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A deep learning MRI approach outperforms 
other biomarkers of prodromal Alzheimer’s 
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Abstract 

Background:  The three core pathologies of Alzheimer’s disease (AD) are amyloid pathology, tau pathology, and 
neurodegeneration. Biomarkers exist for each. Neurodegeneration is often detected by neuroimaging, and we 
hypothesized that a voxel-based deep learning approach using structural MRI might outperform other neuroimaging 
methods.

Methods:  First, we implement an MRI-based deep learning model, trained with a data augmentation strategy, which 
classifies Alzheimer’s dementia and generates class activation maps. Next, we tested the model in prodromal AD and 
compared its performance to other biomarkers of amyloid pathology, tau pathology, and neuroimaging biomarkers 
of neurodegeneration.

Results:  The model distinguished between controls and AD with high accuracy (AUROC = 0.973) with class activa-
tion maps that localized to the hippocampal formation. As hypothesized, the model also outperformed other neuro-
imaging biomarkers of neurodegeneration in prodromal AD (AUROC = 0.788) but also outperformed biomarkers of 
amyloid (CSF Aβ = 0.702) or tau pathology (CSF tau = 0.682), and the findings are interpreted in the context of AD’s 
known anatomical biology.

Conclusions:  The advantages of using deep learning to extract biomarker information from conventional MRIs 
extend practically, potentially reducing patient burden, risk, and cost.
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Introduction
Biomarkers can aid in the clinical evaluation of Alzhei-
mer’s disease (AD), and biomarkers currently exist for 
AD’s three core neuropathologies—amyloid pathology, 
tau pathology, and neurodegeneration [1, 2]. The first 
two can be estimated from CSF levels of Aβ and tau or 
by direct visualization using PET-sensitive radioligands. 
Neurodegeneration, a term currently used to encompass 

neuronal or synaptic loss [3], can be estimated from PET-
based measures of parietal cortex metabolism or from 
MRI-based measurements that reflect the structural 
integrity of the hippocampal formation.

Deep learning is a subset of machine learning that, in 
principle, holds promise for MRI-based classification 
of neurogenerative diseases, including AD [4, 5]. Fur-
thermore, while some studies have examined classifying 
MCI conversion using machine learning frameworks, 
they have largely done so using other architectures like 
SVM6, examining only up to 36 months [6–10], using 
clinical or other biomarker information in the model [7, 
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8, 11], and few have examined the performance inde-
pendently directly against existing biomarkers [9, 10]. 
We hypothesized that designing a deep learning model 
that captures AD’s known pathophysiology and anatomy 
would be accurately comparable or better than existing 
biomarkers. For example, because “cell sickness” occurs 
before dramatic neuronal loss in AD’s pathophysiological 
course [3, 12, 13], a classifier sensitive to subtle intensity 
difference, not necessarily volume shrinkage, might be 
most sensitive in the disease’s early stages. Additionally, 
because of the brain’s anatomical complexity, particularly 
the areas targeted by AD, a three-dimensional classifier 
seems most suitable for AD detection.

One challenge with a 3D classifier based solely on 
voxel signal intensity is that its training is estimated to 
require an unusually large number of scans from cases 
and controls, more than is typically available for AD. 
Having access to large-scale datasets is a common chal-
lenge for deep learning in all fields, and strategies have 
been developed for data augmentation [14]. In one study 
[5], we develop and implement a deep learning strategy 
to classify AD. We employ a data augmentation strategy 
that is particularly well suited for MRI-only datasets, by 
including scans acquired from the same patient across 
multiple visits. By training, validating, and testing the 
classifier at the level of individual subjects, instead of 
individual scans, we minimize the potential limitations of 
this approach, namely data leakage.

