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Abstract 

Background:  Genetic variants within the APOE locus may modulate Alzheimer’s disease (AD) risk independently or 
in conjunction with APOE*2/3/4 genotypes. Identifying such variants and mechanisms would importantly advance 
our understanding of APOE pathophysiology and provide critical guidance for AD therapies aimed at APOE. The APOE 
locus however remains relatively poorly understood in AD, owing to multiple challenges that include its complex 
linkage structure and uncertainty in APOE*2/3/4 genotype quality. Here, we present a novel APOE*2/3/4 filtering 
approach and showcase its relevance on AD risk association analyses for the rs439401 variant, which is located 1801 
base pairs downstream of APOE and has been associated with a potential regulatory effect on APOE.

Methods:  We used thirty-two AD-related cohorts, with genetic data from various high-density single-nucleotide 
polymorphism microarrays, whole-genome sequencing, and whole-exome sequencing. Study participants were 
filtered to be ages 60 and older, non-Hispanic, of European ancestry, and diagnosed as cognitively normal or AD (n = 
65,701). Primary analyses investigated AD risk in APOE*4/4 carriers. Additional supporting analyses were performed in 
APOE*3/4 and 3/3 strata. Outcomes were compared under two different APOE*2/3/4 filtering approaches.

Results:  Using more conventional APOE*2/3/4 filtering criteria (approach 1), we showed that, when in-phase with 
APOE*4, rs439401 was variably associated with protective effects on AD case-control status. However, when apply‑
ing a novel filter that increases the certainty of the APOE*2/3/4 genotypes by applying more stringent criteria for 

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  mbelloy@stanford.edu
1 Department of Neurology and Neurological Sciences – Greicius lab, 
Stanford University, 290 Jane Stanford Way, Stanford, CA 94304, USA
Full list of author information is available at the end of the article
Data used in the preparation of this article were obtained from the EABD 
and EADI consortia. As such, the investigators within these consortia 
contributed to the design and implementation of their respective 
consortium and/or provided data but did not participate in the analysis 
or writing of this report. A full list of investigators is provided in the 
Supplementary materials.

http://orcid.org/0000-0001-7748-9033
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13195-022-00962-4&domain=pdf


Page 2 of 17Belloy et al. Alzheimer’s Research & Therapy           (2022) 14:22 

Introduction
APOLIPOPROTEIN E*4 (APOE*4) is the strongest 
genetic risk factor for late-onset Alzheimer’s disease 
(AD) [1]. In subjects of European ancestry, one copy of 
APOE*4 increases the risk of a clinical diagnosis of AD 
by about 3-fold and two copies increase the risk by about 
12-fold [2, 3]. APOE*2 on the other hand decreases the 
risk of AD by about half [3], while APOE*3 is the refer-
ence allele. Beyond the two common missense variants 
that compose APOE*2/3/4 (rs429358 and rs7412), there 
may be other coding variants on APOE or non-coding 
regulatory variants in the APOE locus that further impact 
AD risk, either independently or in conjunction with 
APOE*2/3/4 [4–15]. This pertains, by example, to a cru-
cial question in the field: why do some APOE*4 carriers 
remain asymptomatic even into advanced old age? One 
possibility is that there may be genetic variants in the 
APOE locus that affect APOE*4 availability and in turn 
mitigate APOE*4-related risk for AD. Identifying such 
variants would importantly advance our understanding 
of APOE*4 pathophysiology and provide critical guid-
ance for AD therapies aimed at APOE*4 [16, 17].

Despite its therapeutic promise and three active dec-
ades of research, the APOE locus remains relatively 
poorly understood in AD. While there are multiple rea-
sons contributing to this, one prominent one is that the 
APOE locus harbors multiple nearby genes and shows 
a complex linkage disequilibrium (LD) structure with 
APOE*2/3/4, making it difficult to identify causal variants 
and interaction effects [18, 19]. Other important reasons 
are that relevant risk variants may be rare, thus requiring 
large sample sizes, and that the quality of the APOE*2/3/4 
genotype can bear heavily on correctly identifying inter-
action effects and causal haplotypes. The latter may be 
of particular relevance given the plethora of available 
protein-based (e.g., two-dimensional gel electrophoresis 
and MALDI-TOF mass spectrometry) and DNA-based 
methods (e.g., TaqMan assays, high-resolution melting 
analysis, PCR sequencing, etc.) for APOE*2/3/4 genotyp-
ing [20–24]. Importantly, these methods have variable 
quality and limitations related to the haplotypic nature 
of APOE*2/3/4. For instance, protein-based assays may 
suffer from biases in detecting different APOE isoforms, 

while DNA-based assays can be affected by rare variants 
in the genomic region near APOE*2/3/4 (cf. Huang et al. 
for a detailed review) [25]. In turn, cohorts that are com-
monly included in genetic association studies of AD have 
used variable APOE genotyping methods [26–30], which 
has thus led to variable APOE*2/3/4 genotype quality 
across cohorts used in meta-analyses. The approach used 
to quality control the APOE*2/3/4 genotype is therefore 
critical to ensure robust association analyses. While the 
need for stringent APOE quality control is not necessar-
ily novel, to our knowledge, there is currently no specific 
study that clearly addresses this issue, nor are there are 
any consensus guidelines.

