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Dysregulated expression levels 
of APH1B in peripheral blood are associated 
with brain atrophy and amyloid-β deposition 
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Abstract 

Background:  The interaction between the brain and periphery might play a crucial role in the development of 
Alzheimer’s disease (AD).

Methods:  Using blood transcriptomic profile data from two independent AD cohorts, we performed expression 
quantitative trait locus (cis-eQTL) analysis of 29 significant genetic loci from a recent large-scale genome-wide asso‑
ciation study to investigate the effects of the AD genetic variants on gene expression levels and identify their poten‑
tial target genes. We then performed differential gene expression analysis of identified AD target genes and linear 
regression analysis to evaluate the association of differentially expressed genes with neuroimaging biomarkers.

Results:  A cis-eQTL analysis identified and replicated significant associations in seven genes (APH1B, BIN1, FCER1G, 
GATS, MS4A6A, RABEP1, TRIM4). APH1B expression levels in the blood increased in AD and were associated with 
entorhinal cortical thickness and global cortical amyloid-β deposition.

Conclusion:  An integrative analysis of genetics, blood-based transcriptomic profiles, and imaging biomarkers sug‑
gests that APH1B expression levels in the blood might play a role in the pathogenesis of AD.

Keywords:  Alzheimer’s disease, Transcriptome, Blood, Expression quantitative trait locus, Genome-wide association 
study, Expression, Imaging
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Introduction
Alzheimer’s disease (AD) has a strong genetic component 
with high heritability (~ 70%) [1]. Over the last 10 years, 
more than 30 genes/loci have been identified as associ-
ated with AD by large-scale genome-wide association 

studies (GWASs) and sequencing data analysis [2]. How-
ever, most of the GWAS signals are located in noncod-
ing regions of the genome, and their functional impact on 
AD is as yet poorly understood [3].

The interaction between the brain and periphery might 
play a crucial role in the development and pathogenesis 
of AD [4]. AD is classically regarded as a brain disorder. 
Despite the debate, an imbalance between production 
and clearance of amyloid-β (Aβ) in the brain is a very 
early, often initiating, factor in AD [5]. However, increas-
ing experimental and epidemiological evidence has 
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suggested that manifestations of AD extend beyond the 
brain [4]. For example, Aβ is produced not only in brain 
cells but also in peripheral organs and tissues including 
the liver, muscles, and various blood and endothelial cells 
[6]. Furthermore, the CNS and peripheral pools of Aβ 
can interact; some Aβ peptides in the CNS are cleared 
by phagocytosis or proteolytic degradation, whereas oth-
ers are released into the blood [4]. Some Aβ peptides in 
the blood are phagocytosed by peripheral immune cells; 
some are degraded by Aβ-degrading enzymes, and some 
are transported by carriers to peripheral organs or tissues 
where they are degraded or excreted [4]. Considering 
there is a close interaction of Aβ metabolism between the 
brain and the periphery and trait-associated single nucle-
otide polymorphisms (SNPs) are likely to be expression 
quantitative trait loci (cis-eQTL) [7], the integrative anal-
ysis of genetics, blood-based transcriptomic profiles, and 
neuroimaging AD biomarkers could provide an oppor-
tunity for assessing the complex interplay between the 
brain and the periphery in the pathogenesis of AD [8].

In this study, we performed a cis-eQTL analysis of sig-
nificant AD-associated SNPs from a recent AD GWAS 
meta-analysis [3] to investigate the effects of the AD 
SNPs on blood gene expression levels and identify their 
potential target genes using blood transcriptomic profile 
data from two independent AD cohorts. We then per-
formed gene-set enrichment and differential gene expres-
sion analyses of identified target genes and evaluated 
associations of differentially expressed genes with neuro-
imaging biomarkers for AD and plasma protein levels.