We elected not to augment data by traditional methods 
of image perturbation, like rotating or applying trans-
formations, since structural MRI data have well-known 
preprocessing pipelines to spatially align images. We did 
not include available clinical information, as studies have 
done prior [7], to avoid a model dependent on informa-
tion that might be sparse or unavailable, as might be 
the case of clinical evaluation outside of a carefully con-
trolled and harmonized setting, like ADNI.

AD progresses through a prodromal stage before caus-
ing dementia, presenting clinically as mild cognitive 
impairment (MCI) [15]. Only a subset of patients with 
MCI have prodromal AD, and in contrast to AD demen-
tia, where a clinical evaluation is often sufficient to diag-
nose the disease, our ability to diagnose prodromal AD 
when presented with an MCI patient is currently inad-
equate. With increased awareness and concern over AD, 
a growing number of MCI patients are presenting to cli-
nicians wanting to know whether they have prodromal 
AD, and if so, how quickly they will progress to dementia. 
Showing that the deep learning algorithm can address the 
clinical questions that relate to prodromal AD would not 
only better validate its classification capabilities, but since 
derived from conventionally acquired MRI scans, would 
potentially expand its potential utility as a screening tool.

Accordingly, in the second series of studies, we set out 
to test how well the deep learning MRI scores, derived 
from the deep learning model trained on AD dementia, 
perform in detecting prodromal AD and in predicting 
time to dementia progression. Additionally, we com-
pared its performance to other established biomarkers 
of amyloid pathology, tau pathology, and neurodegenera-
tion. Based on the premise of deep learning’s classifica-
tion abilities, we hypothesized that deep learning MRI 
scores would outperform other MRI-based biomarkers 
of neurodegeneration. At the same time, given the pro-
posed temporal profile of AD’s neuropathology [16], we 
hypothesized that amyloid or tau biomarkers would out-
perform the deep learning MRI score in classifying pro-
dromal AD. Additionally, we investigated the link of deep 
learning MRI scores to amyloid and tau pathology, using 
cross-sectional, longitudinal, premortem, and postmor-
tem data, providing a mechanistic explanation for the 
deep learning MRI score.

The diagnostic cutoffs for all AD biomarkers are tradi-
tionally derived from patients in the dementia stage, and 
biomarkers shift over the disease’s progressive course, 
particularly dynamic during its early stages. Since cut-
offs for prodromal AD have not yet been established 
for any of the biomarkers, the best experimental design 
with which to test these hypotheses is to clinically fol-
low a large group of MCI patients as they do or do not 
progress to dementia, so that the patients can be retroac-
tively dichotomized into those with and without prodro-
mal AD, respectively, at baseline. Biomarkers can then be 
tested to determine which best classifies prodromal AD 
and which best predicts progression. The challenge with 
this design is that, based on current estimates, approxi-
mately 5 years of clinical follow-up is needed in order to 
allot sufficient time for the majority of prodromal AD 
patients to clinically manifest as dementia [17, 18]. Here, 
we were able to implement this experimental design 
thanks to the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI), which has been acquiring biomarker data 
in a large population of MCI patients since 2005, and to 
test the two hypotheses about which biomarker best clas-
sifies prodromal AD and which predicts progression to 
dementia.

Results
Classifying the dementia stage of Alzheimer’s disease
The deep learning model was trained, validated, and 
tested on 975 MRI scans repeatedly acquired in patients 
in the dementia stage of AD, versus 1943 MRI scans 
repeatedly acquired from healthy controls. In the test 
set, a “deep learning MRI” score was derived for each 
scan from the model, with the score reflecting the prob-
ability of each scan having AD. A receiver operating 
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characteristic (ROC) analysis revealed that the deep 
learning MRI scores accurately classified AD dementia 
vs. healthy controls with an area under the receiver oper-
ating characteristics curve (AUROC) of 0.973 (Fig. 1a).

