 
scores. In particular, the subjects were categorized as hav-
ing MCI if the MoCA scores were below 25 as typically used 
in clinical routines [20], resulting in 651 healthy subjects 
and 267 MCI patients in our dataset. The collected data 
were randomly split into three groups in a stratified fashion: 
70% as training, 15% as validation, and 15% as test data. All 
images were resized to 256 × 256 in all experiments.

Proposed method: multi‑input Conv‑Att model with soft 
labels
We developed a multi-input deep learning method for 
MCI vs healthy aging control classification that is a cas-
cade of CNN backbones and self-attention layers [22, 23] 

trained with soft labels, as shown in Fig. 3. As opposed to 
existing models which take a clock drawing image as the 
only input to the models [13, 14], our proposed multi-
input model takes clock drawing, cube-copying, and 
trail-making images simultaneously as inputs, exploiting 
complementary information offered by the three neu-
ropsychological tests. Incorporating the self-attention 
layers into the model leads to more efficient image rep-
resentations, compared to typical CNNs, that can later 
be used to support the model’s classification decision 
through heat map visualization. The soft label compo-
nent of our method is designed to aid our model training 
by taking into account the uncertainty of the diagnostic 
labels (i.e., MCI vs. healthy aging control) near the des-
ignated MoCA score cutoff. An overview of the training 
process of the proposed method is presented in Algo-
rithm 1. In the following subsections, we described each 
of the components in detail.

Conv‑Att model architecture
As shown in Fig.  3, clock drawing, cube-copying, and 
trail-making images are used as inputs to our model. 
Each of the three images is passed into a separate CNN 
backbone (VGG16 [24] pretrained on the ImageNet data-
set [25], followed by a stack of self-attention layers, 
resulting in a vectorized image representation). Including 
the self-attention layers in the model leads to not only 
efficient image representation, but also improved visual 
explanation for MCI vs. healthy aging control classifica-
tion. Then, the resulting vectors from the three tasks are 
concatenated and processed by a two-node fully con-
nected layer with the softmax function fi −→

x = exi

j e
xj .

Fig. 3  Overview of our proposed multi-input Conv-Att model. Our model simultaneously takes clock drawing, cube-copying, and trail-making 
images as its inputs and processes them using a cascade of CNNs and a stack of self-attention layers
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Self‑attention
Unlike in a standard image classification model, we 
employ self-attention instead of a pooling layer to aggre-
gate the output from the CNN backbone, ˜X ∈ R

H×L×C

.,and C are the height, width, and number of filters, 
respectively. First, we initialize a random classification 
token vector, [CLS] ∈ R

D where D is the hidden dimen-
sion in the self-attention mechanism used in BERT 
[26]. The [CLS] vector is used to aggregate visual rep-
resentation from all pixels in X. Second, 1 × 1 convo-
lution with D output filters are applied to X to adjust 
its last dimension to match the hidden dimension D of 
the [CLS] vector. After that, it is reshaped into a matrix 
of shape HL × D and concatenated with [CLS] resulting 
in  

∼
X ∈ R

(HL+1)×D . Reshaping the data this way enables 
us to investigate how much each pixel contributes to the 
final classification decision through the attention rollout 
method [27]. The self-attention is defined as:

where Q, K, V ∈ R
D × D are the query, key, and value, 

respectively, which are the projections of 
∼
X ∈ R

(HL+1)xD 
with different linear functions: Q =

∼
XWT

Q ,K =
∼
XWT

K , 
and V =

∼
XWT

V  where WQ, WK, WV  ∈ R
D × D. At the final 

layer of self-attention, the vector at the [CLS] position is 
used as the final image representation.