Methods
Participants
Individuals used in the study were non-Hispanic Cauca-
sian participants (AD, mild cognitive impairment (MCI), 
and cognitively normal older adults (CN)) from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) and 
AddNeuroMed cohorts as discovery and replication 
samples, respectively. The ADNI was launched in 2003 
as a public-private partnership, led by Principal Inves-
tigator Dr. Michael W. Weiner [9]. The primary goal of 
ADNI has been to test whether serial MRI, PET, other 
biological markers, and clinical and neuropsychological 
assessment can be combined to accurately capture the 
progression of MCI and early AD. The AddNeuroMed 
is a cross-European, public/private consortium devel-
oped for AD biomarker discovery [10]. The ADNI par-
ticipants were recruited in North America, whereas the 
AddNeuroMed participants were recruited in Europe. 
In both cohorts, participants were categorized into three 
diagnostic groups (CN, MCI, AD). AD was diagnosed 
clinically according to the NINCDS/ADRDA criteria for 
probable AD in ADNI and AddNeuroMed [11]. MCI was 

diagnosed when there was objective memory impair-
ment but without meeting the criteria for dementia [9, 
10]. Written informed consent was obtained at the time 
of enrollment and included permission for analysis and 
data sharing. The protocol and informed consent forms 
were approved by the Institutional Review Board at each 
participating site.

Genotyping and imputation
Genome-wide genotyping was performed using Illu-
mina GWAS array platforms (Illumina Human610-Quad 
BeadChip, Illumina HumanOmni Express BeadChip, 
and Illumina HumanOmni 2.5 M BeadChip) [12, 13]. 
APOE genotyping was separately conducted [12]. Using 
PLINK 1.9 (www.​cog-​genom​ics.​org/​plink2/) [14], we 
then performed standard quality control (QC) proce-
dures for samples and SNPs as described previously [15]: 
(1) for SNP, SNP call rate < 95%, Hardy-Weinberg P-value 
< 1 × 10− 6, and minor allele frequency (MAF) < 1%; (2) for 
sample, sex inconsistencies, and sample call rate < 95%. 
In order to prevent spurious associations due to popu-
lation stratification, we used multidimensional scaling 
analysis to select only non-Hispanic participants of Euro-
pean ancestry that clustered with HapMap CEU (Utah 
residents with Northern and Western European ancestry 
from the CEPH collection) or TSI (Toscani in Italia) pop-
ulations [16, 17]. After QC procedures (Supplementary 
Fig. 1), because these cohorts used different genotyping 
platforms, we imputed un-genotyped SNPs separately in 
each platform using MaCH with the Haplotype Refer-
ence Consortium data as a reference panel [18, 19].

Blood‑based RNA expression microarray profiling
The PAXgene Blood RNA Kit (Qiagen Inc., Valencia, 
CA, USA) was used to purify total RNA from the whole 
blood [12, 20]. The Affymetrix Human Genome U219 
Array (Affymetrix, Santa Clara, CA, USA) and the Illu-
mina Human HT-12 v3 Expression BeadChips (Illu-
mina Inc., San Diego, CA, USA) were used in ADNI and 
AddNeuroMed, respectively, for expression profiling. All 
probe sets were mapped to the human genome reference 
sequence (hg19). Raw expression values were preproc-
essed with the robust multi-chip average normalization 
method in ADNI [21] and the robust spline normaliza-
tion method in AddNeuroMed [22]. We investigated 
discrepancies between the reported sex and sex deter-
mined from sex-specific gene expression data, including 
XIST and USP9Y. We also checked whether SNP geno-
types were matched with genotypes predicted from gene 
expression data [23]. After QC (Supplementary Fig.  2), 
the RNA expression profiles, which contained 21,150 
probes in ADNI and 5141 probes in AddNeuroMed, were 
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pre-adjusted with batch effects and RNA integrity num-
ber values using linear regression analysis.

Identification of target genes of GWAS SNPs from eQTL 
analysis
As AD-associated SNPs, we used 29 independent SNPs 
from 29 distinct loci that showed genome-wide signifi-
cant associations (P < 5 × 10− 8) in a recent AD GWAS 
meta-analysis [3]. Then, we selected genes that were 
located within ±1 M bp of 29 genome-wide significant 
SNPs and performed a cis-eQTL analysis using imputed 
GWAS and blood gene expression data to identify target 
genes as significantly associated with 29 genome-wide 
significant SNPs (false discovery rate (FDR)-corrected 
P < 0.05) [24] in ADNI and AddNeuroMed as discovery 
and replication samples, respectively.