In this study, we present analysis approaches and 
related findings to guide future research in the APOE 
locus. Specifically, we show findings for a large-scale 
analysis of rs439401 and its association with AD risk. This 
variant, located 1801 base pairs downstream of APOE, 
was recently identified as a brain APOE splice quanti-
tative trait locus (sQTL) in GTEx [31, 32], spurring our 
interest to investigate it. We hypothesized it may affect 
APOE*4-related risk for AD and observed that it is most 
often seen on the same chromosome copy as APOE*3 
(i.e., is in-phase with APOE*3), but in rare instances was 
seen together with APOE*4. We thus stratified analyses 
according to APOE*3 and APOE*4 genotypes to evalu-
ate whether effects depended on the variant being in-
phase with APOE*4. We use analyses on this variant to 
illustrate how critical it is to have accurate APOE*2/3/4 
genotype data. Based on initial analyses using a conven-
tional APOE filtering approach and a subsequent robust-
ness assessment, we designed and present a novel APOE 
filtering approach that we believe will be highly relevant 
to help guide further reproducible research in this area.

Methods
Ascertainment of genotype and phenotype data
Genotype data for subjects with AD-related clinical out-
come measures were available from thirty-two cohorts, 
incorporating three sequencing projects [33–56]. 
Across cohorts, genotyping was performed using vari-
ous high-density single-nucleotide polymorphism (SNP) 
microarrays, whole-exome sequencing (WES), and 

concordance between the provided APOE genotype and imputed APOE genotype (approach 2), we observed that all 
significant effects were lost.

Conclusions:  We showed that careful consideration of APOE genotype and appropriate sample filtering were crucial 
to robustly interrogate the role of the APOE locus on AD risk. Our study presents a novel APOE filtering approach and 
provides important guidelines for research into the APOE locus, as well as for elucidating genetic interaction effects 
with APOE*2/3/4.
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whole-genome sequencing (WGS) (Table  S1). The dis-
covery samples comprised publicly available case-control 
(majority), family-based, population-based, and longitu-
dinal cohorts. Independent replication samples, geno-
typed on SNP microarrays, were available from three 
large cohorts: the Rotterdam study, a population-based 
prospective study, the European Alzheimer Disease Ini-
tiative (EADI), roughly two-thirds of which is from a 
prospective population-based study and one third from 
case-control samples, and the European Alzheimer & 
Dementia BioBank (EADB), which collated AD case-con-
trol samples from 15 European countries. Ascertainment 
of genotype/phenotype data for each cohort/project are 
described in detail elsewhere [33, 40–44, 46, 47, 54]. 
Cross-sample genotype/phenotype harmonization for 
the discovery samples is summarized in Supplemen-
tary Methods. Phenotypes from respective cohorts were 
updated as of March 2021. Data were analyzed between 
December 2019 and June 2021.

Genetic data quality control and processing
Genetic data in the discovery samples underwent 
standard quality control (QC; Plink v1.9) and ancestry 
determination (SNPweights v2.1; Fig. S1) [57]. Only non-
Hispanic subjects of European ancestry (representing 
the vast majority of samples) were selected for process-
ing. Data were restricted to those providing coverage of 
the rs439401 variant. Principal component analysis of 
genotyped SNPs provided principal components (PCs) 
capturing population substructure (PC-AiR, Fig. S2) [58]. 
Identity-by-descent (IBD) analyses reliably identified kin-
ship down to 3rd degree relatedness (PC-Relate, Fig. S3) 
[58]. Sparse genetic relationship matrices (GRM) were 
constructed to enable analyses including related individ-
uals [59]. SNP array data were used to perform genotype 
imputation with regard to the TOPMed imputation ref-
erence panel [60, 61]. Genetic processing of Rotterdam, 
EADI, and EADB replication samples is described else-
where [33, 54]. Detailed descriptions of all processing 
steps are in Supplementary Methods and Table S2.

Ascertainment of rs439401
The rs439401 variant was originally included in our 
analyses as it had a cross-cohort genotyping rate >80% in 
the discovery samples. Genotypes were considered from 
either the direct call on the SNP array data (i.e., called 
from probe intensity data) or the call from WGS data. We 
specifically relied solely on directly genotyped data rather 
than using imputed data in order to obtain unbiased 
results. This choice was additionally motivated reason-
ing that putative rare haplotypes may not be accurately 
imputed, particularly when using the commonly younger 
(non-AD) individuals in imputation reference panels [60, 

62, 63]. Genotype reliability for the variant was verified 
by cross-correspondence across 3804 duplicate samples 
in the discovery and by assessing genotype intensity data 
on the SNP microarray in EADB.

Ascertainment of APOE genotypes
Throughout, we will refer to APOE*2/3/4 genotypes 
as APOE genotypes. APOE genotypes were available 
from (1) cohort demographics (i.e., “provided” APOE), 
which generally had APOE genotype status determined 
through various direct genotyping methods (detailed 
elsewhere [33, 54]), (2) directly from WES/WGS calls, 
or (3) through imputation of rs429358 (which captures 
the APOE*4 allele) and rs7412 (which captures the 
APOE*2 allele). It is relevant to note that rs429358 was 
never directly available on the SNP microarrays. It is fur-
ther relevant to note that for the current WES data from 
ADSP, rs7412 was not available, with only rs429358 being 
reliably called in most subjects. The WES data could thus 
be used only to verify subjects with a provided APOE*3/3, 
3/4, or 4/4 status (cf. Supplementary Methods).