Soft‑label
As explained in the “Data collection” section, we assigned 
the label of 0 (healthy control) to a subject with the 
MoCA score higher than or equal to 25, and the label 
of 1 (MCI) otherwise. Such a labeling approach is typi-
cally referred to as hard labeling. While training a model 
with hard labels is the most commonly used approach to 
solving binary classification, we propose to train our pro-
posed model with soft labels based on MoCA scores for 
MCI vs. healthy aging control classification to take into 
account the uncertainty of the diagnostic labels (MCI vs. 
healthy aging control) near the MoCA score cutoff of 25. 
Specifically, we define a soft label y according to the fol-
lowing equation:

where m is a MoCA score, and σ denotes the sigmoid 
function. Since a subject with the MoCA score of 24 is 
labeled as an MCI patient and a subject with the MoCA 
score of 25 is labeled as a healthy control, we subtract 
24.5 from m so that the center of the sigmoid will be at 
24.5.

Attn(Q,K ,V ) = softmax

(

QKT

√
D

)

V

y = 1− σ(m− 24.5)

The hard threshold of 25, below which a subject is con-
sidered an MCI patient, is a man-made criterion, rather 
than the number revealed through rigorous statisti-
cal tests from a large number of trials and can be varied 
depending on contexts such as education or cultures [20, 
28, 29]. Rather, by assigning a soft label, the uncertainty 
in the classification result is manifested through the sig-
moidal probability function. So, in a post hoc way, the 
soft label approach can help relax the strong classification 
bias inherent in the hard label approach. We trained the 
proposed model by minimizing the binary cross-entropy 
loss:

where M is the number of training data, yi is the soft label 
of the data i, and pi is the output of the model which can 
be interpreted as the predicted probability that the data i 
is associated with MCI.

Attention rollout
To visualize how self-attention combines the pixels of the 
last feature maps calculated by the CNN backbone X into 
the final image representation, we used attention rollout 
[27]. In the self-attention layers, there exist residual con-
nections between consecutive layers. Therefore, the out-
put of the self-attention layer l + 1 is defined below:

where Watt is the attention weight, and Vl is the out-
put of the self-attention layer l. To compensate for the 
effects of the residual connections, the raw attention 
A is A = 0.5Watt + 0.5I where I is the identity matrix. 
The attentions from the self-attention layer li to layer lj 
are computed by recursively multiplying the attention 
weights as follows:

where 
∼
A(li) is the attention rollout at the self-attention 

layer li, and A(li) is the raw attention at the self-attention 
layer li. The interpretability from our model is how the 
self-attention layers combine the last feature maps into 
the final image representation. Therefore, it is equivalent 
to the attention rollout for [CLS] over all the pixels of the 
last feature map. The attention rollout for each [CLS] is 
reshaped back to the size of the last feature map and then 
resized to match the size of the original input image. The 
heat map from each [CLS] is used as the interpretability 
for each input image.

L = −
1

M

∑M

i=1

(

yi log pi +
(

1− yi
)

log (1− pi)
)

Vl+1 = Vl +WattVl

˜A(li) =
{

A(li)˜A(li−1), i > j
A(li), i = j
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Experiments
We compared our proposed method to four VGG16-
based models: single-input VGG16 models that take 
only an image from one of the three tasks (i.e., clock 
drawing, cube-copying, and trail-making) as input and 
a multi-input VGG16 model that simultaneously takes 
clock drawing, cube-copying, and trail-making images 
as inputs. For the multi-input version, different VGG16s 
were used to process different input images. At the end 
of each VGG16, the global average pooling layer was 
applied. The average pooled image features from each 
task were concatenated and then passed into a two-node 
fully connected layer with the softmax function.

We also compared the results of the proposed method 
to those of the proposed method with some components 
removed. In particular, we recorded the performances of 
the single-input Conv-Att models and the multi-input 
Conv-Att model, both trained with hard labels.

Model training
Adam [30] optimizer with the learning rate of 1e−5, 
β1 = 0.9, β2 = 0.99, and ϵ = 10−7 were used in all experi-
ments. The models were trained for 100 epochs with 
a batch size of 64. We adopted image augmentation to 
increase the effective size of the training data. Specifically, 
we first zero-padded the image to a size of 280 × 280 and 
then cropped the image back to 256 × 256 with the center 
at a random location in the padded image. For the models 
that included stacked self-attention layers, we used self-
attention layers with the number of heads of one, hidden 
dimension size of 128, and hidden dimension size of the 
feedforward layer of 512.