Pathway‑based enrichment and differential gene 
expression analyses
We performed gene-set enrichment analysis to identify 
the biological pathways of AD-relevant target genes that 
were identified in ADNI and replicated in AddNeuroMed 
using three categories (biological process, molecular 
function, and cellular component) of the Gene Ontology 
(GO) resource [25, 26] and Enrichr (https://​maaya​nlab.​
cloud/​Enric​hr/) [27]. We selected significantly enriched 
terms (FDR-corrected P < 0.05) that have at least 2 genes. 
We then performed an analysis of covariance (ANCOVA) 
and made violin plots to investigate which genes were 
differentially expressed between AD, MCI, and CN (FDR-
corrected P < 0.05) and examined whether the ADNI 
findings were replicated in AddNeuroMed. We used age 
and sex as covariates.

Assessment of the causal effect of differentially expressed 
genes on AD
We performed GWAS summary data-based Mendelian 
randomization (SMR) analysis [28] to assess the causal 
effect of differentially expressed genes on AD using 
eQTLGen data for peripheral blood [29] and a recent 
large-scale GWAS summary data for AD [3]. We also 
performed a HEIDI (heterogeneity in dependent instru-
ments) test to distinguish pleiotropy from linkage [28].

Association of differentially expressed genes 
with neuroimaging AD biomarkers and plasma‑based 
protein levels
Hippocampal volume and entorhinal cortical thickness 
were measured as MRI biomarkers from T1-weighted 
brain MRI scans using FreeSurfer version 5.1 (surfer.​nmr.​
mgh.​harva​rd.​edu) in both cohorts [30]. We performed a 
linear regression analysis to evaluate whether expression 
levels of differentially expressed genes were associated 

with hippocampal volume and entorhinal cortical thick-
ness in ADNI (FDR-corrected P < 0.05) and to examine 
whether the ADNI findings were replicated in AddNeu-
roMed. We used age, sex, intracranial volumes, and MRI 
field strength as covariates. We also used a linear mixed 
model to jointly analyze the pooled individual imaging 
data from the ADNI and AddNeuroMed cohorts. Fur-
thermore, global cortical amyloid deposition, as mean 
standardized uptake values, was measured as an amyloid 
PET biomarker using preprocessed (coregistered, aver-
aged, standardized image and voxel size, uniform resolu-
tion) [18F] florbetapir PET scans with a whole cerebellum 
reference region in ADNI [31]. We performed linear 
regression analysis to evaluate whether expression levels 
of the differentially expressed genes were associated with 
brain amyloid deposition (FDR-corrected P < 0.05). We 
used age and sex as covariates. Amyloid biomarkers were 
not available in AddNeuroMed.

As plasma-based protein levels, 1001 proteins were 
measured using SOMAscan (SomaLogic, Inc., Boul-
der, CO, USA) Multiplexed Proteomic technology in 
the AddNeuroMed cohort [32]. We performed linear 
regression analysis to evaluate whether expression lev-
els of differentially expressed genes were associated with 
plasma protein levels. We then performed ANCOVA 
to investigate which plasma proteins were differentially 
expressed between AD, MCI, and CN with age and sex 
as covariates.

Association of differentially expressed genes 
with progression of MCI to AD dementia
We assessed the hazard ratio of expression levels of dif-
ferentially expressed genes using Cox regression analysis 
with the follow-up time as a time variable and progres-
sion of MCI to AD dementia during follow-up period up 
to 5 years as a status variable. Covariates included age 
and sex.

In this study, we used R version 3.6.3 (R-​proje​ct.​org) for 
analysis unless otherwise specified. All statistical tests are 
two-sided unless otherwise specified.

