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Abstract

We envisage the development of new Brain Health Services to achieve primary and secondary dementia
prevention. These services will complement existing memory clinics by targeting cognitively unimpaired individuals,
where the focus is on risk profiling and personalized risk reduction interventions rather than diagnosing and
treating late-stage disease. In this article, we review key potentially modifiable risk factors and genetic risk factors
and discuss assessment of risk factors as well as additional fluid and imaging biomarkers that may enhance risk
profiling. We then outline multidomain measures and risk profiling and provide practical guidelines for Brain Health
Services, with consideration of outstanding uncertainties and challenges. Users of Brain Health Services should
undergo risk profiling tailored to their age, level of risk, and availability of local resources. Initial risk assessment
should incorporate a multidomain risk profiling measure. For users aged 39–64, we recommend the Cardiovascular
Risk Factors, Aging, and Incidence of Dementia (CAIDE) Dementia Risk Score, whereas for users aged 65 and older,
we recommend the Brief Dementia Screening Indicator (BDSI) and the Australian National University Alzheimer’s
Disease Risk Index (ANU-ADRI). The initial assessment should also include potentially modifiable risk factors
including sociodemographic, lifestyle, and health factors. If resources allow, apolipoprotein E ɛ4 status testing and
structural magnetic resonance imaging should be conducted. If this initial assessment indicates a low dementia risk,
then low intensity interventions can be implemented. If the user has a high dementia risk, additional investigations
should be considered if local resources allow. Common variant polygenic risk of late-onset AD can be tested in
middle-aged or older adults. Rare variants should only be investigated in users with a family history of early-onset
dementia in a first degree relative. Advanced imaging with 18-fluorodeoxyglucose positron emission tomography
(FDG-PET) or amyloid PET may be informative in high risk users to clarify the nature and burden of their underlying
pathologies. Cerebrospinal fluid biomarkers are not recommended for this setting, and blood-based biomarkers
need further validation before clinical use. As new technologies become available, advances in artificial intelligence
are likely to improve our ability to combine diverse data to further enhance risk profiling. Ultimately, Brain Health
Services have the potential to reduce the future burden of dementia through risk profiling, risk communication,
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personalized risk reduction, and cognitive enhancement interventions.

Keywords: Alzheimer’s disease, Dementia, Aging, Brain health services, Risk factors, Risk profiling, Prevention, Public
health

Background
Frisoni and colleagues [1] recently highlighted the ra-
tionale for primary and secondary dementia prevention
and the need for new services aimed at cognitively un-
impaired individuals. Primary dementia prevention strat-
egies for individuals with unknown disease markers
include modifiable risk factors, lifestyle, and multiple do-
main interventions to reduce disease incidence. Second-
ary prevention targets high risk cognitively unimpaired
individuals with biomarker evidence of disease path-
ology, to prevent or delay symptom onset.
Current memory clinics are ill-equipped to deal with

the number of cognitively unimpaired individuals seek-
ing help in memory clinics who believe they may be at
increased risk of dementia ([2], this issue). For this rea-
son, we envision the development of new Brain Health
Services (BHSs) with specific missions including demen-
tia risk profiling, risk communication ([3], this issue),
risk reduction ([4], this issue), and cognitive enhance-
ment ([5], this issue). Admittedly, BHSs pose specific so-
cietal challenges ([6], this issue).
This review focuses on the first principle of risk profil-

ing and is the second part of a Special Issue series of six
articles, published in Alzheimer’s Research & Therapy,
which together provide a user manual for BHSs. We
provide an overview of modifiable and genetic risk fac-
tors, before discussing best practices for the assessment
of risk factors in a BHS setting. We also consider the po-
tential assessment of fluid and imaging biomarkers for
risk profiling. We then outline multiple domain mea-
sures and risk profiling in the context of primary and
secondary prevention services. Finally, we provide prac-
tical guidelines for BHSs, and consider possible uncer-
tainties, inconsistencies, and challenges.