APOE genotype filtering criteria
To our understanding, common criteria across prior 
studies regarding APOE genotypes can be summarized 
as giving priority to provided APOE genotypes when 
available (as direct genotyping methods are generally 
considered the gold standard), followed by using APOE 
genotypes derived from rs429358 and rs7412 when 
directly called on a SNP microarray, followed by inference 
of APOE genotypes through (high quality) imputation 
of rs429358 and rs7412. There is no clear consensus on 
whether or how any discrepancies across available APOE 
genotypes for a given subject should be adjudicated. Fur-
thermore, with the recent increasing availability of WGS/
WES data in the AD field [42, 46, 51], these data can now 
also be used to verify APOE genotypes. When high-qual-
ity WGS/WES calls are available for rs429358 and rs7412 
(i.e., good read depth/quality with a clear reference/alter-
nate allele distribution) [64], the derived APOE genotype 
may be considered the ground truth. Recent work indeed 
suggests that a higher APOE genotype accuracy can be 
achieved using next-generation sequencing compared to 
conventional gold standard methods [65].

APOE filtering approach 1
Based on the above considerations, we designed criteria 
to use APOE genotypes according to the highest avail-
able quality. Specifically, when multiple APOE genotypes 
were available for a given subject, the APOE genotype we 
selected followed the priority of WGS/WES over pro-
vided/demographic sources (for details regarding “pro-
vided/demographic” APOE sources, please cf. above 
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in the section “Ascertainment of APOE genotypes”). If 
APOE genotype was only available from provided/demo-
graphic sources and was discordant across duplicate sam-
ples, then those samples were flagged for exclusion (N 
= 73 out of 1501 (4.86%) unique subjects). Similarly, the 
correspondence between APOE genotypes derived from 
WES and WGS across duplicate samples was checked 
and only showed discordance in five subjects differing for 
APOE*2/3 and APOE*3/3 genotypes across the WES and 
WGS data (these subjects were excluded). The final set of 
samples used for association analyses thus did not display 
any mismatches in prioritized APOE genotypes across 
duplicates, but in some instances, the APOE genotype 
from provided/demographic versus WES/WGS sources 
differed. APOE status as inferred from imputation was 
entirely ignored, reasoning this was less reliable and that 
rare haplotypes of potential interest in the APOE locus 
may lead to false imputation of APOE*2/3/4 genotype.

APOE filtering approach 2
After further assessment of the initial results, we had 
concerns about the reliability of APOE genotype status 
in some APOE*4 subjects carrying rs439401 (cf. Results). 
We therefore expanded the first approach to exclude any 
subjects who had their prioritized APOE genotype deter-
mined from provided/demographic APOE but were still 
discordant with their imputed APOE genotype (N = 632 
out of 12,753 (4.96%) in the discovery sample after pass-
ing all other filtering steps). Note that imputation scores 
(R2) for rs429358 and rs7412 were never lower than 0.8. 
Information regarding APOE imputation, as well as sev-
eral correspondence checks across different sources of 
APOE genotypes, are provided in the supplementary and 
referenced in the “Results” section. An additional check 
for APOE genotype consistency was also performed 
using newly released sequencing data from the ADSP 
(NG00067.v5) [66], processed in May 2021 (cf. Supple-
mentary Methods and the “Results” section).

An overview of the study design and APOE filtering 
approaches is presented in Fig. 1.

Simulations of concordance rates between observed 
and true APOE*4/4 genotypes
In order to understand potential uncertainty in APOE*4/4 
genotypes, we simulated different type I and II error rates 
for APOE*4/4 status. Type I error rate was defined as 
the probability, p1, to mis-classify non-APOE*4/4 car-
riers as APOE*4/4. Type II error rate was defined as the 
probability, p2, to mis-classify APOE*4/4 carriers as non-
APOE*4/4. We considered a range of true frequencies, 
ftrue, for APOE*4/4 cases and controls respectively with 
regard to all cases and controls (that is, all APOE strata). 
This range for ftrue was centered on observations in the 

current discovery samples, which should represent a rea-
sonable approximation of expected frequencies in case-
control samples. The observed frequency, fobs, was then 
defined as ftrue*(1-p2)+(1-ftrue)*p1. The concordance rate 
between observed and true APOE*4/4 was finally defined 
as ftrue*(1-p2)/fobs.

Statistical analyses
Primary analyses evaluated associations of rs439401 with 
relative risk for AD in APOE*4/4 carriers using additive 
genetic models. In additional supporting analyses, asso-
ciations were evaluated in APOE*3/4 carriers, compar-
ing wild-type (WT) to homozygote (HOM) genotypes, 
ensuring rs439401 was in-phase with APOE*4. The 
expectation here was to observe similar but attenuated 
effects compared to associations in APOE*4/4 carriers. 
Additional associations were evaluated in APOE*3/4 
and 3/3 carriers using additive genetic models, with the 
expectation of observing little or no effect if associa-
tions were conditional on being in-phase with APOE*4. 
APOE*2/4 carriers were not considered given sample 
paucity. Analyses were restricted to subjects aged 60 and 
above, consistent with age cutoffs in prior genetic studies 
of AD [54]. Replication analyses focused only on evalu-
ating variants in-phase with APOE*4. Lastly, to provide 
additional insight into the putative role of rs439401 in 
AD, we evaluated the association of rs439401 with rela-
tive risk for AD in the full discovery sample, while adjust-
ing for APOE*2 and APOE*4 dosage.

