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P-tau and neurodegeneration mediate 
the effect of β-amyloid on cognition in non-
demented elders
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Abstract 

Background:  There are many pathological changes in the brains of Alzheimer’s disease (AD) patients. For many years, 
the mainstream view on the pathogenesis of AD believes that β-amyloid (Aβ) usually acts independently in addition 
to triggering functions. However, the evidence now accumulating indicates another case that these pathological 
types have synergies. The objective of this study was to investigate whether effects of Aβ pathology on cognition 
were mediated by AD pathologies, including tau-related pathology (p-tau), neurodegeneration (t-tau, MRI measure‑
ments), axonal injury (NFL), synaptic dysfunction (neurogranin), and neuroinflammation (sTREM2, YKL-40).

Methods:  Three hundred seventy normal controls (CN) and 623 MCI patients from the ADNI (Alzheimer’s Disease 
Neuroimaging Initiative) database were recruited in this research. Linear mixed-effects models were used to evaluate 
the associations of baseline Aβ with cognitive decline and biomarkers of several pathophysiological pathways. Causal 
mediation analyses with 10,000 bootstrapped iterations were conducted to explore the mediation effects of AD 
pathologies on cognition.

Results:  Tau-related pathology, neurodegeneration, neuroinflammation are correlated with the concentration of Aβ, 
even in CN participants. The results show that age, gender, and APOE ε4 carrier status have a moderating influence on 
some of these relationships. There is a stronger association of Aβ with biomarkers and cognitive changes in the elderly 
and females. In CN group, Aβ pathology is directly related to poor cognition and has no mediating effect (p < 0.05). In 
mild cognitive impairment, tau-related pathology (26.15% of total effect) and neurodegeneration (14.8% to 47.0% of 
total effect) mediate the impact of Aβ on cognition.

Conclusions:  In conclusion, early Aβ accumulation has an independent effect on cognitive decline in CN and a tau, 
neurodegeneration-dependent effect in the subsequent cognitive decline in MCI patients.
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Background
An essential pathology of Alzheimer’s disease (AD) is 
the gradual aggregation of β-amyloid (Aβ) in the brain, 
a process that begins decades before cognitive symp-
toms appear. The detection of abnormal Aβ accumula-
tion may support the clinical diagnosis of AD [1–3]. For 
many years, it has been generally believed that changes 
of Aβ promote the progression of AD and trigger harm-
ful cascade reactions, including tau pathology and neuro-
degeneration. Except this trigger function, it is generally 
believed that Aβ and tau act independently without a 
specific interaction. However, there is now accumulating 
evidence showing that this is not the case, and the two 
pathologies may have a synergistic effect [4]. In addi-
tion to Aβ aggregation, downstream pathological pro-
cesses are also shown to play key roles in AD progression. 
Reducing Aβ showed cognitive benefits in AD mouse 
models but failed to improve the clinical symptoms of 
AD patients in many clinical trials. Perhaps the simplest 
explanation is that those AD mouse models only have 
plaque pathology, while other pathologies may also exist 
in the cerebrum of AD patients, such as axonal injury, 
synaptic dysfunction, and neuroinflammation [5–7]. 
Therefore, Aβ is a necessary but not a sufficient condition 
for AD [8]. AD may be caused not only by the pathol-
ogy of Aβ and tau but also by the synergy and interaction 
among various pathological processes, which subse-
quently leads to cognitive decline.

The objectives of our study were (1) to investigate 
whether Aβ pathology is related to downstream patho-
physiological processes and cognitive levels; (2) to 
explore whether the major unchangeable AD risk factors 
such as age, gender, and APOE ε4 status regulate these 
associations; and (3) to investigate to what extent those 
associations represent particular downstream changes 
related to Aβ or to what extent they are driven by other 
relevant biomarkers. Advances in developing new cer-
ebrospinal fluid (CSF) or blood biomarkers provide 
insights into tracking pathological processes [6, 9–12]. 
Research into the synergistic interactions between the 
biomarkers of AD pathology will facilitate the under-
standing and the prevention of AD.