Risk factors
Overview of modifiable risk factors
The concept of prevention being better than cure under-
pins the growing interest in the role of modifiable risk
factors for cognitive impairment and dementia [7]. The
2020 Report of the Lancet Commission identified 12
modifiable risk factors, which, with appropriate interven-
tions, could prevent up to 40% of dementia cases world-
wide [8]. This may particularly benefit low- and middle-
income countries where the prevalence of dementia is
thought to be rising faster than in higher income
countries [8].

Education is an early life potentially modifiable risk
factor linked to late-life dementia risk [8], either by
exerting a direct effect on brain structure by, for ex-
ample, improving vascularization contributing to cogni-
tive reserve, or by shaping healthier behaviors that
reduce cardiovascular and cerebrovascular damage [9]. If
causality is assumed and low levels of education were
eliminated, then it has been estimated this would lead to
a 7% reduction in dementia prevalence [8].
Hearing loss, traumatic brain injury (TBI), hyperten-

sion, alcohol consumption (> 21 units per week), and
obesity have been identified as key potentially modifiable
midlife dementia risk factors [8]. Poor encoding of
sound may affect brain structure and function, impose
higher cognitive load, and reduce social interaction [10].
Oxidative stress, inflammatory effects, and reduced cere-
bral flow contribute to brain pathology associated with
factors such as TBI and hypertension [11]. The percent-
age reduction in dementia prevalence if these risk factors
were eliminated ranges from 8% for hearing loss to 1%
for alcohol and obesity [8].
Diabetes, smoking, air pollution, depression, social iso-

lation, and physical inactivity have been identified as po-
tentially modifiable late life dementia risk factors [8].
Diabetes [12] and physical inactivity [13] are associated
with an adverse vascular profile, which itself is associated
with an increased dementia risk [13]. Diabetes increases
inflammation and oxidative stress on the brain [14].
Smoking and air pollution enhance reactive oxygen and
inflammatory responses [11, 15]. Depression and social
isolation are associated with accelerated brain and car-
diovascular aging [16] and poor health behaviors [17].
The reduction in dementia prevalence associated with
elimination of these risk factors ranges from 5% for
smoking to 1% for diabetes [8].
As our understanding of modifiable risk factors

improves, this list of “key” risk factors will need to be
updated. Guidelines for risk reduction of cognitive decline
and dementia published by the World Health
Organization (WHO) had a greater focus on interventions
and present building evidence for additional modifiable
risk factors such as diet [18]. For example, emerging evi-
dence suggests that diet, cognitive stimulation, vitamin D,
and pesticide exposure may also be important [19, 20].
Based upon current evidence, the 12 potentially modifi-
able dementia risk factors identified in the 2020 Report of
the Lancet Commission should be incorporated into BHS
assessments and prioritized in personalized interventions.
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Genetic risk factors and interactions with modifiable risk
factors
AD is the most common type of dementia and has a
strong genetic component, involving both common and
rare genetic variants [21] as illustrated in the discovery
timeline summarized in Fig. 1. To date, 34 genetic vari-
ants have been associated with AD [22]. Specifically,
PSEN1, PSEN2, and APP mutations cause AD dementia
in virtually 100% of carriers (autosomal dominant AD
[23]), with a mean age at dementia onset of 35–65 years
[24] and symptom duration of about 10 years [25].
Nevertheless, the major driver of AD in the general
population is the common apolipoprotein E ɛ4 variant
(APOE ɛ4), which is associated with an elevated risk of
developing dementia, i.e., 51–95% in APOE ɛ4/ɛ4 and
22–90% in APOE ɛ4/- [26, 27] and a mean age at de-
mentia onset of 73–74 years in APOE ɛ4/ɛ4 and 75–82
in APOE ɛ4/- [28, 29]. Although common variants often
have very small effects on a person’s AD risk, jointly they
may modify the risk and age at onset of Alzheimer's
disease and dementia significantly [22].
Our knowledge of the genes implicated in non-AD

dementias is less comprehensive. Mutations in micro-
tubule associated protein tau gene and the gene en-
coding progranulin are specific for frontotemporal
dementia. Other variants including the intronic ex-
pansion of a hexanucleotide repeat in C9orf72 and
SERPINA1 are also implicated, though few common
variants have been identified (see Fig. 1). For demen-
tia with Lewy bodies, only APOE, Glucocerebrosidase,
and Synuclein Alpha have been replicated. Lastly, for
vascular dementia there are no consistent findings for
common variants.