Next, we generated an AD “class activation map” to 
determine whether the deep learning MRI scores derived 
from the model were regionally dominated. We find that 
the deep learning MRI scores are dominated by altera-
tions in voxel signal intensity that localized to the ante-
rior medial temporal lobe, in the vicinity of the anterior 
entorhinal cortex and hippocampus (Fig.  1b). We note 
that while the class activation map localized to the left 
more than the right anterior medial temporal lobe, in 
agreement with previous findings [19–21], contralateral 
areas emerged with lowered thresholding (Fig. S2). This 
anatomical profile supports the biological premise of 
our classification, potentially placing our deep learning 
MRI scores within the “neurodegeneration” biomarker 
category.

Classifying the prodromal stage of Alzheimer’s disease
From ADNI, we identified a cohort of participants who 
were diagnosed with MCI at baseline and who had a 
complete set of CSF amyloid and tau biomarkers and 
structural MRI (N = 582; the inclusionary and exclu-
sionary algorithm is illustrated in Fig. S1). Among these, 
205 participants progressed to AD dementia at follow-
up (“MCI progression” group), and thus had prodromal 
AD at baseline, while 179 participants remained MCI 
stable for at least 4 years (“MCI stable” group) (Fig.  2). 
The dementia-derived deep learning classifier was used 
to generate deep learning MRI scores on each individual 
case.

ROC analyses revealed that the deep learning MRI 
score outperformed all other biomarkers in classifying 

the MCI stable from the MCI progression group (Fig. 3). 
The AUROC of deep learning MRI score was 0.788 
(accuracy at Youden (ACC) = 75%), superior to CSF 
Aβ (AUROC = 0.702, ACC = 66.7%, significantly lower 
than the deep learning MRI score, p = 0.0141), CSF tau 
(AUROC = 0.682, ACC = 66.4%, p = 0.0161), and CSF 
tau/Aβ (AUROC = 0.703, ACC = 68.5%, p = 0.0161); 
superior to MRI-based measures of hippocampal volume 
(AUROC = 0.733, ACC = 67.7%, p = 0.0484), entorhi-
nal cortex volume (AUROC = 0.64, ACC = 62.5%, p = 
2.01E−6), and entorhinal cortex thickness (AUROC = 
0.685, ACC = 64.1%, p = 1.71E−4); and, finally, superior 
to Mini-Mental State Exam (AUROC = 0.648, ACC = 
63.3%, p = 6.70E−5) and to neuropsychological meas-
ure most sensitive to the early stages of AD, the RAVLT 
retention score [22] (AUROC = 0.686, ACC = 67.7%, p 
= 2.28E−3).

Additionally, the deep learning MRI score was found to 
outperform or perform as well when tested in a subset of 
participants in whom additional PET-based biomarkers 
were available—FDG-PET that by measuring the parietal 
cortex metabolism is considered a biomarker of neurode-
generation [23], and AV45-PET, which by using an amy-
loid radioligand is a biomarker of amyloid pathology [24]. 
In this subset, the deep learning MRI score classified 
prodromal AD with an AUROC = 0.815 (ACC = 78.6%), 
compared to the AUROC of 0.782 for PDG-PET (ACC 
= 75.4%) and 0.751 (ACC = 71.4%) for amyloid-PET, 
although the differences were not statistically significant 
(Fig. 3, bottom panel).

Predicting progression to Alzheimer’s disease dementia
Survival analyses were performed to determine which 
biomarker best predicted progression to AD demen-
tia among the MCI groups. The results revealed that 