Cohorts in the discovery were combined into a single 
mega-analysis, included related subjects, and outcome 
measures were adjusted for age, sex, the first five genetic 
PCs, and the GRM. In full sample analyses, models fur-
ther included APOE*2 and APOE*4 dosage as covari-
ates. In replications, models included only unrelated 
subjects and were not adjusted for the GRM. EADI and 
Rotterdam further adjusted for the first three genetic 
PCs, while EADB adjusted for the first 20 genetic PCs 
and genotyping center. Notably, models in the discov-
ery mega-analyses did not adjust for cohort, reasoning 
that this may inadvertently diminish power given vari-
able cohort sizes and carrier distributions. This is espe-
cially relevant in case of lower frequency variants in the 
APOE*4/4 stratum, where cohort bins and the number 
of allele observations become very small. Still, to address 
potential concerns regarding cohort biases, in sensitivity 
analyses, the effect of cohort adjustment in the discovery 
was evaluated.

Associations with AD risk were evaluated under 
a case-control design using linear mixed-model 
regression in analyses of related subjects and logistic 
regression in analyses of unrelated subjects. Addi-
tional details for model/inclusion criteria are in 



Page 5 of 17Belloy et al. Alzheimer’s Research & Therapy           (2022) 14:22 	

Supplementary Methods. Association analyses were 
considered significant below a threshold P-value of 
0.05. All analyses were performed in R v3.6.0.

Results
Participant demographics and rs439401 linkage structure
Across all 142,075 genotyped samples considered in 
this study (Table S1), 65,701 unique participants passed 
filtering and inclusion criteria. Participant demograph-
ics for APOE*4/4 and 3/4 carriers are in Table  1, while 

detailed full sample demographics are in Table  S3-4. In 
the discovery, rs439401 displayed high LD (D’>0.9) with 
APOE*3, but in rarer instances was observed in-phase 
with APOE*4, thereby deviating from the expected LD 
structure (Table S5).

APOE filtering approach 1: Rs439401 shows variable 
association with Alzheimer’s disease risk
Primary case-control findings in APOE*4/4 carriers in 
the discovery showed that rs439401 displayed a strong, 

Fig. 1  Schematic overview of the study design and two APOE*2/3/4 filtering approaches



Page 6 of 17Belloy et al. Alzheimer’s Research & Therapy           (2022) 14:22 

protective, and significant effect on case-control sta-
tus (Table  2). It displayed similar protective effect sizes 
in EADI and Rotterdam replication samples, but was 
risk increasing in EADB, and did not reach significance 
in any replication sample. When in-phase with APOE*4 
in APOE*3/4 (WT-HOM) stratified analyses, rs439401 
showed a protective significant effect in the discovery, 
but variable non-significant results in the replication 

samples (Table 2). In contrast, in the discovery, rs439401 
did not associate with AD risk in APOE*3/4 (additive 
model) or 3/3 stratified analyses (Table S6), nor in the full 
sample analysis (odds ratio = 0.99; 95% confidence inter-
val = [0.95, 1.03], P-value = 0.61).

Because of the use of a mega-analysis design that 
does not adjust for cohort, there may still be concern 
for potential cohort biases. Therefore, as a sensitivity 

Table 1  Sample demographics for association analyses with Alzheimer’s disease case-control status

Cohort data were available through the National Institute on Aging and Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS), the National Alzheimer’s 
Coordinating Center (NACC), Accelerating Medicines Partnership – Alzheimer’s Disease (AMP-AD) Knowledge Portal, the Database of Genotypes and Phenotypes 
(dbGaP), Rush Alzheimer’s Disease Center at Rush University, the Image & Data Archive powered by Laboratory of Neuro Imaging (IDA-LONI), the Rotterdam study, 
the European Alzheimer’s Disease Initiative (EADI), and the European Alzheimer & Dementia BioBank (EADB). Cohorts included Adult Changes in Thought (ACT), 
Alzheimer’s Disease Center Datasets (ADC1-7) for which phenotype data is managed by NACC, European collaboration for the discovery of novel biomarkers for 
Alzheimer’s disease (ADDNEURO), the Alzheimer’s Disease Neuroimaging Initiative (ADNI), ADNI Department of Defense (ADOD), Alzheimer’s Disease Sequencing 
Project (ADSP) Discovery and Extension Phase, National Institute on Aging Genetics Initiative for Late-Onset Alzheimer’s Disease (NIA-LOAD), Oregon Health and 
Science University study (OHSU), Mayo Clinic Alzheimer’s Disease Genetics studies (MAYO), MAYO RNAseq study (MAYO2), Multi Institutional Research on Alzheimer 
Genetics Epidemiology (MIRAGE), Mount Sinai Brain Bank (MSBB), University of Miami/Texas Alzheimer’s Research Care Consortium Wave 2/Case Western Reserve 
University (MTC), Rush University Religious Orders Study/Memory and Aging Project (ROSMAP), Translational Genomics Research Institute series 2 (TGEN2), University 
of Miami/Vanderbilt University/Mt. Sinai School of Medicine studies (UM/VU/MSSM), University of Pittsburgh study (UPITT), the Washington University study (WASHU), 
Washington Heights-Inwood Community Aging Project (WHICAP), the Rotterdam study, the European Alzheimer’s Disease Initiative (EADI), and the European 
Alzheimer & Dementia BioBank (EADB)