Results
A total of 1335 participants were included from two 
independent cohorts (661 from the ADNI and 674 
from AddNeuroMed) in this study (Table  1). Using 
imputed GWAS and blood-based RNA gene expres-
sion data, we discovered that 29 genome-wide sig-
nificant SNPs were eQTLs of 30 genes (ADAMTS4, 
AIF1, APH1B, ARF4, AURKA, BIN1, CD55, CHRNE, 
CNN2, CSTF1, EPHA1, FAM63B, FCER1G, GATS, 
HLA-DRB1, MS4A4A, MS4A6A, MYBBP1A, NDUFS2, 
NUP88, PVRIG, RABEP1, SCIMP, SLC24A4, TAF6, 
TAP2, TRIM4, ZCWPW1, ZKSCAN1, ZNF668; 
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Supplementary Table 1) in ADNI and 15 genes (APH1B, 
BIN1, CLPTM1, FCER1G, GATS, HLA-DQA1, HLA-
DRA, HSPA6, ITGAX, MS4A6A, PILRB, RABEP1, 
RXRB, SNRPD2, TRIM4; Supplementary Table  2) in 
AddNeuoMed. Seven genes (APH1B, BIN1, FCER1G, 
GATS, MS4A6A, RABEP1, TRIM4) were identified in 
ADNI and replicated in AddNeuroMed after adjusting 
for multiple testing.

Gene-set enrichment analysis of these seven genes 
revealed five significant pathways (protein oligomeriza-
tion, positive regulation of programmed cell death, posi-
tive regulation of apoptotic process, vesicle-mediated 
transport, and regulation of apoptotic process) in the 
category of GO biological process and one significant 
pathway (protein homodimerization activity) in the cat-
egory of GO molecular function (Table 2). No significant 
pathways were identified in the category of GO cellular 
component.

In ADNI, differential gene expression analysis showed 
that expression levels of APH1B significantly increased 
in AD compared to CN (Supplementary Table  3) after 
adjusting for multiple testing, and this finding was rep-
licated in AddNeuroMed (Fig.  1). In SMR analysis, 
we found that PSMR of APH1B was 1.21 × 10− 7, which 
passed the experiment-wise significance threshold 
(PSMR < 3.18 × 10− 6) and suggested the causal effect of 

APH1B expression on AD. PHEIDI of APH1B was 0.053, 
which also passed the HEIDI test (PHEIDI ≥ 0.05).

In addition, expression levels of APH1B were signifi-
cantly associated with hippocampal volume and entorhi-
nal cortical thickness in ADNI but not in AddNeuroMed 
(Table 3 and Fig. 2). However, when the pooled individu-
als from the ADNI and AddNeuroMed cohorts were 
jointly analyzed using a linear mixed model, expression 
levels of APH1B were associated with entorhinal cortical 
thickness but not with hippocampal volume. Further-
more, expression levels of APH1B were significantly asso-
ciated with global cortical amyloid deposition in ADNI 
(Table 3 and Fig. 2).

With regard to plasma-based protein levels, 331 partic-
ipants were available in AddNeuroMed. Expression levels 
of APH1B were associated with plasma levels of neuro-
pilin-1, tropomyosin receptor kinase A, growth hormone 
receptor, and apolipoprotein A1 (Table  4). Particularly, 
levels of growth hormone receptor were significantly 
decreased in AD and MCI compared to CN (Table 4).

In Cox regression analysis, we used 320 and 186 
patients with MCI in ADNI and AddNeuroMed, respec-
tively, after excluding MCI without follow-up data. 
Among them, 61 and 47 MCI patients converted to AD in 
ADNI and AddNeuroMed, respectively, within a 5-year 
period after baseline. The hazard ratio (95% confidence 

Table 1  Demographics of study samples

The table was modified from a previous study [51]

Abbreviations: AD Alzheimer’s disease; CN cognitively normal older adults; MCI mild cognitive impairment; RIN RNA integrity number; SD standard deviation

Cohort Diagnosis N Female (%) Age at blood sample 
collection, mean (SD)

RIN, mean (SD)

ADNI (N = 661) CN 213 107 (50%) 76.4 (6.4) 6.91 (0.51)

MCI 345 144 (42%) 73.2 (7.9) 6.98 (0.55)

AD 103 38 (37%) 77.6 (7.8) 6.98 (0.64)

AddNeuroMed (N = 674) CN 243 147 (60%) 74.2 (6.6) 8.96 (0.73)

MCI 208 120 (58%) 75.5 (6.5) 8.50 (0.59)

