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Abstract 

Background:  Interactions between the gut microbiota, microglia, and aging may modulate Alzheimer’s disease (AD) 
pathogenesis but the precise nature of such interactions is not known.

Methods:  We developed an integrated multi-dimensional, knowledge-driven, systems approach to identify interac-
tions among microbial metabolites, microglia, and AD. Publicly available datasets were repurposed to create a multi-
dimensional knowledge-driven pipeline consisting of an integrated network of microbial metabolite–gene–path-
way–phenotype (MGPPN) consisting of 34,509 nodes (216 microbial metabolites, 22,982 genes, 1329 pathways, 9982 
mouse phenotypes) and 1,032,942 edges.

Results:  We evaluated the network-based ranking algorithm by showing that abnormal microglia function and 
physiology are significantly associated with AD pathology at both genetic and phenotypic levels: AD risk genes were 
ranked at the top 6.4% among 22,982 genes, P < 0.001. AD phenotypes were ranked at the top 11.5% among 9982 
phenotypes, P < 0.001. A total of 8094 microglia–microbial metabolite–gene–pathway–phenotype–AD interactions 
were identified for top-ranked AD-associated microbial metabolites. Short-chain fatty acids (SCFAs) were ranked at the 
top among prioritized AD-associated microbial metabolites. Through data-driven analyses, we provided evidence that 
SCFAs are involved in microglia-mediated gut–microbiota–brain interactions in AD at both genetic, functional, and 
phenotypic levels.

Conclusion:  Our analysis produces a novel framework to offer insights into the mechanistic links between gut micro-
bial metabolites, microglia, and AD, with the overall goal to facilitate disease mechanism understanding, therapeutic 
target identification, and designing confirmatory experimental studies.
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Introduction
Alzheimer’s disease (AD) is the leading cause of demen-
tia and the most common neurodegenerative disor-
der, affecting over 5.5 million people in the USA and 

47 million people worldwide [1]. AD is complex, with 
genetic, epigenetic, and environmental factors contribut-
ing to disease susceptibility and progression [2].

Trillions of bacteria in the human body (human micro-
biota) may affect human health and diseases by modulat-
ing host functions through small molecule metabolites. 
Undigested dietary components are fermented by micro-
biota to produce a wide array of metabolites such as bile 
acids, choline, and short-chain fatty acids (SCFAs) that 
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are essential for human health [3–5]. Metabolite activi-
ties of gut microbiota provide a mechanistic connection 
between environmental factors and brain function and 
behavior [6–8]. The gut microbiota of AD patients has 
altered microbial diversity and is compositionally distinct 
from control age- and sex-matched individuals [9–11]. 
Recent studies showed that altered serum levels of bile 
acids, lipopolysaccharide, SCFAs, and trimethylamine-
N-oxide (TMAO) were associated with cognitive impair-
ment in AD [12–15].

In AD, microglia are involved in amyloid-β (Aβ) clear-
ance in the brain and many innate immunity genes are 
associated with the risk of sporadic AD [16]. Microglia 
are the main neuroimmune cells involved in the develop-
ment, normal functioning, aging, and injury of the central 
nervous system [16–18]. Gene variants in TREM2 and 
CD33 that modulate macrophage and microglial function 
increase the risk for late-onset AD [19]. There is increasing 
evidence that the interactions between the gut microbiota 
and brain innate immune system (gut–immune–brain 
axis) may modulate AD pathogenesis through microglial 
maturation and function [20–22]. Short-chain fatty acids 
(SCFAs), the end products of fermentation of dietary fib-
ers by gut microbiota, play a major role in the mainte-
nance of gut and immune homeostasis [23, 24]. SCFAs 
may play a key role in microbiota–gut–brain crosstalk. 
In  vitro administration of SCFAs (microbial fermenta-
tion metabolites) regulated microglia homeostasis and 
obstructed Aβ protein aggregation [25]. Supplementation 
of SCFAs in germ-free mice rescued the immature genetic 
and morphological phenotype of microglia [20]. Despite 
such growing links, the mechanisms underlying how gut 
microbial metabolites including SCFAs interact with 
microglia and host genetics in promoting or protecting 
against AD remain largely unknown.

We have previously demonstrated that data-driven 
computational systems approaches have the potential 
in uncovering mechanistic links between microbial 
metabolites and human diseases [26–29]. For exam-
ple, in a prior study, we provided evidence that tri-
methylamine N-oxide (TMAO), a human gut microbial 
metabolite of dietary meat and fat, was linked to AD 
[27], a finding that was subsequently confirmed by an 

experimental study [15]. In this study, we significantly 
expanded our prior work to produce the first compre-
hensive, multi-dimensional, systems framework of 
analyzing and identifying complex interrelationships 
among gut microbial metabolites, microglia, and AD at 
both genetic and functional levels. We first constructed 
a multi-model context-sensitive network to model 
complex and heterogeneous interrelationships among 
microbial metabolites, genes, pathways, and disease 
phenotypes. Then network-based prioritization algo-
rithm prioritized microbial metabolites based on their 
relevance to microglia physiology and functions in AD. 
The overall goal of this study was to identify potential 
microglia–microbial metabolite–gene–pathway–phe-
notype interactions in AD with supporting evidence 
at genetic, functional, and phenotypic levels, which 
can set a foundation for others to conduct hypothesis-
driven studies to test these interactions in experimental 
models or clinical samples.