Abbreviations: CN cognitively normal, AD Alzheimer’s disease, QC quality control, SD standard deviation, SNP single nucleotide polymorphism

Cohort APOE*3/4 carriers APOE*4/4 carriers

Name Participants 
after QC (N)

Diagnosis 
(N)

(N (%)) Female (N (%)) Age (Mean (SD)) (N (%)) Female (N (%)) Age (Mean (SD))

Discovery 25120 CN 12340 2707 (21.9 %) 1615 (59.7 %) 76.2 (8.4) 238 (1.9 %) 145 (60.9 %) 73.7 (7.4)

AD 12780 5740 (44.9 %) 3411 (59.4 %) 73.8 (6.9) 1652 (12.9 %) 895 (54.2 %) 70.1 (6.2)

Replication - Rot‑
terdam

10150 CN 8824 1868 (21.2 %) 1034 (55.4 %) 76.4 (9.3) 150 (1.7 %) 74 (49.3 %) 73.8 (8.0)

AD 1326 411 (31.0 %) 282 (68.6 %) 82.2 (6.4) 86 (6.5 %) 50 (58.1 %) 78.2 (6.9)

Replication - EADI 8571 CN 6502 1141 (17.5 %) 672 (58.9 %) 79.6 (6.4) 62 (1.0 %) 45 (72.6 %) 77.8 (6.4)

AD 2069 801 (38.7 %) 529 (66.0 %) 73.9 (7.4) 205 (9.9 %) 134 (65.4 %) 69.4 (5.9)

Replication - 
EADB

21860 CN 12295 2498 (20.3 %) 1431 (57.3 %) 72.4 (7.9) 195 (1.6 %) 107 (54.9 %) 70.3 (7.5)

AD 9565 3912 (40.9 %) 2522 (64.5 %) 74.0 (7.2) 959 (10.0 %) 551 (57.5 %) 70.4 (6.8)

Table 2  Results from APOE filtering approach 1: association findings for rs439401, when in-phase with APOE*4, with Alzheimer’s 
disease case-control status

Abbreviations: CN cognitively normal, AD Alzheimer’s disease, OR odds ratio, CI confidence interval

Genotype distributions AD Case-Control regression

Group/model CN, carrier No. / Total No. (%) AD, carrier No. / Total 
No. (%)

CN - AD, MAF (%) OR (95% CI) P-value

rs439401 - T allele tested

  APOE*4/4 - additive model

    Discovery 14 / 237 (5.91 %) 19 / 1652 (1.15 %) 3.59 % - 0.64 % 0.10 (0.04, 0.24) 1.64E-07

    Rotterdam 5 / 150 (3.33 %) 2 / 86 (2.33 %) 2.33 % - 1.16 % 0.43 (0.10, 1.80) 0.25

    EADI 1 / 62 (1.61 %) 2 / 205 (0.98 %) 0.80 % - 0.49 % 0.37 (0.01, 12.7) 0.58

    EADB 2 / 195 (1.03 %) 21 / 956 (2.20 %) 0.52 % - 1.20 % 1.61 (0.39, 6.77) 0.51

  APOE*3/4 - WT vs HOM

    Discovery 19 / 1401 (1.36 %) 14 / 2974 (0.47 %) - 0.55 (0.38, 0.80) 1.58E-03

    Rotterdam 8 / 993 (0.81 %) 3 / 220 (1.36 %) - 1.21 (0.31, 4.72) 0.78

    EADI 4 / 593 (0.67 %) 5 / 420 (1.19 %) - 1.22 (0.60, 2.49) 0.58

    EADB 12 / 1343 (0.89 %) 21 / 2070 (1.01 %) - 0.80 (0.55, 1.17) 0.25
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analysis, we re-evaluated the case-control discovery find-
ings, now adjusting for cohort or cohort/array/center 
(Fig.  S5). These analyses indicated diminished sig-
nificances, but effect sizes remained comparable and 
rs439401 remained strongly significant in APOE*4/4 
carriers.

Robustness assessment: limitations to APOE filtering 
approach 1
After the initial analyses, we assessed the robustness 
of the primary discovery findings. This appeared par-
ticularly relevant considering the very low frequency of 
rs439401 carriers in APOE*4/4 controls in EADB versus 
other cohorts, suggesting potential biases in the controls 
across the cohorts.

The concordance rate of rs439401 from duplicate sam-
ples across microarrays and WGS (99.97%) supported 
genotype reliability (Table  S7). Similarly, the variant 
appeared confidently called from the EADB microarray 
intensity data (Fig. S4). Overall, we concluded there were 
no specific genotyping issues for rs439401.