AD 223 146 (65%) 76.8 (6.8) 8.43 (0.64)

Table 2  Biological pathways identified in the enrichment analysis

Overlap means a ratio of the number of input genes to the number of genes associated with each biological pathway. P-values and odds ratios were obtained from 
Fisher’s exact test

Abbreviation: FDR false discovery rate

Category Pathway Overlap P-value FDR-corrected P-value Odds ratio Gene

Biological process Protein oligomerization 2/217 2.37 × 10−3 7.81 × 10− 3 26.33 FCER1G, TRIM4

Positive regulation of programmed cell death 2/257 3.31 × 10−3 7.81 × 10− 3 22.23 APH1B, BIN1

Positive regulation of the apoptotic process 2/307 4.69 × 10−3 7.81 × 10− 3 18.61 APH1B, BIN1

Vesicle-mediated transport 2/410 8.22 × 10−3 1.03 × 10−2 13.94 BIN1, RABEP

Regulation of the apoptotic process 2/815 3.04 × 10−2 3.04 × 10− 2 7.01 APH1B, BIN1

Molecular function Protein homodimerization activity 2/664 2.07 × 10−2 2.07 × 10− 2 8.61 FCER1G, RABEP1
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interval) of expression levels of APH1B was 2.52 (1.02–
6.25) in ADNI, whereas expression levels of APH1B were 
not significant in AddNeuroMed (HR = 0.765).

Discussion
In this study, we identified and replicated seven target 
genes of 29 AD susceptibility SNPs of a recent large-
scale GWAS by performing an eQTL analysis of blood 
transcriptomic profiles from two independent cohorts 
including AD, MCI, and CN. The biological pathways 
enriched in the seven genes included programmed cell 
death, protein oligomerization, and vesicle-mediated 
transport. Among the seven genes, expression levels of 
APH1B increased in the blood of AD patients and were 
associated with entorhinal cortical thickness; global cor-
tical amyloid deposition; several plasma-based protein 
levels, including growth hormone receptors; and pro-
gression from MCI to AD dementia.

Programmed cell death or apoptosis, one of the bio-
logical pathways altered in peripheral blood from our 
study, has been commonly found in neurons and glial 
cells in AD [33]. Amyloid precursor protein intracellular 
domain (AICD), which is an amyloid precursor protein 
(APP)-derived cleavage product, was known to induce 
apoptosis in the pathogenesis of AD [34]. With respect 
to blood cells, the lymphocyte content of APP and apop-
tosis of lymphocytes are increased in patients with AD 
[35, 36]. The peripheral adaptive immune system includ-
ing lymphocytes was reported to restrain AD pathology 
by clearance of Aβ [37]. Protein oligomerization plays a 
crucial role in the pathogenesis of AD [38]. In blood, the 
oligomerization tendency of Aβ is a diagnostic biomarker 
of AD [39] and is associated with neurodegenerative 
structural changes on MRI [40]. Vesicle-mediated trans-
port includes various cellular transport processes using 
membrane-bounded vesicles. Previously, peripheral 
blood gene expression analysis showed that Fc-gamma 
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Fig. 1  Violin plots for the blood expression levels of APH1B between CN, MCI, and AD. The violin plots show the probability density of the blood 
expression levels of APH1B as well as median and interquartile ranges in ADNI (a) and AddNeuroMed (b). The transcript identifier for APH1B was 
11720068_a_at in ADNI and ILMN_1767816 in AddNeuroMed, respectively. Abbreviation: AD, Alzheimer disease; ADNI, Alzheimer’s Disease 
Neuroimaging Initiative; CN, cognitively normal older adults; MCI, mild cognitive impairment
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receptor-mediated phagocytosis is dysregulated in AD 
[8].
APH1B gene encodes Aph-1b protein, one of the four 