Methods
Overview
The overall experiment (Fig. 1) consisted of (1) network 
construction: an integrated network of metabolite–
gene–pathway–phenotype (MGPPN) was constructed 
from multiple data resources to model and capture the 
complex and heterogeneous interrelationships among 
microbial metabolites, genes, pathways, and disease 
phenotypes; (2) network-based prioritization: microbial 
metabolites were prioritized from MGPPN based on 
their relevance to microglia physiology and functions. 
The algorithm was evaluated using known AD-specific 
phenotypes, genes, and microbial metabolites. (3) Iden-
tification of microglia–microbial metabolite–gene–
pathway–phenotype interactions in AD: Based on the 
top-ranked microglia-associated microbial metabolites, 
we identified interactions among microglia, microbial 
metabolites, genes, pathways, and phenotypes (“micro-
glia-microbial metabolite-gene-pathway-phenotype 
interactions”) in AD. (4) Case study of SCFAs: We ana-
lyzed how SCFAs are involved in the microglia–micro-
biota–brain interactions in AD.

Fig. 1  The integrated metabolite–gene–pathway–phenotype network (MGPPN) with labeled data resources. The goal of this study is to 
understand how microbial metabolites affect AD-specific phenotype through interactions among microglia, host genetics, and genetic pathways
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Network construction
MGPPN consisted of four sub-networks: human metabo-
lite–gene network (MGN), mouse phenotype–gene net-
work (PhenGN), protein–protein interaction network 
(PPIN), and pathway–gene network (PathGN). The num-
bers of nodes (metabolites, genes, pathways, phenotypes) 
and edges (connections between nodes) of each sub-net-
work are shown in Table 1.

Human microbial metabolite–gene network 
(MGN)  Metabolites found in the human body can 
originate from different sources, including human hosts, 
plants, foods, microbes, toxins, pollutants, cosmetics, 
and medications, among others. In this study, we focused 
on microbial metabolites that are present in the human 
body and that are produced (not necessarily exclusively) 
by microbes. Human Metabolome Database (HMDB) 
contains 114,304 small molecule metabolites found in the 
human body, among which 220 metabolites were origi-
nated in microbiota [30] (data accessed in October 2020). 
Based on manual curation effort in HMDB, 12 microbial 
metabolites are associated with AD (Table 2).

Microbial metabolite-associated genes were then 
obtained from the STITCH (Search Tool for Interac-
tions of Chemicals) database by mapping microbial 
metabolites from HMDB to chemicals in STITCH. The 
STITCH database contains 15,473,939 chemical–gene 

associations found in the human body, representing 
473,602 chemicals and 18,701 human genes [31] (data 
accessed in October 2020). Among the 220 microbial 
human metabolites, 216 were mapped to chemicals in 
STITCH. For example, three SCFAs (acetic acid, butyric 
acid, propionic acid) are associated with 3926, 815, and 
459 human genes, respectively. Bile acids (deoxycholic 
acid, taurodeoxycholic acid, chenodeoxycholic acid) are 
associated with 258, 57, and 129 human genes, respec-
tively. MGN is a weighted network consisting of 12,130 
nodes (216 metabolite nodes, 11,914 gene nodes) and 
67,012 edges (metabolite–gene associations), with edge 
weights directly derived from the chemical–gene asso-
ciation weights (ranging from 100 to 999).

Mutational phenotype–gene network 
(PhenGN)  PhenGN was constructed from MGD that 
contains The Mouse Genome Database (MGD) database 
large amounts of phenotypic descriptions of system-
atic genetic knockouts in mouse models [32]. A total of 
517,381mutational/causal phenotype–gene annotations 
(9982 phenotypes and 11,021 mapped human genes) 
were obtained from MGD. We have used these strong 
causal gene–phenotype associations for screening and 
validating functional effects of drugs and microbial 
metabolites on disease phenotypes [33–36]. In this study, 
we developed a network-based model to model and 
assess phenotypic effects of the interactions of microglia, 

Table 1  Numbers of nodes and edges on each sub-network of MPGGN

Sub-network of MGPPN Nodes Edges

Human metabolite–gene network (MGN) 216 metabolites, 11,914 genes 67,012

Mouse phenotype–gene network (PhenGN) 9982 phenotypes, 11,021 genes 517,381

Protein–protein interaction network (PPIN) 22,982 genes 382,256

Pathway–gene network (PathGN) 8868 genes, 1329 pathways 66,293

Table 2  Known AD risk genes, core mouse phenotypes, and microbial metabolites that were used to evaluate the context-sensitive 
network-based prioritization algorithm

Evaluation dataset 1 (AD risk genes) Evaluation dataset 2 (AD phenotypes in mouse) Evaluation dataset 3 (AD microbial 
metabolites)

A2M, ABCA7, ACE, ADAM10, APBB2, APOE, APP, BLMH, 
HFE, MPO, MT-ND1, NOS3, PAXIP1, PLAU, PLD3, PRNP, 
PSEN1, PSEN2, SORL1, TF, TNF, VEGFA

Amyloid beta deposits, amyloidosis
Cerebral amyloid angiopathy
Neurofibrillary tangles
Tau protein deposits
Neurodegeneration
Neuron degeneration
Gliosis
Astrocytosis
Microgliosis
Abnormal synaptic transmission
Abnormal long-term potentiation
Abnormal long-term depression

3,4-Dihydroxybenzeneacetic acid
3-Hydroxybutyric acid
Acetylcholine
d-Glutamic acid
Dopamine
Folic acid
Gamma-aminobutyric acid
l-Lactic acid
Mannitol
Putrescine
Pyruvic acid
Succinic acid
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microbial metabolites, human genes, and pathways on 
AD-specific phenotypes. PhenGN allows us to interro-
gate causal microglia–gut–brain connections and exam-
ine how these interactions affect specific AD phenotypes 
such as “amyloid beta deposits,” “tau protein deposits,” 
or “neurodegeneration.” PhenGN is unweighted (same 
weights for all phenotype–gene connections on the net-
work) and consisted of 21,003 nodes (9982 phenotype 
nodes, 11,021 gene nodes) and 517,381 edges.