It is unknown whether genetic risk modifies the influ-
ence of life-style on dementia. Four large multidomain
trials of dementia prevention have been conducted.
However, only the Finnish Geriatric Intervention Study
to Prevent Cognitive Impairment and Disability found a
significant difference in the primary outcome following a
lifestyle, metabolic, and vascular intervention [30]. The
beneficial effect was only observed in APOE ɛ4 carriers
[31]. Null group level findings in other trials may there-
fore mask effects in genetic subgroups. Comparable find-
ings from observational studies are mixed. There was no
interaction between lifestyle factors and polygenic risk
score in relation to all-cause dementia risk in the UK
Biobank [32]. However, there was a significant inter-
action between a composite of lifestyle and health fac-
tors and APOE/polygenic risk in relation to all-cause
dementia in the Rotterdam Study [33]. Taken together,
these findings provide suggestive rather than conclusive
evidence that, contrary to expectation, those with a high
genetic risk may be more likely to benefit from targeted
dementia prevention interventions.

Assessments in the clinic
Assessing risk factors in the clinic
When assessing cognitively unimpaired users in BHSs,
consideration of their modifiable lifestyle and clinical
risk factors and their genetic profile can inform person-
alized and targeted dementia prevention interventions.

Assessing potentially modifiable risk factors
The potentially modifiable risk factors to be assessed in
BHSs are shown in Table 1, along with examples of
methods to assess these factors in a clinical setting.

Fig. 1 Timeline of the discovery of frequent and rare variants in Alzheimer’s disease. Frequent/common variants discovered in GWAS are shown
above the horizontal date axis, and rare variants discovered using sequencing and arrays are shown below the date axis
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Assessing genetic risk factors
Combining effects of APOE*4 and common variants al-
lows a precise prediction of the risk and age of onset of
AD [22, 45, 46] and pathology in the brain [47]. Age spe-
cific risk curves may have clinical utility in BHS, allow-
ing determination of future risk of AD at different stages
of the life course [22]. These estimates can be provided
using polygenic risk scores based on replicated variants
[22] assessed by dedicated AD chips or putative genome
wide variants that are marginally associated to the dis-
ease that can be assessed by general genetics arrays [45–
47]. Although in many countries testing for rare variants
conferring a high risk of AD (see Fig. 1) is the domain of
clinical genetics, routine testing for such variants in a
BHS may be useful for users with a family history of AD.
Within a BHS, testing for known major genes that har-
bor rare variants may be done in collaboration with clin-
ical geneticists. As is the case with many complex
disorders, rare variants in genes will be encountered for
which the functional effects and the risk of AD is yet un-
known in archives such as Omim and ClinVar [48].
However, collaboration between the genomics and clin-
ical community could facilitate genetic counseling in the
setting of a BHS [48].

Assessing additional biomarkers
Fluid and neuroimaging biomarkers can be used to dif-
ferentiate between asymptomatic individuals with and
without underlying pathology. This can be used to target
people who are particularly likely to benefit from inter-
ventions. Assessment of pathology also provides a base-
line for disease burden that can be subsequently used to
assess rates of progression. Nevertheless, the use of bio-
markers in BHSs depends on local facilities and
resources and on the context of BHS implementation
([2], this issue).