subunits (Aph-1, nicastrin, presenilin, and Pen-2) of 
γ-secretase [41]. γ-secretase is present in many human 
tissues and well known for contributing to the pathogen-
esis of AD by cleaving APP and catalyzing the formation 
of Aβ [42]. Humans have two Aph-1 homologs, Aph-1a 
and Aph-1b [43], which differ in γ-secretase activity 
and production of longer and shorter Aβ peptides [44]. 
Compared to Aph-1a γ-secretase complexes, Aph-1b 
γ-secretase complexes produced more Aβ peptides with 
higher Aβ1–42/1–40 ratio in a mouse AD model [44]. Bio-
chemical evaluation of pathogenic presenilin and APP 
mutations of familial AD suggested that relative increases 
in longer Aβ species are more relevant to AD than an 
absolute increment in total Aβ load [45]. It is known that 
human APH1B is more expressed in the blood than in 
the brain (https://​www.​prote​inatl​as.​org) [46]. Our study 
showed that expression levels of APH1B increased in the 
blood of AD patients and eQTL of APH1B in the blood is 
one of 29 AD-associated SNPs from a recent large-scale 

AD GWAS meta-analysis [3]. SMR analysis also validated 
the causal effect of blood APH1B expression on AD. It 
suggests the possibility that Aβ peptides with higher 
Aβ1–42/1–40 ratio might be produced in the blood and 
transported into the brain in AD patients, which could 
be implicated in the pathogenesis of AD. Of note, APH1B 
was suggested as a causal gene of AD in a recent large-
scale genome-wide meta-analysis [47].

Higher expression levels of APH1B were associated 
with lower plasma levels of growth hormone receptors, 
which decreased in patients with MCI and AD compared 
to CN. The effects of growth hormone are exerted by 
binding to the growth hormone receptors on target cells, 
which stimulate the production and secretion of insu-
lin-like growth factor 1 (IGF-1) from the liver and other 
tissues [48]. The deficits in IGF-1 signaling have been 
related to AD pathology such as increased accumulation 
of Aβ, phosphorylated tau, increased neuroinflammation, 
and apoptosis [49]. Despite evidence for the involvement 
of the IGF-1 signaling pathway, the human growth hor-
mone secretagogue failed to show efficacy for slowing 
the rate of progression of AD in a previous clinical trial 

Table 3  Association of the expression levels of APH1B with neuroimaging biomarkers in ADNI and AddNeuroMed

a Data for 4 participants were unavailable (n = 657). T-value and P-values were obtained from linear regression analysis with adjustment of age, sex, intracranial 
volumes, and MRI field strength
b Data for 76 participants were unavailable (n = 585). T-value and P-values were obtained from linear regression analysis with adjustment of age and sex
c Data for 216 participants were unavailable (n = 458). T-value and P-values were obtained from linear regression analysis with adjustment of age, sex, and intracranial 
volumes
d Data for 220 participants were unavailable (n = 1115). T-value and P-values were obtained from a linear mixed model with adjustment of age, sex, and intracranial 
volumes

Abbreviations: ADNI Alzheimer’s Disease Neuroimaging Initiative; FDR false discovery rate; Transcript ID transcript identifier of Affymetrix Human Genome U219 Array 
for ADNI and Illumina Human HT-12 v3 Expression BeadChips for AddNeuroMed

Cohort Neuroimaging biomarker Transcript ID T-value P-value FDR-corrected P-value