Pathway–gene network (PathGN)  We obtained gene–
pathway associations from the Molecular Signatures 
Database (MSigDB) (data accessed in June 2020). MSigDB 
is a comprehensive resource of annotated pathways and 
gene sets [37]. PathGN is unweighted (same weights for 
all pathway–gene connections on the network) and con-
sisted of 10,197 nodes (8868 gene nodes, 1329 pathway 
nodes) and 66,293 edges (gene–pathway associations).

Protein–Protein Interaction Network (PPIN)  PPIN was 
directly constructed from the protein–protein interac-
tions from the human protein reference database [38]. 
PPIN is weighted and consisted of 22,982 gene nodes and 
382,256 gene–gene edges, with weights (ranging from 
100 to 999) directly obtained from BioGrid.

Links between MGN, PhenGN, PathGN, and 
PPIN  These sub-networks were connected through 
common gene nodes. For example, MGN are linked to 
the PhenGN network through shared gene nodes.

Network prioritization and evaluation

Network prioritization  The goal of this study is to 
identify microbial metabolites associated with abnor-
mal microglia function and physiology that affect AD 
at the genetic, functional, and phenotypic levels. For a 
given input related to disrupted microglia physiology 
and function (i.e., microgliosis, abnormal microglial cell 
physiology, abnormal microglial cell morphology), the 
algorithm prioritized genes, phenotypes, and microbial 
metabolites from MGPPN based on the context-sensi-
tive network-based ranking algorithm that we previously 
developed [39–43]. The random walk-based approach is 
briefly described below. More details are in our previ-
ous papers [23, 24, 30, 31, 44]. The movements of a ran-
dom walker between any two sub-networks were regu-
lated with jumping probabilities �NiNj (Ni and Nj can be 
any of the four sub-networks). For example, if a random 
walker stands on a gene node on MGN, which is con-
nected with both PhenGN, PathGN, and PPIN, it has the 

option to walk to PhenGN with the probability λ12, to 
PathGN with the probability λ13, and to PPIN with the 
probability λ14 or stay within MGN with the probability 
1 − λ12 − λ13 − λ14. Given the seed node(s)/inputs, the 
ranking score for each node is iteratively updated by:

Sk + 1 is the score vector at step k + 1, S0 is the initial vec-
tor, and 1 − α is the restarting probability, and M is the 
transition matrix. The transition matrix M was calculated 
as follows in Eq. 2 and 3):

M consisted of 16 sub-matrices, each contains the transi-
tion probabilities within or between four sub-networks. 
Each sub-matrix was calculated by normalizing the rows 
in the adjacency matrix of the corresponding sub-net-
works using the jumping probabilities. Specifically, the 
off-diagonal sub-matrices corresponded to the bipartite 
networks that connected each two networks. These sub-
matrices were calculated by first normalizing the rows of 
the bipartite network ANiNj and then weighing each row 
by the jumping probability �NiNj:

The diagonal sub-matrices corresponded to the transition 
probabilities within each one of the four sub-networks 
and were calculated by first normalizing the rows of adja-
cency matrix for MGN, PhenGN, PathGN, and PPIN and 
then weighing the rows by the probability of staying in 
the same network:

In Eq.  4, ANi is the adjacency matrix of the sub-matrix 
Ni, and INj is an indicator function, whose value is 1 if the 
kth row of ANiNjcontains at least one non-zero element. 
The output from the context-sensitive network-based 
algorithm was a list of microbial metabolites, genes, and 
phenotypes prioritized based on their genetic, functional, 
phenotypic, and microbial relevance to disrupted micro-
glia function based on the inputs: “microgliosis,” “abnor-
mal microglial cell physiology,” and “abnormal microglial 
cell morphology.”

Evaluation  It is unknown which microbial metabo-
lites are associated with microglia–brain interactions 
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in AD. However, it is known that microglial function is 
closely associated with AD etiology. We evaluated the 
context-sensitive network-based ranking algorithm by 
showing that abnormal microglia function and physiol-
ogy are indeed significantly involved in AD pathology 
at both genetic and phenotypic levels. We also showed 
that microbial metabolites are involved in AD through 
microglia functions by demonstrating the known AD-
associated microbial metabolites were ranked highly by 
the algorithm for the inputs (“microgliosis,” “abnormal 
microglial cell physiology,” and “abnormal microglial cell 
morphology”).