Fig. 1  Classifying Alzheimer’s disease in its dementia stage. The “receiver operating characteristic” curve shows that the deep learning MRI score 
applied to the test set of Alzheimer’s disease (AD) dementia scans vs. healthy controls scans classified AD dementia with high accuracy (AUCROC 
= 0.973) (a). The class activation map, reflective of the regional contributions to the deep learning MRI scores, localized to the left anterior medial 
temporal lobe in the vicinity of the entorhinal cortex and hippocampus, where Alzheimer’s pathophysiology begins
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Fig. 2  Distribution and demographics of subjects in the “mild cognitive impairment” study. Distribution frequencies of the participants with 
amnestic mild cognitive impairment (MCI) at baseline, who either remained stable (MCI stable) or progressed to Alzheimer’s dementia (MCI 
progression), organized by the latest follow-up years and conversion years. The dark blue bars indicate participants included in the study. 
Demographic and baseline biomarker data are listed in the table for the MCI stable and MCI progression groups
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compared to other biomarkers, the deep learning MRI 
score best predicted the time to conversion to AD 
dementia, as illustrated by the survival curves of high 
and low deep learning MRI scores and tau/Aβ ratios 
(Fig.  4). The deep learning MRI scores showed better 
prediction capability (|z| = 11.0, p =4.35E−28) than 
CSF biomarkers of amyloid and tau pathology (Aβ |z| 
= 6.37, p = 1.87E−10, tau |z| = 5.70, p = 1.18E−08, 
tau/Aβ |z| = 5.41, p = 6.29E−08) than MRI-based 
biomarkers of neurodegeneration (hippocampal vol-
ume |z| = 8.80, p = 1.35E−18, entorhinal volume |z| 
= 6.02, p = 1.75E−09, and entorhinal thickness |z| 
= 7.42, p = 1.21E−13) and than behavioral measures 
(MMSE |z| = 5.72, p = 1.07E−08 and RAVLT reten-
tion |z| = 6.88, p = 6.12E−12). Similarly, in the sub-
set in whom the additional PET biomarkers were 
available, the deep learning MRI score (|z| = 9.04, p 
= 1.40E−19) outperformed or performed as well as 

FDG-PET (|z| = 9.11, p = 8.14E−20) and AV45-PET 
(|z| = 7.12, p = 1.04E−12).

Correlations with amyloid pathology and tau pathology
Correlational analyses were performed to determine 
whether the deep learning MRI score was correlated 
more with amyloid pathology or tau pathology. Cross-
sectionally, we found that while the deep learning MRI 
score showed a stronger correlation with CSF tau (r 
= 0.225, p = 9.00E−6), it also correlated with CSF Aβ 
(r = − 0.190, p = 1.86E−4). Longitudinally, however, 
changes in the deep learning MRI scores over time were 
significantly associated with the changes in CSF tau (r = 
− 0.205, p = 1.50E−3), but not with the changes in CSF 
Aβ (r = − 8.18E−3, p = 0.900).

Next, in a subsample with available postmortem data, 
we correlated the deep learning MRI score with neuro-
pathological evidence of amyloid pathology, as indicated 

Fig. 3  Classifying Alzheimer’s disease in its prodromal stage. By comparing the “MCI stable” to the “MCI progression” groups, ROC curves show that 
the deep learning MRI (DLMRI) scores were superior in classifying prodromal Alzheimer’s disease (indicated in red). The deep learning MRI scores 
outperformed (left panel) CSF measures of Aβ, tau, or tau/Aβ; MRI measures of hippocampal (HC) or entorhinal cortex (EC) volume or thickness; 
clinical measures using the modified mental status exam (MMSE) or the retention of the Rey Auditory Verbal Learning Task (RAVLT) (left panel). In a 
smaller subset, the deep learning MRI scores (right panel) outperformed PET measures of amyloid using the AV45 radioligand or metabolism using 
fluorodeoxyglucose (FDG). Specific area under the curve (AUROC) values for each measure, and statistical probability values for each comparison, 
are shown in the table
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by the Thal staging [25], or tau pathology indicated by 
Braak staging [26]. The deep learning MRI scores were 
found to associate more with tau pathology (with an 
MRI-autopsy interval below 2 years, Braak staging: r = 
0.397, p = 7.70e−3; Thal staging: r = 0.196, p = 0.203) 

(Fig. 5, bottom panel). To further explore the regionality 
of this relationship, we found that the deep learning MRI 
score correlated with tau levels mapped by tau-PET, with 
strong correlations observed with tau pathology in the 
entorhinal cortex (r = 0.449, p = 1.66E−15).