To implement these objectives, we investigated bio-
markers that reflect the pathophysiology of AD, includ-
ing tau-related pathology (phosphorylated tau, p-tau), 
neurodegeneration (total tau, t-tau; MRI measurements), 
axonal injury (neurofilament light, NFL), synaptic dys-
function (neurogranin), and neuroinflammation (soluble 
triggering receptor on myeloid cells 2, sTREM2; YKL-40) 

[13]. All those analyses were conducted among non-
demented individuals.

Methods
Participants
The data used in the study was acquired from the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) database. 
We included 993 subjects with available basic clinical 
characteristics, cerebrospinal fluid data, imaging data, 
and cognitive assessment data from the ADNI database. 
The ADNI database classified subjects clinically as cog-
nitively normal (CN, MMSE > 24, CDR = 0), mild cogni-
tive impairment (MCI; MMSE > 24, CDR = 0.5) or AD 
dementia following predefined criteria [14]. Individuals 
with subjective memory complaints at baseline were not 
excluded from the analyses. Instead, they were included 
within the CN group.

Measurements of CSF and plasma biomarkers
Those CN and MCI subjects with available baseline 
CSF Aβ42, p-tau, t-tau, sTREM2, YKL-40, plasma NFL, 
and MRI information were included in the analysis. The 
methods and analyses for biomarkers and imaging have 
been previously described in detail [15]. CSF Aβ42, p-tau, 
and t-tau levels (unit: pg/mL) were completed at the 
University of Pennsylvania through the multiple xMAP 
Luminex platforms (Luminex Corp, Austin, TX, USA) 
and INNOBIA AlzBio3 kit (Fujirebio, Ghent, Belgium) 
[16]. CSF sTREM2 measurements (unit: pg/mL) were 
done with an MSD platform-based assay, previously 
reported and validated [17]. The CSF YKL-40 levels (unit: 
ng/mL) were measured by the MicroVue YKL-40 ELISA 
(Quidel Corp.) at the University of Washington [18]. All 
CSF biomarker assays were performed in duplicate and 
averaged. Plasma NFL concentrations (unit: pg/mL) were 
measured on a Single-molecule array (Simoa) HD-1 ana-
lyzer (Quanterix) using an in-house immunoassay [19]. 
APOE genotype was determined by genotyping two sin-
gle-nucleotides (rs429358, rs7412) [20]. Genotype was 
analyzed as a dichotomous variable. The subject is classi-
fied as an APOE ε4 carrier if carrying at least one APOE 
ε4 allele.

MRI assessment
The protocol of the ADNI FreeSurfer-based pipeline is 
available online (http://​adni.​loni.​usc.​edu/) and in pre-
vious publications [21]. The MRI T1-weighted image 
underwent initial preprocessing, intensity normalization, 
and gradient expansion. After a hybrid watershed/surface 
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deformation removed the non-brain tissue, the volume 
structures of subcortical white matter and deep gray mat-
ter were segmented by automatic Talairach transform. 
The volume of the whole brain, hippocampus, entorhinal, 
and mid temporal was extracted as the regions of interest 
(ROI).

Cognitive assessment
We downloaded the episodic memory (MEM) and execu-
tive function (EF) comprehensive scores, as well as the 
recently verified language (LAN) and visual-spatial func-
tions (VS) from the website as tools to track the trajectory 
of cognitive measurement. These scores are extracted 
from ADNI neuropsychological tests, which are compre-
hensive scores after optimization of psychological meas-
urement. These measurements have been verified before, 
proving robust and externally effective [22, 23].