Evaluate microglia–AD interactions at the phenotypic 
level

There is a large, ongoing effort to characterize AD models 
and identify core AD-related phenotypes. We obtained 
all core phenotypes from commonly used AD mouse 
models [45]. These phenotypes include a range of core 
AD-related phenotypes including plaques, tangles, neu-
ronal loss, gliosis, synaptic loss, changes in LTP/LTD, and 
cognitive impairment (Table  2). We evaluated whether 
the prioritization algorithm ranked these AD phenotypes 
highly among a total of 9982 phenotypes on the network, 
when three microglia-related phenotypes (“abnormal 
microglial cell morphology,” “abnormal microglial cell 
physiology,” and “microgliosis”) were used as inputs sepa-
rately and combined. Mean ranking and median rankings 
of these 13 phenotypes among the list of prioritized 9982 
phenotypes were calculated and compared to the average 
ranking of 50% expected from random ranking. Signifi-
cance was calculated using the two-sample t-test.

Evaluate microglia–AD interactions at the genetic 
level

Hundreds of genes are known to be associated with AD. 
In this study, we used genes known to be strongly asso-
ciated with AD to evaluate microglia–AD interactions at 
the genetic level. We obtained all AD-associated genes 
(22 in total) from two well-established disease genetics 
databases Online Mendelian Inheritance in Man (OMIM) 
[46] and ClinVar [47] (Table  2). OMIM contains all 
known mendelian disorders and over 16,000 genes. Clin-
Var contains disease–gene associations with supporting 
evidence of clinical significance. While this list may not 
be complete, we used it to evaluate whether the prioriti-
zation algorithm ranked these AD genes highly among a 
total of 22,982 genes, when three microglia-related phe-
notypes (“abnormal microglial cell morphology,” “abnor-
mal microglial cell physiology,” and “microgliosis”) were 
used as inputs separately and combined. Mean ranking 

and median rankings of these 22 AD genes among the list 
of prioritized 22,982 genes were calculated and compared 
to the average ranking of 50% expected from random 
ranking. Significance was calculated using the two-sam-
ple t-test.

Evaluate microglia–AD interactions at the microbial 
metabolism level

We obtained 12 AD–microbial metabolite associations 
from HMDB [30], which were manually curated from 
published biomedical research articles (Table  2). Note 
that these AD-associated microbial metabolites were 
produced by microbes, but not necessarily exclusively 
so. We evaluated whether the prioritization algorithm 
ranked these AD-associated microbial metabolites highly 
among a total of 216 microbial metabolites on the net-
work, when three microglia-related phenotypes (“abnor-
mal microglial cell morphology,” “abnormal microglial 
cell physiology,” and “microgliosis”) were used as inputs 
separately and combined. Mean ranking and median 
rankings of these 12 AD-associated microbial metabo-
lites among the list of prioritized 216 microbial metabo-
lites were calculated and compared to the average rank-
ing of 50% expected from random ranking. Significance 
was calculated using the two-sample t-test.

Identify microglia–microbial metabolite–gene–pathway–
phenotype interactions in AD
We identified microbial metabolite–microglia–gene–
pathway–phenotype interactions in AD based on top-
ranked microbial metabolites (top 20% in this study). 
For each top-ranked microglia-associated microbial 
metabolite (e.g., acetic acid), we obtained its associated 
genes from the STITCH (Search Tool for Interactions of 
Chemicals) database [31]. The confidence score of chemi-
cal–gene associations in STITCH ranges from 100 to 
999. In this study, we used the cutoff score of 500. Since 
a microbial metabolite can target many genes and path-
ways, many of which are not involved in AD, we then fil-
tered microbial metabolite-associated genes using the 22 
known AD risk genes (Table 2) in order to find AD genes 
targeted by the microbial metabolite. For example, at the 
cutoff value of 500, butyric acid is associated with 1787 
genes, among which three are strong AD genes (APP, 
NOS3, VEGFA). From microbial metabolite-associated 
AD genes, microbial metabolite–gene–pathway–phe-
notype associations were identified by linking microbial 
metabolite-associated AD genes to their pathways based 
on gene–pathway associations from Molecular Signa-
tures Database (MSigDB) [37] and gene–phenotype 
annotations from the Mouse Genome Database (MGD) 
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database [32]. For example, based on the acetic acid–APP 
association, we obtained “acetic acid-APP-inflammas-
omes-amyloid beta deposits” and “acetic acid-APP-GPCR 
ligand binding-amyloid beta deposits” interactions that 
are mediated by microglia.

Case study of SCFAs
Short-chain fatty acids (SCFAs) are the end products 
of fermentation of dietary fibers by gut microbiota and 
play a major role in the maintenance of gut and immune 
homeostasis [23, 24]. Both in  vitro and in  vivo studies 
suggested that SCFA may play a key role in microbiota–
gut–brain crosstalk [20, 25]; however, the mechanisms 
through which SCFAs might influence brain functioning 
in AD have not been fully elucidated [44]. We first exam-
ined whether three SCFAs (acetic acid, butyric acid, and 
propionic acid) were ranked highly by the network-based 
ranking algorithm given the input microglia-associated 
phenotypes. We then examined top AD-associated genes, 
pathways, and phenotypes targeted by each of these three 
SCFAs.