Fig. 4  Predicting progression to Alzheimer’s dementia. Survival analyses were performed comparing the deep learning MRI scores to other 
measures, and example curves illustrate that the deep learning MRI score (left panel) outperforms the CSF measure of the tau/Aβ ratio (right panel). 
The high risk (indicated by red) and low risk (indicated by blue) curves were fitted from 75% and 25% percentile of the measures, respectively. 
The shaded area indicates the 95% confidence interval. The deep learning MRI scores outperformed CSF Aβ, tau, or tau/Aβ; MRI-derived measures 
of hippocampal volume, entorhinal cortex volume, and entorhinal thickness; behavioral measures, Mini-Mental State Exam (MMSE), and RAVLT 
retention; and, when available, PET measures of amyloid using the AV45 radioligand or metabolism using fluorodeoxyglucose (FDG)
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Discussion
The level of performance achieved by our deep learn-
ing model in classifying AD dementia supports 
the hypothesis that this approach of neuroimaging 
machine learning outperforms the traditional methods 
of measuring neurodegeneration. Further validating 
the assumptions, design, and implementation of our 
model is the fact that, despite incorporating informa-
tion from the whole brain, the class activation map was 
dominated by a signal in the anterior entorhinal cortex 
and hippocampus, precisely where AD pathophysiol-
ogy begins [3, 19–21, 26].

Stronger validation of the deep learning model was 
provided by the second series of studies when the demen-
tia-derived classifier was applied to the prodromal stages 
of AD. Supporting the first hypothesis of this study, we 
found that our deep learning MRI scores outperformed 
other MRI-based measures of neurodegeneration in both 
classifying prodromal AD and predicting progression to 
dementia. Refuting the second hypothesis, we found that 
the deep learning MRI scores typically outperformed the 
biomarkers of amyloid and tau pathology.

We do not consider this unexpected finding a chal-
lenge to the primacy of amyloid and tau pathology in 
the neuropathological progression of AD [27]. The 
deep learning MRI scores were found strongly linked to 
tau pathology in the entorhinal cortex, a region where 
AD pathology begins [26], and its performance likely 
reflects this sensitivity. It is possible, therefore, that 
tau-PET may outperform the deep learning MRI score 
and other biomarkers. Future analyses from ADNI and 
other long-term PET studies will be able to test this 
prediction.

The observation that the deep learning MRI scores 
outperformed biomarkers of amyloid and tau pathology 
in predicting the time to dementia is less surprising. As 
a biomarker of neurodegeneration, this finding agrees 
with prior studies [28] and with the current model for the 
temporal sequence of AD’s neuropathology [27]. Since 
in this scheme neurodegeneration occurs last, accurate 
biomarkers of it are more proximal to the development 
of dementia. Alternatively, these results might imply that 
neurodegeneration as a categorical for AD diagnosis may 
be more granular and focal, reliably detectable only by 

Fig. 5  The deep learning MRI score correlates with tau pathology. The scatter plots illustrate the relationship between changes over time in the 
deep learning MRI scores vs. changes in CSF Aβ (left panel), changes in CSF tau (middle panel), and changes in CSF tau/Aβ (right panel). Each data 
point indicates one participant’s change of last deep learning MRI score from baseline (ΔDLMRIlast), plotted against their fitted change in biomarker 
measures at ΔDLMRIlast with the slope estimated from all follow-up visits (see the “Methods” section). The black solid lines are the linear fits across 
participants, showing that changes in the deep learning MRI score are most strongly correlated with the changes in tau over time. The table lists 
the correlations between antemortem deep learning MRI scores to postmortem-derived Braak stage of neurofibrillary tangles and the Thal phase 
of amyloid plaques, with an MRI autopsy interval below either 1 or 2 years, showing that the deep learning MRI scores are most strongly correlated 
with tau pathology
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newer analytic or measurement techniques, in the course 
of disease pathogenesis.