Statistical analyses
All statistical analyses were performed in R v.3.6.3. Out-
liers of baseline CSF Aβ42 concentrations are considered 
as three standard deviations (SD) higher or lower than 
the overall population means. These subjects (n = 6) 
were excluded. Baseline characteristics were compared 
between diagnostic groups using Student’s t-tests or 
Wilcoxon rank-sum tests for continuous and χ2-tests for 
categorical measures. The first aim of this study was to 
measure the direct associations of CSF Aβ42 with cogni-
tive measurements and various available biomarkers. To 
this end, we used each biomarker and cognitive assess-
ment results as the dependent variable of interest and the 
CSF Aβ42 level as the independent variable in the multi-
variate linear regression model. To determine the asso-
ciation of CSF Aβ42 levels with biomarkers and cognitive 
ability changes, we utilized a pre-established method in 
which we fitted linear mixed-effects (LME) models with 
various measurements as the dependent variable and 
time as the independent variable, controlling for ran-
dom slope and intercept. The LME model was also used 
to simulate the rate of changes of various measurements 
for subsequent analyses. We added a new variable result-
ing from the product of risk factors and CSF Aβ42 to the 
model to evaluate the interaction effects of CSF Aβ42 
levels and main AD risk elements (i.e., age, gender, and 
APOE ε4 status) on each indicator.

We used various biomarkers as mediators for our main 
hypothesis to analyze the mediation between CSF Aβ42 
and multiple cognitive measures. The purpose of this 
analysis is to assess whether the previously discovered 
association between CSF Aβ42 and cognition is partially, 
completely, or not mediated by AD pathology. In each 
model, CSF Aβ42 values were included as an independ-
ent variable, cognitive measurements as the dependent 

variable. All mediational tests were performed with 
10,000 bootstrap replications. The cut-off value of bio-
marker which used to indicate normal (negative) and 
abnormal (positive) might be considered as a character-
istic for the existence of Aβ pathology [24]. The cut-off 
concentration of CSF Aβ42 is 192 pg/ml. This cut-off value 
was used to divide the participants into A− and A+ 
groups for subsequent subgroup analyses.

All analyses were adjusted age, sex, APOE ε4 carrying 
status, and educational level as covariates, and addition-
ally adjusted intracranial volume during MRI measure-
ments analyses. Since all outcome variables in the model 
were converted to standardized z-scores, the coefficient 
refers to the standardized effect.

Results
The demographics, CSF Aβ, mediators, and neuro-
cognitive data at baseline and follow-up are shown in 
Table  1 and Additional file  3. A total of 993 individuals 
(370 CN and 623 MCI) free of dementia were included. 
As expected, there are differences in cognitive assess-
ment between clinical diagnosis groups (MEM, p < 0.001; 
EF, p < 0.001; LAN, p < 0.001; VS, p < 0.001). The cogni-
tive decline rates of MCI participants are significantly 
higher than that of CN population (MEM, p < 0.001; EF, 
p < 0.001; LAN, p < 0.001; VS, p < 0.001). There is lower 
CSF Aβ42 (p < 0.001) and higher p-tau (p = 0.002), t-tau 
(p < 0.001), Neurogranin (p < 0.001), and plasma NFL (p 
< 0.001) in the MCI group compared with CN group. We 
did not find any difference between the two groups in 
terms of educational level, CSF sTREM2, and CSF YKL-
40 concentration, which was closely resembled previous 
findings of this cohort [25, 26].