Results
Validation: disrupted microglia function and physiology 
are significantly associated with AD at both genetic 
and phenotypic levels
As a validation step, we examined how abnormal micro-
glial function and physiology were associated with AD-
specific pathological phenotypes and causal genes. Using 
three seeds (“microgliosis,” “abnormal microglial cell 

physiology,” “abnormal microglial cell morphology”) 
alone or combined, the network-based ranking algo-
rithm prioritized a total of 10,122 mouse mutational 
phenotypes. Among the prioritized phenotypes, the 13 
AD-associated phenotypes (described in the “Methods” 
section) ranked significantly highly than random expec-
tation (Table 3). For example, when the seed “microglio-
sis” was used as the input, the AD-associated phenotype 
“neurodegeneration,” “amyloid beta deposits,” and “tau 
protein deposits” ranked at the top 0.30%, 2.36%, and 
10.42%, respectively. These findings are consistent with 
published findings that microglia are involved in AD 
pathologies, including tau protein spreading [48]. These 
results confirmed the validity of our network-based rank-
ing algorithms in studying etiologies of AD and that 
microglia dysfunction is mechanistically involved in AD 
pathologies (“microglia-AD axis”).

We then examined how abnormal microglia func-
tion and physiology was associated with AD-specific 
causal genes. Using three seeds (“microgliosis,” “abnor-
mal microglial cell physiology,” “abnormal microglial cell 
morphology”) alone or combined, the network-based 
ranking algorithm prioritized a total of 23,995 human 
genes. The 22 AD-associated genes (Table  2) ranked 
significantly highly among the list of prioritized human 
genes (Table 4). For example, when the seed “microglio-
sis” was used as the input, AD-associated genes “APP,” 
“PSEN1,” “PRNP,” “PSEN2,” “APOE,” “TNF,” and “VEGFA” 
ranked at the top 0.004%, 0.02%, 0.04%, 0.10%, 0.38%, 
0.39%, and 0.59% among a total of 23,995 prioritized 

Table 3  Mean and median rankings of 13 AD-associated mouse phenotypes among a total of 10,122 prioritized mouse mutational 
phenotypes for input phenotype “abnormal microglial cell morphology,” “abnormal microglial cell physiology,” and “microgliosis” 
separately or combined. A mean value of top 6.52% means that on average the 13 AD phenotypes ranked in the top 6.52% among the 
prioritized list of 9982 mouse phenotypes, which was significantly higher than the expected ranking of 50% based on random ranking

Input Mean (top %) Median (top %) P-value

Abnormal microglial cell physiology 6.52 2.27 2.67E−10

Abnormal microglial cell morphology 7.68 3.17 5.58E−09

Microgliosis 6.38 2.31 1.04E−09

Combined 6.36 2.32 3.72E−09

Table 4  Rankings of the 22 AD-associated genes among the list of 23,995 prioritized genes when the input phenotypes “abnormal 
microglial cell morphology,” “abnormal microglial cell physiology,” and “microgliosis” were used separately or combined. A mean value 
of top 10.59% means that on average the 22 AD genes ranked in the top 10.59% among the prioritized list of 22,982 genes, which was 
significantly higher than the expected ranking of 50% based on random ranking

Input Mean (top %) Median (top %) P-value

Abnormal microglial cell physiology 10.59 5.31 3.41E−11

Abnormal microglial cell morphology 11.30 7.30 1.92E−11

Microgliosis 113.1 9.48 3.39E−10

Combined 11.49 7.81 6.47E−11
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genes, respectively. The fact that many AD-associated 
genes ranked highly for all inputs indicates that abnormal 
microglial function is involved in multiple AD-related 
genetic functions. However, not all AD-associated genes 
ranked highly. For example, when the seed “microglio-
sis” was used as the input, gene MT-ND1, the NADH 
dehydrogenase subunit 1 gene, ranked at the top 60.23%, 
suggesting that microgliosis may contribute to AD eti-
ology independent of oxidative phosphorylation in 
mitochondria.

Microbial metabolites underlie microglia–brain 
interactions in AD
The 12 known AD-associated microbial metabolites 
(described in the “Methods” section) ranked signifi-
cantly highly among a total of 220 prioritized microbial 
metabolites for three inputs (“abnormal microglial cell 
morphology,” “abnormal microglial cell physiology,” and 
“microgliosis”) separately or combined (Table  5). These 
results supported our hypothesis that microbial metabo-
lites are involved in microglia-mediated AD pathologies.

Among the 220 microbial metabolites present in 
human analyzed, the top 44 microbial metabolites for 
the combined input (“microgliosis,” “abnormal microglial 
cell physiology,” “abnormal microglial cell morphology”) 

are listed in Table 6. The entire list of prioritized micro-
bial metabolites for the combined input “microgliosis,” 
“abnormal microglial cell physiology,” and “abnormal 
microglial cell morphology” is in Supplement_S1. Among 
the top-ranked microbial metabolites that were predicted 
to be associated with microglia–AD interactions include 
three short-chain fatty acids or SCFAs (acetic acid, pro-
pionic acid, butyric acid) that are metabolic products 
of bacterial dietary fiber fermentation. Many others are 
produced by both microbes and human hosts, such as 
dopamine and gamma-aminobutyric acid. Our results 
are consistent with the recently published finding of pro-
tective roles of SCFAs in AD-type beta-amyloid neuro-
pathological mechanisms [16].