The strength of our prodromal AD study is that by rely-
ing on progression to AD dementia as a way to retroac-
tively identify patients with prodromal AD, we overcame 
the limitation that precise biomarker cutoffs for pro-
dromal AD have not yet been established. We designed 
the analysis based on prior studies that suggest that the 
majority of MCI patients with prodromal AD will pro-
gress to dementia within 4–5 years [17], an assumption 
confirmed in our study. Furthermore, approximately 
half of the MCI cohort ended up having prodromal AD, 
which agrees with the previous approximations [29].

Although the primary focus of the study is to demon-
strate MRI information extracted via deep learning as an 
accurate and feasible biomarker for prodromal AD, we 
also show DLMRI can be used as an individual biomarker 
in combination with other categories of biomarkers to 
further boost the prodromal AD classification accuracy. 
We show the 5-fold cross-validation analysis results using 
individual and combined categories of data in Table S1.

Limitations
A potential weakness of our study is the possibility that 
a minority of patients in the stable MCI category are 
harboring prodromal AD at baseline. The number of 
misclassified patients is likely to be low [29], and so, this 
potential imprecision would not be expected to signifi-
cantly alter our results. Tracking stable MCI patients for 
longer periods might address this concern but would in 
fact raise a new one: when tracking patients for a decade 
or more, particularly given the high incidence of AD in 
older populations, some are expected to develop AD de 
novo after the baseline evaluation. We can conclude that 
our findings and their conclusions are beyond reproach 
for a 5-year time window after initial evaluation, a clini-
cally meaningful epoch for both patients and clinicians.

Conclusions
Our study provides the proof-of-principle that imaging-
based deep learning models that are examined in concert 
with a disease’s pathophysiology will yield a highly accu-
rate model and improve performance in prognosticating 
disease. Showing that deep learning can enhance the util-
ity of MRI in prodromal AD is the more important clini-
cal implication of this study. Ordering “neuroimaging 
studies” [30] is the current standard of care when evalu-
ating a patient with MCI suspected of having AD, most 
typically the conventional MRIs from which the deep 
learning MRI scores were derived. The rationale for this 
recommendation and its routine clinical implementation 
is not to “rule in” AD but rather to exclude other non-
neurodegenerative causes of dementia, such as strokes, 

bleeds, and tumors. Machine learning techniques, such 
as these, that can extract useful information for the pur-
poses of prodromal AD detection, from conventional 
MRIs that have in any case been acquired, have the addi-
tional advantages of reducing patient burden and cost 
incurred by lumbar punctures, injection of radioactive 
ligands, or another additional testing.

Methods
Participants in the Alzheimer’s disease dementia study
All data were obtained from ADNI, a multi-site obser-
vational study, which were acquired in accordance with 
each site’s respective Institutional Review Board, includ-
ing obtaining written consent acquired from each par-
ticipant. We included 2918 scans (Nhealthy control = 1943, 
NAD = 975) from 626 subjects as training set, 382 scans 
(Nhealthy control = 251, NAD = 131) from 80 subjects as vali-
dation set, and 325 scans (Nhealthy control = 229, NAD = 96) 
from 80 subjects as test set.

Our data augmentation method of using scans from 
multiple visits of the same participant requires dealing 
with two problems: data leakage and disease progression. 
Data leakage is the problem of including different scans 
from the same participant in the training and test set; 
the trained model might make the prediction by match-
ing the subject instead of extracting disease-relevant 
patterns. In this study, the training, validation, and test 
sets were partitioned at the subject level to ensure non-
overlapping subjects. Disease progression is the problem 
that the diagnosis status of subjects might change during 
follow-up visits, and the diagnosis at scan time might be 
different from the baseline label. In this study, we labeled 
all the scans with their cross-sectional diagnosis at scan 
time, and although one participant’s diagnostic labels 
may change, and therefore appear in both groups, there 
are few such cases.