Associations of CSF Aβ42 with various biomarkers 
and cognitive measures
In our first main analysis, we calculated the associations 
of CSF Aβ42 with all mediators and cognitive measures. 
Individuals with lower CSF Aβ42 levels had more signifi-
cant tau pathology, neurodegeneration, and severe syn-
aptic dysfunction, as indicated by CN participants’ CSF 
p-tau, t-tau, and neurogranin levels (Additional file  4). 
Similar associations were found in the subsequent longi-
tudinal analyses (Fig.  1). Lower baseline CSF Aβ42 level 
also indicated faster cognitive decline during follow-up 
(Fig. 1). In the MCI group, CSF Aβ42 was closely related 
to tau pathology, neurodegeneration, synaptic dysfunc-
tion, neuroinflammation, and cognitive level (Additional 
file 5). Similar associations were found in the subsequent 
longitudinal analyses except for p-tau and neuroinflam-
mation (Fig. 1).
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Age, sex, and APOE ε4 interactions with CSF Aβ42 
on biomarkers
We only found CSF Aβ42 level interacted with sex on 
p-tau (p = 0.011) and VS (longitudinal, p = 0.030) in 
CN participants. No significant interactions with age 
and APOE ε4 status were detected using CSF Aβ42 as 
a marker of amyloid pathology (Additional file  4). In 
MCI group, the first interaction effect tested in the 
association between CSF Aβ42 and other measures was 
age. We observed that the interaction effect was impor-
tant for longitudinal p-tau (p = 0.016), NFL (p = 0.017), 
MRI (hippocampus, p = 0.011; entorhinal, p = 0.007; 
mid temporal, p = 0.036), and cognitive measurements 
(MEM, p = 0.008; EF, p = 0.003; VS, p = 0.014). CSF 
Aβ42 interacted with sex on longitudinal entorhinal vol-
ume (p = 0.042), MEM (p = 0.003), and EF (p = 0.015). 
Regarding the interaction between APOE ε4 status and 
CSF Aβ42, it was only significant for hippocampus vol-
ume (p < 0.001) and mid temporal volume (p = 0.011) 
(Additional file 5).

Causal mediation analyses
Preliminary regression analyses of different cogni-
tive groups showed the associations of the pathological 
index with cognitive measurements in the model con-
trolling for age, gender, educational level, and APOE ε4 
status. We tested whether the association between CSF 
Aβ42 and cognitive measurements was mediated by tau 
pathology and/or neurodegeneration, synaptic dysfunc-
tion, neuroinflammation. There is no evidence that CSF 
Aβ42 contributes to cognitive impairments via modulat-
ing other AD pathology in CN participants (Additional 
file 1, 2). However, analyses suggested that tau, neurode-
generation, synaptic dysfunction, and neuroinflamma-
tion directly impact cognitive decline (Fig. 2, Additional 
file 6).

The direct impact of tau pathology, neurodegenera-
tion, and synaptic dysfunction on cognition was also 
observed in the MCI participants. Figures 3 and 4 show 
the final models of MCI participants in which some 
mediators showed at least a trend to significance in 

Table 1  Clinical characteristics of participants in individual groups in the current study

Categorical variables are reported as numbers and percentages; continuous variables are reported as means ± SDs

Abbreviations: CN normal controls, MCI mild cognitive impairment, M male, F female, APOE ε4 apolipoprotein E4, CSF cerebrospinal fluid, Aβ amyloid-β, p-tau 
phosphorylated tau, t-tau total tau, sTREM2 soluble triggering receptor on myeloid cells 2, NFL neurofilament light, MRI magnetic resonance imaging