Microglia–microbial metabolite–gene–pathway–
phenotype interactions in AD
A total of 8094 microglia–microbial metabolite–
gene–pathway–phenotype interactions in AD were 
identified for the top 20% (top 44) ranked microbial 
metabolites (Supplement_S2). For example, acetic acid, 
the top microglia-associated microbial metabolite, is 
involved in 446 microglia–microbial metabolite–gene–
pathway–phenotype interactions in AD, including 
microglia-acetic acid-APP-inflammasomes-tau protein 

Table 5  Evaluation of the prioritization algorithm using the 12 known AD-associated microbial metabolites among 220 microbial 
metabolites. A mean value of top 15.08% means that on average the 12 AD-associated metabolites ranked in the top 15.08% among 
the prioritized list of 216 microbial metabolites, which was significantly higher than the expected ranking of 50% based on random 
ranking

Input Mean (top %) Median (top %) P-value

Abnormal microglial cell physiology 15.08 13.89 3.19E−07

Abnormal microglial cell morphology 15.39 11.11 1.84E−06

Microgliosis 15.63 11.11 4.16E−06

Combined 14.39 11.34 1.06E−06

Table 6  Top 44 (top 20%) predicted microbial metabolites for the combined input “microgliosis,” “abnormal microglial cell physiology,” 
and “abnormal microglial cell morphology”

R Metabolite R Metabolite R Metabolite R Metabolite

1 Acetic acid 12 Ascorbic acid 23 Butyric acid 34 Sulfamethoxazole n1-glucuronide

2 Ethanol 13 Mannitol 24 Isopropyl alcohol 35 Salicyluric acid

3 d-Alanine 14 Epinephrine 25 Serotonin 36 Propionic acid

4 d-Glutamic acid 15 Methane 26 Folic acid 37 d-Proline

5 Hydrogen 16 Norepinephrine 37 Phenylethylamine 38 3-Hydroxydodecanoic acid

6 Dopamine 17 Gamma-aminobutyric acid 28 2-Phenylethanaminium 39 1-Butanol

7 d-Lactic acid 18 4-Hydroxybutyric acid 29 Phenol 40 3-Hydroxybutyric acid

8 l-Lactic acid 19 Oxoglutaric acid 30 Chenodeoxycholic acid 3-sulfate 41 Zeaxanthin

9 Hydroxypropionic acid 20 Glutaric acid 31 3,4-Dihydroxybenzeneacetic acid 42 Cis,cis-muconic acid

10 Acetaldehyde 21 Melatonin 32 Succinic acid 43 Trans-trans-muconic acid

11 Histamine 22 Trehalose 33 Muramic acid 44 Nndole
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deposits, microglia-acetic acid-NOS3-calcium signal-
ing-abnormal long-term potentiation, microglia-acetic 
acid-VEGFA-cytokine-cytokine interaction-astrocytosis, 
among others. The top 10 most frequently targeted AD 
genes, pathways, and phenotypes by top 44 microbial 
metabolites are shown in Table 7. For example, APP and 
TNF are targeted by 21 and 9 of the top 44 microbial 
metabolites, respectively. Pathways “Alzheimer’s disease” 
and “Amyloids” are targeted by 22 and 21 of the top 44 
microbial metabolites, respectively. Phenotypes “abnor-
mal synaptic transmission” and “amyloid beta deposits” 
are targeted by 27 and 22 of the top 44 microbial metabo-
lites, respectively.

Short‑chain fatty acids (SCFAs)
Three SCFAs ranked in the top 44 microglia-associated 
microbial metabolites: acetic acid (top 1), butyric acid 
(top 23), and propionic acid (top 36) (Table  6). APP 
gene is targeted by three SCFAs; a total of 8 (out of 
12) AD phenotypes (abnormal long-term potentiation, 
abnormal synaptic transmission, amyloid beta deposits, 
amyloidosis, astrocytosis, gliosis, microgliosis, and tau 
protein deposits) are associated with three SCFAs. The 
30 shared pathways targeted by three SCFAs (Table  8) 
include known AD-related genetic pathways, including 
“Alzheimer’s disease,” amyloids, and immune systems. 
These results indicated that SCFAs are mechanistically 
involved in microglia-mediated gut–microbiota–brain 
interactions in AD at both genetic, functional, and phe-
notypic levels.

Discussion
We developed a knowledge-driven context-sensitive 
network-based framework to identify microglia–micro-
bial metabolite–gene–pathway–phenotype interactions 
in AD. The approach innovatively repurposed publicly 
available datasets collected for other purposes to study 
the gut–microbiota–microglia–brain interactions in AD. 
We validated this computational framework by showing 
that abnormal microglia function/physiology are indeed 
significantly associated with AD at both the genetic, phe-
notypic, and microbial metabolism levels. We identified a 
total of 8094 potential microglia–microbial metabolite–
gene–pathway–phenotype interactions in AD for the 
top-ranked microbial metabolites.

There is evidence in the literature associating many 
of the top-ranked 44 microglia-associated microbial 
metabolites with AD. For example, in  vitro adminis-
tration of SCFAs (microbial fermentation metabolites) 
regulated microglia homeostasis and obstructed Aβ 
protein aggregation [25]. Supplementation of SCFAs in 
germ-free mice rescued the immature genetic and mor-
phological phenotype of microglia [20]. Three SCFAs 

may play a key role in microbiota–gut–brain crosstalk 
[44] and have protective roles in AD-type beta-amy-
loid neuropathological mechanisms [48]. Despite such 
growing links, the mechanisms underlying how gut 
microbial metabolites interact with microglia and host 
genetics in promoting or protecting against AD remain 
largely unknown. Our analysis provided potential 
mechanistic insights into how microbial metabolites 
SCFAs (acetic acid, butyric acid, and propionic acid) 
are involved in microglia functions in AD at genetic, 
functional, and phenotypic levels: they are among 
top microbial metabolites prioritized for microglia 
functions, all target APP gene and AD-related path-
ways including “Alzheimer’s disease,” “Amyloids,” and 
“Immune systems” and are associated with multiple 
AD-related phenotypes including “abnormal long term 
potentiation,” “abnormal synaptic transmission,” “amy-
loid beta deposits,” “amyloidosis,” “astrocytosis,” “glio-
sis,” “microgliosis,” and “tau protein deposits.” Details of 
these links are provided in Supplement_S2.