ADNI Entorhinal cortical thicknessa 11720068_a_at −2.85 4.50 × 10−3 2.25 × 10−2

11740603_a_at −2.36 1.87 × 10−2 4.67 × 10− 2

11740602_s_at −0.482 6.30 × 10−1 7.74 × 10− 1

11720067_a_at 0.389 6.98 × 10−1 7.74 × 10− 1

11740601_a_at 0.287 7.74 × 10−1 7.74 × 10− 1

Hippocampal volumea 11720068_a_at −2.69 7.40 × 10−3 3.70 × 10− 2

11740603_a_at −1.96 5.06 × 10−2 1.27 × 10− 1

11740602_s_at −0.104 9.17 × 10−1 9.69 × 10− 1

11720067_a_at −0.0969 9.23 × 10−1 9.69 × 10− 1

11740601_a_at 0.0384 9.69 × 10−1 9.69 × 10− 1

Averaged cortical uptake of [18F] 
florbetapir PETb

11720068_a_at 3.15 1.71 × 10−3 8.54 × 10−3

11740603_a_at 2.64 8.51 × 10−3 2.13 × 10−2

11740602_s_at 1.01 3.14 × 10−1 5.23 × 10−1

11740601_a_at 0.765 4.45 × 10−1 5.56 × 10− 1

11720067_a_at 0.121 9.04 × 10−1 9.04 × 10− 1

AddNeuroMed Entorhinal cortical thicknessc ILMN_1767816 −0.761 4.47 × 10−1 N/A

Hippocampal volumec ILMN_1767816 0.454 6.50 × 10−1 N/A

ADNI and AddNeuroMed Entorhinal cortical thicknessd 11720068_a_at, 
ILMN_1767816

−2.96 3.18 × 10−3 N/A

Hippocampal volumed −1.93 5.91 × 10−2 N/A

https://www.proteinatlas.org
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[50]. Decreased plasma levels of growth hormone recep-
tors in patients with MCI and AD from our study might 
be related to deficits in the IGF-1 signaling pathway in 
AD. In addition, the growth hormone receptor is known 
to be one of the γ-secretase substrates [51], which might 
explain the relationship between decreased plasma levels 
of growth hormone receptors and increased expression 
levels of APH1B in our study.

Limitations
This study has some limitations. First, as eQTL analysis 
identified and replicated seven AD target genes, we could 
use only seven genes in the pathway enrichment analysis. 
Although there is no general rule regarding the number 
of genes, a list of tens or hundreds of genes is commonly 
used for enrichment analysis. Second, blood-based RNA 

expression profiles could be influenced by confounding 
factors such as medication, as well as blood collection, 
processing, and storage procedures. The transcriptomic 
samples in the ADNI and AddNeuroMed cohorts were, 
however, collected, processed, and stored following the 
standard protocols to minimize these risks [52]. Third, 
RNA expression profiling was performed on different 
microarray platforms in the ADNI and AddNeuroMed 
cohorts. Therefore, we did not perform a mega-analysis 
but used two cohorts as discovery and replication sam-
ples in this study. Fourth, as amyloid biomarkers were not 
available in AddNeuroMed, the association of expres-
sion levels of APH1B with brain amyloid deposition was 
investigated in only ADNI.
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Fig. 2  Relationship between the blood expression levels of APH1B and neuroimaging biomarkers. The association of the blood expression levels 
of APH1B with entorhinal cortical thickness (a) and averaged cortical uptake of [18F] florbetapir PET (b) was represented in the scatter plot. In panel 
a, the orange and light blue dots denote data from ADNI and AddNeuroMed, respectively. The orange and light blue lines were obtained from a 
linear regression analysis in ADNI and AddNeuroMed, respectively. In panel b, the black dots denote data from ADNI and the dark blue line was 
obtained from a linear regression analysis. The gray zones around the lines indicate a 95% confidence interval. The transcript identifier for APH1B was 
11720068_a_at in ADNI and ILMN_1767816 in AddNeuroMed, respectively. Abbreviation: ADNI, Alzheimer’s Disease Neuroimaging Initiative
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Conclusions
In summary, our results show that dysregulated expres-
sion levels of APH1B in peripheral blood are associ-
ated with brain atrophy and Aβ deposition in AD. 
Considering the complex interaction between the brain 
and the periphery, APH1B expression levels in the blood 
might play a role in the pathogenesis of AD. Although 
γ-secretase has been a target for therapeutic develop-
ment for AD, all of the γ-secretase inhibitors until now 
have failed to show efficacy in clinical trials [53]. Because 
γ-secretase cleaves more than 100 substrates besides 
APP [54], it would be extremely difficult to obtain a safe 
therapeutic window with blocking indiscriminately all 
different γ-secretase complexes [45]. Previously, selective 
targeting of Aph-1b γ-secretase complexes was suggested 
as an effective treatment option for AD [44]. Deficiency 
of Aph-1a was associated with reduced γ-secretase 
activity, whereas deficiency of Aph-1b was not, which 
indicates that Aph-1b γ-secretase complexes may fulfill 
redundant functions [43]. Replication analysis in inde-
pendent larger cohorts and a functional study of APH1B 
and its implication for AD treatment are warranted.
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