CN (n = 370) MCI (n = 623) p value

Age (years) 73.78 ± 5.91 72.42 ± 7.53 0.012

Gender (F/M) 194/176 256/366 0.001

Education (years) 16.39 ± 2.62 16.05 ± 2.76 0.081

APOE ε4 carriers (%) 27.84% 49.12% < 0.001

CSF measures

  Aβ42 200.34 ± 50.95 171.70 ± 52.28 < 0.001

  p-tau 32.13 ± 18.40 39.07 ± 22.38 < 0.001

  t-tau 67.51 ± 32.16 90.56 ± 54.82 < 0.001

  Neurogranin 379.95 ± 284.78 508.58 ± 343.28 < 0.001

  sTREM2 4104.09 ± 2122.88 4448.60 ± 2285.17 0.508

  YKL-40 392.56 ± 127.99 393.71 ± 131.49 0.966

Plasma NFL 34.32 ± 21.96 39.20 ± 22.85 < 0.001

MRI measures

  Whole brain 1040346.1 ± 104238.7 1047243.7 ± 109038.5 0.411

  Hippocampus 7467.2 ± 851.0 6867.8 ± 1142.1 < 0.001

  Entorhinal 3854.9 ± 610.2 3553.4 ± 724.3 < 0.001

  Mid temporal 20342.2 ± 2649.5 19895.1 ± 2860.6 0.051

Cognitive composite measures

  Memory function 1.05 ± 0.57 0.20 ± 0.69 < 0.001

  Executive function 0.79 ± 0.82 0.23 ± 0.88 < 0.001

  Language 0.81 ± 0.71 0.21 ± 0.77 < 0.001

  Visuospatial functioning 0.20 ± 0.60 − 0.06 ± 0.75 < 0.001
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the mediation path. First, we found that the relation-
ship between Aβ pathology and cognitive impairment 
was partially mediated by baseline tau pathology (CSF 
p-tau, 26.15% of total effect) and neurodegeneration 
(CSF t-tau, 16.6% to 36.4% of total effect; whole brain 
volume, 16.5% to 24.1% of total effect; hippocampus 
volume, 17.3% to 32.9% of total effect; entorhinal vol-
ume, 14.8% to 21.3% of total effect; and mid temporal 

volume, 23.1% to 47.0% of total effect) (Fig. 3). Figure 4 
illustrates the results of mediation using the longitu-
dinal change of the biomarkers as mediating variables. 
Similarly, the effect of amyloid on cognitive decline 
was partly mediated by longitudinal neurodegenera-
tion (whole brain volume, 16.8% to 18.0% of total effect; 
hippocampus volume, 32.0% to 49.2% of total effect; 

Fig. 1  Main effects of Aβ on biomarkers and cognitive measures in non-dementia participants. The figure shows the associations of baseline 
CSF Aβ42 on longitudinal biomarkers and cognitive measurements in CN and MCI populations, respectively. p values were extracted from linear 
mixed-effects models adjusted for age, sex, APOE ε4 carrying status, and educational levels. CN, normal controls; MCI mild cognitive impairment; 
Aβ, amyloid-β; p-tau, phosphorylated tau; t-tau, total tau; NFL, neurofilament light; sTREM2, soluble triggering receptor on myeloid cells 2; MEM, 
memory function; EF, executive function; LAN, language; VS, visuospatial functioning
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entorhinal volume, 16.4% to 29.6% of total effect; and 
mid temporal volume, 30.9% to 47.8% of total effect).

Although the results of this study show a particular 
association between neuroinflammation and cogni-
tive decline, we have not observed a mediating effect 
(Additional file  7). Given that a significant positive 
correlation between Aβ and cognitive measures exists, 
we conducted secondary analyses that categorized 
the sample into four subgroups: A-CN group, A+CN 
group, A-MCI group, and A+MCI group (Additional 
file 8, 9, 10 and 11). The above results were replicated in 
the A + MCI group (Additional file 11).

Discussion
In this study, we investigated the associations of Aβ 
pathology with cognitive changes and biomarkers which 
represent the downstream pathophysiological pro-
cesses of Aβ in a cohort of non-demented participants. 
Our results showed that the concentration of Aβ was 
negatively correlated with tau-related pathology, neuro-
degeneration, and neuroinflammation, even in CN par-
ticipants, suggesting that a reduction in Aβ could slow 
its downstream pathophysiological processes. Previous 
studies showed that anti-oligomeric Aβ antibodies effec-
tively reduced plaque load, tau hyperphosphorylation, 

Fig. 2  Effects of biomarkers on cognitive composite measures in CN participants. The figure shows the relationship of each biomarker at baseline 
with baseline and longitudinal cognitive measurements. Meaningful results have been marked with asterisks. *, **, and ***: p value< 0.05 and p 
value < 0.01, and p value< 0.001, respectively. CN, normal controls; p-tau, phosphorylated tau; t-tau, total tau; NFL, neurofilament light; sTREM2, 
soluble triggering receptor on myeloid cells 2; MEM, memory function; EF, executive function; LAN, language; VS, visuospatial functioning.
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and microglial activation, and these antibodies improved 
the cognitive ability in mouse models. These may be the 
protective effects of anti-oligomeric Aβ antibodies before 
cognitive decline [27]. We also found age, gender, and 
APOE ε4 carrier status had moderating effects on some 
of these correlations. The interaction analyses showed 
there were stronger associations of Aβ with cognitive 
changes and biomarkers in the elderly and females. In the 
mediation analysis, most p values with statistical signifi-
cance were less than 0.001. This means that even the FDR 
correction is not likely to affect the final conclusion.