Another important consideration is that some error 
rate is expected for the different direct APOE genotyp-
ing methods used across cohorts. Overall, the reliability 
of the APOE*4 genotype may thus be of concern espe-
cially when considering the rare APOE*4-rs439401 hap-
lotype. After assessing all APOE*4/4-rs439401 carriers, 
it was apparent that one cohort, MIRAGE, contributed a 
large amount of APOE*4/4-rs439401 controls for which 
APOE status was available only from provided/demo-
graphic sources (Fig. 2A, Table S8). We then assessed the 
concordance rate between provided and imputed APOE 
genotypes across all respective cohorts and observed 
that MIRAGE displayed the lowest concordance rate of 
all cohorts included in the discovery analyses (Fig.  2B), 
despite comparably high imputation scores for rs429358 
and rs7412 to other cohorts (Table S9). Overall, this sup-
ported concern for the APOE*4/4-rs439401 controls 
from MIRAGE.

Extending on the above considerations, we assessed 
discordance rates between imputed and provided APOE 
for different strata (Fig. 2C, Table S10). Importantly, while 
the discordance rate was only 4.3% in the full sample, it 
increased to 7.2% in APOE*4/4 cases, further increased 
to 16.1% in APOE*4/4 controls, and then drastically 
increased to 47.4% in APOE*4/4-rs439401 carrier cases 
and 85.7% in APOE*4/4-rs439401 carrier controls. While 
our a priori assumption for approach 1 reasoned that 
imputed APOE may be discordant with provided APOE 
in case of subjects with rare haplotypes (e.g., APOE*4/4-
rs439401 carriers), the observation that this discordance 
was 2-fold higher in controls compared to cases would 
not be expected. Rather, it more likely indicates that a 

miscall of the APOE genotype was true in at least some 
of these individuals. To better understand these obser-
vations, we performed simulation studies using different 
type I and type II error rates (0–5%) for APOE*4/4 geno-
typing and observed that APOE*4/4 controls were more 
likely than APOE*4/4 cases to not actually be APOE*4/4 
carriers (Fig.  S6-7). This was the result of the low fre-
quency of APOE*4/4 controls and the strong case-control 
imbalance in APOE*4/4 carriers. Overall, this supported 
concern for the validity of approach 1.

We then used the recently released new ADSP WGS 
and WES data, which now cover additional subjects 
that are duplicated on SNP array samples included in 
our discovery analyses (N = 3644 as determined by 
identity-by-descent). We assessed the APOE genotype 
calls from the novel WES/WGS data and observed that 
three APOE*4/4-rs439401 control subjects (not from the 
MIRAGE cohort) in the prior discovery samples were in 
fact APOE*3/3 or APOE*3/4 carriers, which was also the 
imputed APOE genotype (Table  S8). Overall, this again 
raised concern about the validity of approach 1.

In sum, these additional checks for robustness of the 
findings suggested problems with APOE genotype reli-
ability in subjects with APOE*4-rs439401 haplotypes 
and APOE*4/4 carriers overall, indicating a limitation 
to the first (conventional) APOE filtering approach. In a 
final check, we observed that despite good concordance 
between provided and WGS APOE (99.1%), imputed and 
WGS APOE was more concordant (97.2%) than imputed 
and provided APOE (95.7%), indicating that at least in 
some subjects imputed APOE was likely more correct 
than provided APOE (Table S10).

APOE filtering approach 2: Rs439401 shows no association 
with Alzheimer’s disease risk
In light of the identified APOE reliability limitations, we 
extended approach 1 to filter out any subjects that did 
not have WGS/WES APOE and at the same time were 
discordant for provided and (high-quality) imputed 
APOE. We also filtered out any discordant APOE calls 
with regard to the new ADSP WES/WGS data since this 
information was available (in case of APOE*4-rs439401 
carriers, this overlapped with samples where provided 
and imputed APOE were discordant). We then applied 
this to the discovery samples and reran analyses. Exclu-
sion of subjects with discordant APOE status with the 
newly released ASDP WES/WGS data removed 61 (out 
of 12,367) subjects from the SNP-array samples. Further 
applying the new APOE filter excluded 632 (out of 12,753 
considered) subjects from the discovery SNP-array sam-
ples. APOE*4-rs439401 carrier frequencies dropped 
substantially, particularly in controls, and became 
more consistent with those observed in the haplotype 
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reference consortium (Fig. 3A). Case-control association 
analyses now indicated no effects for APOE*4-rs439401 
carriers (Table  3 and Fig.  3B, C) and still no effect in 
full sample analyses (odds ratio = 1.00; 95% confidence 
interval = [0.96, 1.05], P-value = 0.93). In sum, approach 
2 produced results that were more realistic in terms of 
expected linkage structure and more consistent with the 
lack of significant replication findings.