Many studies reported associations among alcohol 
consumption, dementia, and cognitive decline [49–51], 
but the findings remain controversial [52]. The effect 
of alcohol on cognitive functions and AD pathogen-
esis and the underlying molecular mechanisms remain 
elusive. In our study, ethanol ranked at top 2 among 
microglia-associated microbial metabolites. It targets 
NOS3 and VEGFA and is associated with multiple AD 
core phenotypes including abnormal long-term poten-
tiation, abnormal synaptic transmission, astrocytosis, 
gliosis, and neuron degeneration (see Supplement_S2). It 
remains an open question as to in what degree ethanol 
produced by microbiota play a role in AD pathogenesis 
and whether previous controversial findings of alcohol–
AD associations could be partially explained by different 
levels of microbial ethanol production among different 
individuals.

The roles of glutamic acid in AD remain unclear. Our 
analysis suggests that glutamic acid targets APP and may 
be associated with amyloidosis, amyloid beta depos-
its, tau protein deposits, and neurodegeneration. The 
dopaminergic system and dopaminergic deficit may be 
involved in cognitive decline in AD [53, 54]. Concentra-
tions of several monoaminergic neurotransmitters, their 
precursors, and metabolites such as dopamine and sero-
tonin were significantly reduced in AD versus control 
patients [55]. Dopamine and serotonin were ranked at 
top 6 and 25 among 220 prioritized microglial-associ-
ated microbial metabolites. However, it remains unclear 
how gut microbiota-produced dopamine and serotonin, 
which normally are unable to cross the blood–brain bar-
rier, exert their effects on the brain by restoring deficits of 
human dopaminergic transmitter systems.
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A higher plasma level of lactic acid was found in signifi-
cantly higher levels in Down syndrome patients with AD 
than Down syndrome patients without AD, suggesting 
that lactic acid may be involved in AD [56]. Our results 
showed that lactic acid targets APP and AD-associated 
pathways and are associated with amyloidosis, amyloid 
beta deposits, tau protein deposits, neurodegeneration, 
and other core AD phenotypes. These results are con-
sistent with a prior study showing that increased levels 
of lactic acid lead to amyloidogenesis in AD by inducing 
APP aggregates [57].

Limitations
Our study has several limitations that warrant further 
discussion. First, our study is purely “in silico” and gen-
erated a large number of possible hypotheses (8094 
potential microglia–microbial metabolite–gene–path-
way–phenotype interactions in AD). We robustly evalu-
ated the knowledge-driven network-based ranking 
algorithm by showing that microglia are involved in AD 
at both genetic and phenotypic levels and that micro-
bial metabolites are involved in AD through microglial 
function. However, we could not directly evaluate the 
identified microglia–microbial metabolite–gene–path-
way–phenotype interactions in AD since we currently 
have limited knowledge of how gut microbial metabolites 
contribute to AD through microglial functions at genetic, 
functional, and phenotype levels. Future studies on the 
role of top-ranked microglia-related genes and microbial 
metabolites in an experimental rodent model of AD may 
provide a better understanding of the impact of micro-
glia–microbial metabolite–gene–pathway–phenotype 
interactions in the pathogenesis of AD.

Second, our findings are largely associational. Although 
the networks incorporated strong causal/mutational 

gene–phenotype relationships from MGD, other rela-
tionships on the network including chemical–gene, 
gene–gene, and gene–pathway are associational. In addi-
tion, network-based ranking algorithms that prioritized 
entities on the network for a given input are based on 
associational analysis. To translate these findings into 
AD diagnosis, prevention, and treatment, it is necessary 
to establish cause–effect relationships of the identified 
microglia–microbial metabolite–gene–pathway–pheno-
type interactions in experimental models of AD and iden-
tify specific gut bacteria that produce the metabolites. 
Furthermore, the identified top-ranked AD–microbial 
metabolites and their associated pathways are not nec-
essarily specific for AD. For example, SCFAs and associ-
ated immune functions and pathways are also involved in 
other diseases including cancers [58].

Third, HMDB is currently the most comprehensive 
human metabolome database. However, it is not specific 
for microbial metabolism and contains only 220 metab-
olites that originated from gut microbiota. The field of 
human microbial metabolism research is expanding 
rapidly, with an increasing number of microbial metab-
olites being identified or predicted by computational 
methods. For example, AGORA (assembly of gut organ-
isms through reconstruction and analysis) is a resource 
of genome-scale metabolic reconstructions semi-auto-
matically generated for 773 human gut bacteria [59]. 
The computationally predicted (while not experimen-
tally confirmed) microbial metabolites in AGORA may 
significantly broaden our current list of 220 microbial 
metabolites.