We conducted a series of mediation analyses to explore 
which factors mediate the impact of Aβ on cognition. In 
the CN group, Aβ, tau pathology, neurodegeneration, 
axonal injury, synaptic dysfunction, and neuroinflam-
mation were directly related to cognitive decline without 
mediation effects. Several previous studies reported that 
people with decreased Aβ levels had a faster cognitive 
decline in memory and executive function [28–31]. But 
so far, there are relatively limited studies evaluating the 
relationship between Aβ and the longitudinal trajectories 

of cognitive performance. Our results are consistent with 
a recent finding from longitudinal cohort studies that Aβ 
and tau were associated with each other even in the CN 
population [32–35]. Aβ, tau, neurodegeneration, syn-
aptic dysfunction, and neuroinflammation all seem to 
directly associate with cognitive decline and contribute 
to memory decline in the preclinical stage of AD [36, 37]. 
This may explain why anti-Aβ therapy alone brings lim-
ited benefits in slowing down the rate of progression. Of 
course, in addition to causing downstream pathological 
processes, Aβ may also lead to cognitive impairment in 
an independent manner.

In MCI participants, the effects of Aβ on cognitive 
measurements were partially mediated by tau pathol-
ogy and neurodegeneration. Accumulating evidence 
has shown that upstream Aβ accumulation is related to 
abnormal changes in downstream pathological biomark-
ers, including abnormal tau, neurological dysfunction, 
glial activation, neuron loss, and brain atrophy, which 
is consistent with our result [38]. However, whether Aβ 
accumulation is sufficient to trigger the pathological 

Fig. 3  Mediation analyses of Aβ and baseline cognition with biomarkers as mediators in MCI. The bold p values indicate the mediation pathways 
are meaningful among the MCI participants. The proportions shown in the figure indicate the proportion of mediating factors in the total effect 
of amyloid pathology on cognition. MCI, mild cognitive impairment; Aβ, amyloid-β; p-tau, phosphorylated tau; t-tau, total tau; NFL, neurofilament 
light; sTREM2, soluble triggering receptor on myeloid cells 2; MEM, memory function; EF, executive function; LAN, language; VS, visuospatial 
functioning
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cascades of AD and ultimately lead to cognitive impair-
ment and dementia remains to be confirmed. Several 
studies have investigated a prediction model for a cascade 
of sequential reactions [39–41]. We found that abnormal 
Aβ and tau exhibited synergistic effects, leading to mem-
ory decline in the MCI population. The mediation analy-
sis indicated that Aβ might also affect cognition via tau 
pathology and neurodegeneration. Consistent with our 
finding, the existing evidence strongly supports the key 
role of pathological Aβ accumulation in mediating the 
pathogenesis of AD. The mechanism may not be simple 
as we initially expected. However, the main difficulty in 
deterministic verification is that there is no dataset with 
a long enough follow-up to monitor longitudinal changes 
because it is assumed that the process of brain Aβ takes 
decades [42]. The role of Aβ in AD needs to be further 
clarified in the further research.

Previous mediation studies did not include all the 
pathological factors [39, 40]. Two neuroinflammation 
markers, one of which is related to microglial activa-
tion (sTREM2), correlate with cognition. However, we 

have not observed its role as a mediator. sTREM2 is the 
soluble extracellular domain of the TREM2 receptor, 
which is mainly expressed in the microglia of the cen-
tral nervous system. Tau inhibition reduces the upregu-
lation of inflammatory markers expressed by microglia, 
which suggests that tau may help increase the inflamma-
tory response nominally attributed to Aβ. It is inferred 
that microglia may serve as a potential mediator fac-
tor of Aβ-tau synergic interaction, which needs further 
research [25]. The evidence shows that Aβ enhances 
the effect of microglial activation on tau protein diffu-
sion. When these three pathologies coexist in the human 
brain, they will synergistically interact and jointly deter-
mine the development of dementia [43]. Future studies 
are still warranted to elucidate the relationships of amy-
loid pathology and neuroinflammation with cognitive 
decline.