Participants in the “Mild Cognitive Impairment” study
From ADNI, we identified a cohort of participants who 
were diagnosed with MCI at baseline and who had a com-
plete set of CSF amyloid and tau biomarkers and struc-
tural MRI (N = 582; the inclusionary and exclusionary 
algorithm is illustrated in Fig. S1). Among these, 205 par-
ticipants progressed to AD dementia at follow-up (“MCI 
progression” group), and 179 participants remained MCI 
stable for at least 4 years (“MCI stable” group). The time 
distribution and demographics of these two groups are 
shown in Fig. 2.

The deep learning MRI score
The deep learning model used in this study is a three-
dimensional convolutional neural network (3D CNN) 
model with five convolutional stages and one fully 



Page 9 of 11Feng et al. Alzheimer’s Research & Therapy           (2022) 14:45 	

connected layer with sigmoid output [5]. Each convo-
lutional stage consists of two convolutional layers with 
rectified linear unit (ReLU) activation function, a batch 
normalization operation and a max pooling layer. The 
model was optimized using the ADAM method with 
cross-entropy loss, using a learning rate of 2e−5 deter-
mined through a grid search. The model was trained on 
the brain-extracted T1-weighted structural MRI scans 
from the ADNI cohort to classify patients in the demen-
tia stage of AD versus healthy control subjects. To evalu-
ate the regional contribution to AD classification, we 
generated a 3D class activation map, which visualizes the 
predictive regions in deep learning classification models 
[31, 32].

We applied the model trained to classify AD dementia 
versus healthy controls to the baseline scans of patients 
diagnosed with MCI. The continuous output from the 
model is reflective of the progressive structural patterns 
of AD pathology. We refer to it as a “deep learning MRI” 
(DLMRI) score, where a value of 0 is likely to be cogni-
tively normal and 1 is likely to be AD. All analyses were 
performed using this score.

Amyloid and tau biomarkers
CSF biomarkers
CSF tau levels, reflective of neurofibrillary tangle, and 
CSF Aβ levels, reflective of amyloid pathology, were 
included in the analysis [33]. Additionally, the tau/Aβ 
ratio, which has been shown to best capture AD [34], was 
also included [35]. CSF was acquired at individual ADNI 
sites in accordance with the ADNI acquisition protocols 
and analyzed as previously described [35], using the mul-
tiplex xMAP Luminex platform. The median values pro-
vided by ADNI were used.

PET measures
In a subset of participants (NMCI progression = 94, NMCI stable 
= 154), amyloid pathology was also estimated with PET, 
mapping amyloid burden with the amyloid-binding radi-
oligand AV45. The composite AV45-PET score provided 
by ADNI [36] was used in the analyses, which is based 
on the average AV45 SUVR (standard uptake value ratio) 
of the frontal, anterior cingulate, precuneus, and parietal 
cortex relative to the cerebellum [37].

Neurodegeneration biomarkers
MRI morphometry
FreeSurfer 6.0 [38, 39] was used to segment the structural 
MRI scans and derive regional morphometric measures. 
Hippocampal (HC) volume, entorhinal cortex (EC) vol-
ume, and entorhinal cortex thickness were used as struc-
tural integrity measures of the hippocampal formation. 

Hippocampal and entorhinal cortex volumes were nor-
malized by the intra-cranial volume (ICV).

PET measures
In a subset of participants (NMCI-progression = 94, NMCI-stable 
= 154), neurodegeneration was also estimated with PET 
using fluorodeoxyglucose (FDG). The composite FDG 
score provided by ADNI [36] was used in the analyses, 
which is based on the average FDG uptake of angular, 
temporal, and posterior cingulate [23].