Another rich resource for a list of validated micro-
bial metabolites is the 30 million published biomedi-
cal literature. Many microbial metabolites already 
reported in the literature are not included in the list 

Table 8  Genetic pathways targeted by three SCFAs

Alzheimer’s disease GPCR ligand binding Platelet activation, signaling, and aggregation

Amyloids Hemostasis Platelet amyloid precursor protein pathway

Caspase cascade in apoptosis Immune system Response to elevated platelet cytosolic Ca2+
Deregulation of CDK5 in Alzheimer’s disease Inflammasomes Signaling by GPCR

G alpha (i) signaling events Innate  immune system TAK1 activates NFkB by phosphorylation and 
activation of IKKs complex

G alpha (q) signaling events NFkB and MAP kinases activation mediated by 
TLR4 signaling repertoire

TLR4 signaling

Gastrin-CREB signaling pathway via PKC and 
MAPK

NLRP3 inflammasome Toll-like receptor cascades

Glycosylation end product receptor signaling Nucleotide-binding domain, leucine-rich repeat 
containing receptor (NLR) signaling pathways

TRAF6 mediated induction of NFkB and MAP 
kinases upon TLR7/8 or 9 activation

Glypican 1 network p75(NTR)-mediated signaling TRAF6 mediated NF-kB activation

GPCR downstream signaling Peptide ligand-binding receptors TRIF mediated TLR3 signaling
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of 220 microbial metabolites from HMDB [60, 61]. We 
have recently developed natural language processing, 
text classification, and network-based approaches to 
automatically extract and prioritize microbial metabo-
lites from 28 million biomedical articles [60, 61]. Cur-
rently, we are manually curating top-ranked microbial 
metabolites extracted from biomedical literature, in 
order to update the analysis of microglia–microbial 
metabolite–gene–pathway–phenotype interactions in 
AD using an updated list of microbial metabolites.

Fourth, this study used 22 AD risk genes obtained 
from OMIM and ClinVar as one of the evaluation data-
sets. Both OMIM and ClinVar contain disease–gene 
associations with known clinical significance. How-
ever, this list of AD genes is not complete. For exam-
ple, studies showed that rare variants of PLCG2, ABI3, 
and TREM2 implicate microglial-mediated innate 
immunity in AD and the list of AD genes did not 
include these three genes. However, this limitation did 
not affect the prioritization algorithm as the input to 
the prioritization algorithm was microglia-associated 
phenotypes and the list of AD genes was used for eval-
uation purpose.

In this study, we did not explicitly differentiate early-
onset from late-onset AD. The inputs to the network-
based algorithms to identify AD-associated microbial 
metabolites were three phenotypes related to abnor-
mal microglial functions. Studies showed that pro-
liferation and activation of microglia around amyloid 
plaques is a canonical feature of AD, including both 
early-onset and late-onset AD [62–64]. While findings 
from our study suggest that microbial metabolites are 
involved in microglia-mediated AD pathophysiology 
in both early- and late-onset AD, future experimen-
tal studies are warranted to further tease out how and 
which microbial metabolites contribute to different 
aspects of AD.

Fifth, we used 517,381 mouse mutational pheno-
type–gene annotations from the MGD to construct 
the PhenGN network and to infer effects of micro-
bial metabolites on AD-related phenotypes. The 
advantages of MGD data are that these gene–pheno-
type associations are strong and often causal and that 
they contain a large number of genes and phenotypes 
(11,021 human gene homologs, 9982 phenotypes). 
However, it is known that phenotypes in mouse mod-
els do not necessarily resemble the human phenotypes, 
especially in AD and other neurological disorders. 
Future work will include incorporating known pheno-
type–gene associations from human (though limited 
availability) into the networks to further improve the 
human relevance of the predicted gut–microbiota–
brain–AD interactions.

Conclusions
We constructed a context-sensitive network that inte-
grates and models our existing knowledge of semantic 
relationships among tens of thousands of genes, phe-
notypes, metabolites, and pathways. We prioritized 
and identified 8094 potential microglia–microbial 
metabolite–gene–pathway–phenotype interactions in 
AD, which provide evidence that multiple gut micro-
bial metabolites are involved in microglia-mediated AD 
pathophysiology through different genetic and func-
tional mechanisms that are finally converged on several 
AD-specific phenotypes including “amyloid beta depos-
its,” “amyloidosis,” “microgliosis,” and “tau protein depos-
its.” To the best of our knowledge, our study represents 
the first computational approach to comprehensively 
characterize the complex gut–microbial metabolite–
microglia–gene–pathway–phenotype–brain connec-
tions in AD, by innovatively repurposing large amounts 
of publicly available data collected for other purposes. As 
our knowledge of genetics and genomics of diseases and 
chemicals evolve, the network structures that capture 
our current knowledge of gene–phenotype, chemical–
gene, gene–gene, gene–pathway, and metabolite–dis-
ease associations will surely also change. Consequently, 
microglia–microbial metabolite–gene–pathway–pheno-
type–AD interactions identified based on network prior-
itization will be further improved. As new data coming 
in, the context-sensitive network-based approach is 
highly flexible and dynamic in incorporating new bio-
medical knowledge into the network. The identification 
of gut microbial metabolites and the understanding of 
their role in AD has potential in providing new insights 
into the basic mechanisms of AD etiology and enable 
new possibilities for AD prevention and treatment.
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