In addition, we only observed the direct effects of tau 
pathology on cognitive changes in A + individuals. Con-
trary to the opinion that there is no particular interaction 
between Aβ and tau except for the former’s triggering 

Fig. 4  Mediation analyses of Aβ and longitudinal cognition with biomarkers as mediators in MCI. The bold p values indicate the mediation 
pathways are meaningful among the MCI participants. The proportions shown in the figure indicate the proportion of mediating factors in the 
total effect of amyloid pathology on cognition. MCI, mild cognitive impairment; Aβ, amyloid-β; p-tau, phosphorylated tau; t-tau, total tau; NFL, 
neurofilament light; sTREM2, soluble triggering receptor on myeloid cells 2; MEM, memory function; EF, executive function; LAN, language; VS, 
visuospatial functioning
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function, there is now evidence that functions of Aβ may 
be more complex [44]. Some evidence suggests that path-
ological progression of tau protein in AD may require 
the deposition of Aβ. Human neuropathology studies 
have shown that tau pathology usually does not progress 
from the entorhinal cortex to the neocortex, and amyloid 
pathology does not occur simultaneously [33, 45–47]. 
A study of CSF biomarkers in individuals aged 50 to 
90 years old also demonstrated a synergistic interaction 
between Aβ and tau in predicting longitudinal memory 
decline. In this relationship, t-tau and p-tau levels were 
associated with cognitive ability only in the presence of 
Aβ deposition [48]. This further confirms that the pres-
ence of Aβ enhances tau pathology. It can be inferred that 
the most effective method for delaying AD may be the 
combination of anti-Aβ and anti-tau therapies. In addi-
tion, tau protein is more stable in the presence of Aβ, 
which makes it has a longer half-life and higher biologi-
cal activity. Therefore, based on the inverse relationship 
between the tau conversion rate and the existence of Aβ, 
we can implement co-treatment in the early stage of the 
disease, since anti-Aβ treatment will in turn therapeuti-
cally enhance the clearance of tau [49].

Limitations
There were still some possible limitations in our research. 
Firstly, since this study is a single-center study, the results 
still need to be verified in larger longitudinal cohorts. 
Secondly, ADNI has a relatively pure AD population 
because it mainly includes MCI patients. Reproduc-
tion of findings from different AD phenotypes and par-
ticipants from other cohorts will be helpful. Thirdly, 
the relationships between Aβ and cognitive decline still 
need to be further explored. In several previous studies, 
Aβ42 was expressed in a ratio to Aβ40 to assess the patho-
logic species while accounting for individual differences 
in amyloid production [50, 51]. We also considered this 
issue in the design stage of this study, because this ratio 
was reported as a possible better predictor of brain Aβ 
deposition. However, considering the possible devia-
tion caused by inconsistent measurement methods and 
the sample sizes, we finally used Aβ42 as a marker for Aβ 
pathology. Future researches may consider using ratios to 
explore whether there are differences in research results.

Conclusions
In conclusion, our research found associations of Aβ 
pathology with cognition and several AD pathologies, 
including tau-related pathology, neurodegeneration, 
axonal injury, synaptic dysfunction, and neuroinflamma-
tion. Though the underlying mechanisms were not com-
pletely clear, these results still offer new evidence for the 
synergistic effect among pathological processes. Early Aβ 

accumulation has an independent impact on cognitive 
decline and a tau, neurodegeneration-dependent effect in 
the subsequent cognitive decline. Our results need to be 
repeated in large samples, and the underlying mechanism 
needs to be explored in further research.
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