Evaluation
We performed 5 random training-validation-test data 
splittings and reported the mean and standard deviation 
of the classification accuracies and F1-scores obtained 
from each method. Since all the methods were trained to 
predict the probability of having MCI, p, for each input, 
we needed to convert the model prediction into a diag-
nostic label (i.e., hard label) so that we could compute the 
accuracy and F1-score meaningfully. In this case, we cat-
egorized all the subjects with p ≥ 0.5 as MCI patients and 
p < 0.5 as healthy controls. We also reported the AUCs for 
all the models under consideration.

We also assessed the ability of the proposed method 
to provide a visual explanation to support its diagnostic 
decision by comparing the heat maps generated by the 
proposed model to those generated by the multi-input 
VGG16 model with Grad-CAM [19], which is one of 
the most commonly used methods for visual explana-
tion, based on two metrics: (1) the interpretability scores 
given by 3 experts and (2) the IoU between the heat 

maps obtained from each method and the corresponding 
ground truth ROIs.

For each subject, we obtained the heat maps from both 
the proposed method and the multi-input VGG16 model. 
Then, we displayed them side-by-side and separately 
asked 1 neurologist and 2 licensed neuropsychologists to 
give scores between 1 and 5 to each set of heat maps (1 
being the worst and 5 being the best in terms of provid-
ing a visual explanation that aligned with their experience 
and knowledge). To avoid potential bias, we randomly 
shuffled the display locations (left vs. right) in a way that 
the heat maps of the proposed method were displayed on 
the left or the right of the VGG16 model with equal prob-
ability. We ensured that all the evaluators had sufficient 
clinical experience in testing and evaluating these draw-
ing tasks while still allowing them to rate the interpret-
ability of the heat map results using their own judgments. 
The rationale is that the interpretability of the heat map 
can be evaluated in more than one perspective, and our 
proposed model should generally perform better than the 
Grad-CAM model across multiple perspectives.

In addition to the rating provided by the experts, the 
interpretability of the heat maps was assessed based on the 
IoUs between the heat maps and ground truth ROIs, where 
the IoU between two arbitrary shapes A and B is computed 
as IoU(A,B) = |A∩B|

|A∪B| . Prior to computing IoUs, each heat 
map was converted into a binary matrix by assigning 1 to 
the top k percent of all pixels with the highest values and 
setting the remaining pixels to 0. As shown in Fig. 1, two 
types of ROIs were used as the ground truth ROIs in our 
evaluations: whole-drawing ROIs and expert ROIs.

For the whole-drawing ROIs, the goal was to check 
if the heat maps highlighted the regions in the vicinity 
of the regions drawn by the human subjects. For each 
image, we defined an initial ROI as the smallest region 
with a simple shape (e.g., an ellipse, a circle, and a poly-
gon) that enclosed all the non-zero pixels in the image. 
Then, we enlarged the resulting ROI by a few pixels and 
used it as the ground truth ROI. Under this ROI type, 
the heat maps that do not highlight regions far away 
from the regions drawn will achieve relatively high IoU. 
For example, for the clock drawing test, if a heat map 
focuses on the locations outside the clock, the heat map 
is considered to have low visual explainability under 
this metric since it provides no visual cues to substanti-
ate the model’s prediction. Note that the heat maps that 
yield higher IoU are not necessarily more interpretable 
by clinicians since the highlighted pixels could be ran-
domly moved without decreasing the IoU as long as 
they are still located inside the ROIs.

For the expert ROIs, the ground truth ROIs were con-
structed based on the assumption that a good heat map 
should capture the presence of the paths that should 
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not be drawn and/or the absence of the paths that 
should be drawn. So, the ground truth ROI for each 
image contains the regions that include such unusual 
paths as confirmed by an experienced clinician. This 
metric more closely resembles how clinicians would 
interpret the results in everyday practices. While a heat 
map that highlights unusual paths in the image would 
achieve high IoU with respect to the expert ROIs, a 
model that generates a heat map that focuses only on 
the usual paths (i.e., paths typically drawn by healthy 
aging controls) would achieve lower IoU. Therefore, 
IoUs with the expert ROIs should also be used and 
interpreted with caution.
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