Additional measures
Behavioral and neuropsychological measures
The Mini-Mental State Examination (MMSE) score and 
Rey Auditory Verbal Learning Test (RAVLT) retention 
scores were used in the analysis. The RAVLT retention 
score measures the number of delayed recalled words 
divided by the number of words learned in the last learn-
ing trial (trial 5) and has been found to be one of the most 
sensitive to AD23.

Neuropathology
Among subjects with postmortem neuropathology data, 
44 cases were identified who had an MRI within 2 years 
prior to death, and 29 cases were identified who had MRI 
within 1 year prior to death. DLMRI scores were derived 
from the last antemortem MRI scans in this cohort. An 
association was investigated between the DLMRI score 
and the neuropathologically derived Braak stage, which 
reflects neurofibrillary tangles [26], and the Thal phase, 
which reflects amyloid plaques [25].

Tau‑PET
ADNI began acquiring PET scans using the AV1451 radi-
oligand, which binds neurofibrillary tangles [40], in the 
late phase of ADNI2 and resumed in ADNI3. Due to the 
smaller number of subjects with available longitudinal 
tau-PET data or follow-up visits, cross-sectional analyses 
on these subjects (N = 296) using the regional AV1451 
retention levels provided by ADNI [36] were performed.

Statistical analysis
ROC analysis
A receiver operating characteristic (ROC) analysis was 
used to determine the accuracy of the deep learning MRI 
score in prodromal AD classification, i.e., MCI stable and 
MCI progression classification, using standardized resid-
uals controlling for age, sex, and APOE ε4 frequency with 
linear regression. The DeLong test [41] was used to test 
for the significance of the differences in the area under 
the ROC curve (AUROCs) between DLMRI score and 
other measures using the pROC R package [42].
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Survival analysis
Cox proportional hazards regression models were fit to 
examine the association between each baseline meas-
ure and time to conversion to AD dementia from MCI, 
controlling for age, sex, and APOE ε4 frequency, using 
the survival R package [43]. MCI-stable participants 
are included in the models as censored data with the 
last visit as the censored point. The high-risk and low-
risk survival curves were generated with the 75% per-
centile and 25% percentile of the observed measures, 
respectively.

Longitudinal analysis
The longitudinal association between DLMRI score and 
CSF biomarkers was studied by examining the devia-
tion from baseline measurements for each participant 
over time. From the “MCI progression” and “MCI sta-
ble” groups, we further identified participants that had 
at least one follow-up of both MRI and CSF and col-
lapsed them into a group for longitudinal analysis (n = 
238). The changes in either CSF biomarker or DLMRI 
score of all follow-up visits from baseline were used 
to estimate the slope β of the change in tau (Δtau), Aβ 
(ΔAβ), and tau/Aβ ratio (Δtau/Aβ) versus the change in 
DLMRI score (ΔDLMRI) for each participant using lin-
ear regression through the origin. Each participant was 
represented by the point based on the last follow-up 
visit’s ΔDLMRIlast (x-coordinate) and the fitted change 
βΔDLMRIlast (y-coordinate) of the respective measure. 
The last follow-up visit was used to anchor the repre-
sentation of the participant in order to reflect the full 
follow-up. A correlation analysis was performed across 
participants. A linear regression model was fit across 
participants and illustrated.

Correlational analysis
A partial correlation was performed between baseline 
DLMRI score and CSF biomarkers, regional tau-PET 
measures, controlling for age, sex, and APOE ε4 fre-
quency. As the Braak stage of neurofibrillary tangles 
and the Thal phase of amyloid plagues are both rank 
ordinal measures, we correlated the DLMRI score 
with the neuropathological measures using Spearman 
correlation.

Multivariate analysis of biomarkers from multiple categories
Linear SVM analyses were performed using individual 
and combined categories of data for prodromal AD 
classification in the MCI group. Fivefold cross-valida-
tion was performed, and the average AUROC scores on 
the test splits were reported.
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