Discussion
Our results demonstrate that the filtering criteria for 
APOE*2/3/4 genotypes can heavily impact association 
finding for variants that exert their effect in conjunction 
with APOE*2/3/4. Specifically, we used the APOE sQTL 

variant rs439401 to illustrate this point. Using more 
conventional filtering criteria regarding APOE geno-
types (approach 1), we showed that, when in-phase with 
APOE*4, rs439401 was variably associated with protec-
tive effects on AD case-control status. However, when 
assessing the reliability of APOE*2/3/4 genotypes with 
more scrutiny and applying a novel filter to increase cer-
tainty of the APOE genotypes (approach 2), we observed 
that all significant effects were lost. The findings and 
methodology presented here are thus of high relevance to 
guide future research into the APOE locus. Specifically, 
we propose that our approach 2 can serve as a consensus 
APOE genotyping approach for future studies, namely, 
to prioritize first WGS/WES APOE*2/3/4 genotypes if 

Fig. 2  Limitations in APOE filtering approach 1 are reflected in discordance between imputed and provided APOE genotypes, particularly in 
APOE*4/4 carriers. A APOE*4/4-rs439401 carrier cohort distributions. The top section shows the distribution of prioritized APOE genotype source 
in approach 1, indicating that APOE*4/4 carriers of rs439401 had very few WGS/WES-verified APOE*4/4 data. The bottom section shows pie charts 
for carrier distributions across cohorts (Additional data in Table S8). The red arrow indicates that a large fraction of control rs439401 carriers was 
contributed by MIRAGE. B Concordance rates between provided and imputed APOE per cohort (additional data in Table S9). The red arrow indicates 
that MIRAGE had the lowest concordance rate, suggesting potential limitations with its provided APOE data that could explain observations in A. 
C Concordance rates between provided and imputed APOE for the discovery sample, considering multiple strata (additional data in Table S10). 
APOE*4/4 strata considered provided APOE*4/4 genotypes after applying APOE filtering approach 1. Note decreased concordance in APOE*4/4 
controls compared to cases. Note strongly decreased concordance for rs439401 carriers, specifically controls. Simulations confirmed that APOE*4/4 
controls are more likely than cases to not actually be APOE*4/4 carriers (cf. Fig. S6-7). Abbreviations: CN, cognitively normal; AD, Alzheimer’s disease; 
OR 
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available (and if only either rs429358 or rs7412 is avail-
able from WGS/WES, to use those genotype data to 
verify the provided/demographic APOE*2/3/4 geno-
types); second to use provided/demographic APOE*2/3/4 
genotypes; and third, in subjects without WGS/WES 
information, to exclude those for whom the provided/
demographic and imputed (R2>0.8) APOE*2/3/4 geno-
types are discordant. Another important step to ensure 
the highest quality of APOE*2/3/4 genotypes is to verify 

and harmonize this information across available dupli-
cate samples.

The rs439401 variant considered in the current study 
has previously been investigated with regard to AD risk 
in different contexts and using variable strategies and 
study designs [8–11, 13]. Our analyses however consid-
ered a substantially larger sample size, essentially incor-
porating most European ancestry AD cohorts included 
in prior studies, specifically focused on evaluating effects 

Fig. 3  Overview of rs439401 frequencies and case-control association findings, comparing APOE filtering approach 1 to approach 2. A Carrier 
frequencies across both approaches for APOE*4/4 and APOE*3/4 WT vs HOM groups, as well as in the Haplotype reference consortium v1.1 (HRC). 
Note decreased frequencies for rs439401 in approach 2 that appear concordant with the HRC. B, C Overview of association findings for all evaluated 
strata, comparing B approach 1 to C approach 2. Significant effects are denoted by an asterisk (*). Error bars show 95% confidence intervals. Note 
loss of significant effects in approach 2

Table 3  Results from APOE filtering approach 1 versus 2 in the discovery: association findings for rs439401, when in-phase with 
APOE*4, with Alzheimer’s disease case-control status

Abbreviations: CN cognitively normal, AD Alzheimer’s disease, OR odds ratio, CI confidence interval

Genotype distributions AD Case-Control regression

Group/model CN, carrier No. / Total No. (%) AD, carrier No. / 
Total No. (%)

CN - AD, MAF (%) OR (95% CI) P-value

rs439401 - T allele tested

  APOE*4/4 - additive model

    Discovery – approach 1 14 / 237 (5.91 %) 19 / 1652 (1.15 %) 3.59 % - 0.64 % 0.10 (0.04, 0.24) 1.64E-07

    Discovery – approach 2 2 / 203 (0.99 %) 10 / 1577 (0.63 %) 0.49 % - 0.32 % 0.47 (0.07, 3.21) 0.44

  APOE*3/4 - WT vs HOM

    Discovery – approach 1 19 / 1401 (1.36 %) 14 / 2974 (0.47 %) - 0.55 (0.38, 0.80) 1.58E-03

    Discovery – approach 2 4 / 1339 (0.29 %) 9 / 2914 (0.31 %) - 1.09 (0.61, 1.94) 0.78
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stratified to respective APOE genotypes, and tested only 
directly genotyped variants. Further, up-to-date genotype 
and phenotype data for a large set of AD cohorts was 
jointly harmonized to compose a parsimonious discov-
ery sample. Non-European ancestries were not investi-
gated here owing to the paucity of publicly available data. 
When compared to similar prior studies [6, 13–15], our 
discovery group was larger and we incorporated three 
large replication cohorts. Furthermore, through the 
implementation of linear mixed modeling and cross-sam-
ple harmonization, we were able to increase the power 
and specificity for variant discovery, while additionally 
verifying genotype reliability across nearly 4000 duplicate 
samples. In sum, our analyses should provide a robust 
assessment of the presented APOE filtering approaches 
and rs439401’s association with AD risk.

A recent study, using samples largely overlapping with 
the current discovery (but smaller in size) and an APOE 
filtering approach similar to our approach 1, evaluated 
the association of variants on the larger APOE locus 
with AD risk in APOE*4/4 carriers and did not iden-
tify the strong association of rs439401 that we observed 
in approach 1 [13]. Beyond differences in sample size 
and harmonization, the latter study adjusted models by 
study/cohort and made use of imputed genotypes. We 
specifically decided in primary analyses not to adjust 
for cohort, as we reasoned that this may inadvertently 
diminish power given variable cohort sizes and carrier 
distributions, especially in APOE*4/4 carriers. We fur-
ther reasoned that through our extensive phenotype/
genotype harmonization and the use of a mixed model 
mega-analysis design, which may capture some latent 
cohort effects, there was less concern for potential cohort 
bias. Additionally, given the complex LD structure of the 
APOE locus, we were concerned about the reliability of 
imputation and focused only on directly called geno-
types. A similar limitation regarding imputation was 
recognized by the authors of the prior study [13]. These 
differences likely explain why rs439401 was not observed 
in their study. Regardless of our considerations and of 
cohort adjustment, we determined that the APOE fil-
tering criteria were the most relevant factor for variable 
rs439401 association findings.

One important insight from our study was that sub-
jects, particularly controls, with a provided APOE*4/4 
genotype had a higher probability of discordance 
between their imputed and provided genotype than did 
subjects in the full sample. Such biases are, however, not 
limited to APOE*4/4 carriers. The six APOE genotypes 
(*2/2, 2/3, 3/3, 2/4, 3/4, 4/4) show large differences in 
numbers of carriers and case-control ratios, owing to the 
allele frequencies of rs429358/rs7412 and their effect on 
AD risk. As a result, the different APOE genotypes will 

be expected to have different concordance rates between 
true and observed APOE genotypes. We observed vary-
ing concordance between imputed and provided APOE 
across the six APOE genotypes, with particularly lower 
concordance rates in APOE*2 carriers (Fig.  S8). Just as 
the APOE*4/4 provided genotype was most likely to 
be incorrect here in controls (a phenotype for which 
APOE*4/4 is a particularly rare genotype), the APOE*2/2 
genotype is more likely to be incorrect in cases (a pheno-
type for which APOE*2/2 is a particularly rare genotype). 
The proposed APOE genotype filter will therefore also be 
specifically relevant for studies focusing on APOE*2.

Our study highlights several important considera-
tions for further work on the APOE locus. Most nota-
bly, we illustrate how APOE genotype filtering criteria 
can strongly impact association findings for variants in 
the APOE locus, especially when studying haplotypes or 
interaction effects with APOE*2/3/4. The same will hold 
true when considering non-local variants in, for instance, 
a genome-wide association study of AD in APOE*4/4 
subjects, or when aiming to disentangle genetic interac-
tion effects with APOE*2/3/4. Based on our observations, 
we suggest that future studies consider implementing the 
methodology that we proposed in approach 2 and subject 
their assessment of APOE genotypes to extensive scru-
tiny. The limitations observed for APOE*2/3/4 genotype 
reliability also emphasize that next-generation sequenc-
ing data will be crucial to interrogate the APOE locus 
with higher confidence and to ensure that putative rare 
haplotypes are not missed because of the need for sample 
filtering in SNP array data. Lastly, in order to have higher 
confidence in local haplotypes, long read sequencing 
approaches will additionally be crucial to help disentan-
gle the local haplotype structure on APOE with regard to 
AD.

Limitations
One limitation of our proposed approach is that it relies 
on the availability of high-quality imputed genotypes for 
rs429358 and rs7412, as well as careful phenotype/geno-
type harmonization across multiple data sources, which 
may not always be feasible for different research groups. 
Nonetheless, our findings show that efforts to increase 
APOE*2/3/4 genotype reliability should be pursued and 
that collaborative large-scale AD harmonization ini-
tiatives should consider this as an important focus. Fur-
thermore, our approach may be considered to be highly 
conservative when excluding subjects for which the 
imputed and provided APOE*2/3/4 genotypes are dis-
cordant, since some of the imputed APOE*2/3/4 geno-
types may in fact be the correct ones. Future studies may 
thus also consider retaining those subjects, using their 
imputed APOE*2/3/4 genotypes. Lastly, we propose to 
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prioritize WES/WGS APOE*2/3/4 genotypes given the 
high quality and reliability of these sequencing technolo-
gies. However, as detailed in the supplement, careful con-
sideration of genotyping quality and depth, integrated 
with provided APOE*2/3/4 genotype information, were 
crucial to maximize APOE*2/3/4 genotype reliability. It 
will therefore be critical that such information is made 
readily available and evaluated in future studies.

Conclusion
We showed that careful consideration of APOE genotype 
and appropriate sample filtering was crucial to robustly 
interrogate the role of the APOE locus on AD risk. Our 
study presents a novel APOE filtering approach and pro-
vides important guidelines for research in this area, as 
well as for elucidating genetic interaction effects with 
APOE*2/3/4.
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Protective Variant Study (RF1AG058066), Cache County Study (R01AG11380, 
R01AG031272, R01AG21136, RF1AG054052), Case Western Reserve University 
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