Assessing fluid (CSF and plasma) biomarkers
Many studies have consistently shown that core AD
cerebrospinal fluid (CSF) biomarkers amyloid β (Aβ42
and Aβ42/Aβ40 ratio), total-tau (T-tau), and phosphory-
lated tau (P-tau) reflect key elements of AD pathophysi-
ology and have high diagnostic value and high
concordance with amyloid positron emission tomog-
raphy (PET) [49]. However, there are currently no dis-
ease specific fluid biomarkers for non-AD dementia.
Furthermore, a lumbar puncture is often regarded as
complicated and invasive and subjects may have side-
effects in the form of transient headache. Thus, for a

Table 1 Assessment of potentially modifiable risk factors in Brain Health Services

Risk factor Assessment methods

Education - International Standard Classification of Education (applicable across educational systems) [34]
- Years of education (simple to calculate) [34]

Lifetime traumatic brain injury - Ohio State University Traumatic Brain Injury Identification Method (ideal) [35]
- Medical history or informant or self-reported reports (practical)

Hypertension - Ambulatory devices (ideal)
- Domestic device (practical)
Defined as in-office measures at 140/90 and lower in ambulatory or home-based assessments [36].

Alcohol consumption - Quantity-frequency measures with beverage-specific assessment of time frames and binge-
drinking episodes [37] (ideal)

- > 21 units per week to define high risk (more practical)

Obesity and visceral adipose tissue - Waist circumference (ideal)
- Body mass index (practical)
Note: There are different ways to measure waist circumference and different cut-offs depending
on ethnicity and world region [38].

Hearing impairment - Pure tone audiometry [39] (gold standard)
- Whispered Voice Test (simple but less reliable)
- Speech-in-noise paradigms (simple but less reliable)
- Questionnaires (less reliable)

Diabetes - Fasting plasma glucose levels (> = 7.0 mmol/l) or HbA1c (> = 6.5%)
- Oral glucose tolerance test to diagnose impaired glucose tolerance [40].

Smoking - Pack years (number of daily packs multiplied by number of years smoking)
- Current smoking status (current versus former/never smoker)

Air pollution - Further research is needed to establish a practical clinically relevant measure.

Depression - Depression screening measures, e.g., Patient-Health-Questionnaire (PHQ) [41].

Social isolation - Short questionnaires, e.g., the Lubben Social Network Scale [42] or the Duke Social Support Index [43].

Physical inactivity - Accelerometers [44]
- Heart rate counters [44]
- Smart phone or smart watch apps [44]
- Self-reported measures (more practical for clinical setting)
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BHS clinical setting, blood biomarkers are likely to be
more practical and acceptable to users than CSF
biomarkers.
Technical developments have allowed for quantifica-

tion of brain-specific proteins in blood samples. For
amyloidosis, the plasma Aβ42/Aβ40 ratio shows high con-
cordance with amyloid PET [50], and can be measured
on fully automatized instruments [51]. Blood biomarkers
for tau pathology include P-tau181, which shows a
marked increase in AD and high concordance with tau
PET [52, 53], while levels are normal in other tauopa-
thies, such as frontotemporal dementia. Importantly,
plasma P-tau181 is increased in unimpaired elderly hav-
ing brain amyloidosis, but still a negative tau PET scan
[54]. This suggests it may be sensitive to pathological
change at an earlier stage. Studies of other tau variants,
specifically P-tau217, show encouraging results [55].
Neurofilament light (NFL) is a well-validated neurode-
generation biomarker showing increases in several neu-
rodegenerative disorders, including AD [56], and
predicts future rate of cognitive decline [57]. Import-
antly, plasma NFL increases early in the preclinical phase
of AD [58, 59]. While blood biomarkers are very promis-
ing, they need further real-world validation before they
can be recommended for use in BHSs [60, 61].

Assessing imaging biomarkers
Magnetic resonance imaging (MRI) promises to be a
sensitive early biomarker of neurodegeneration given
that genetic cohorts of dementia demonstrate structural
MRI changes many years before symptom onset [62–
64]. The finding of selective early hippocampal atrophy
is well established in AD [64, 65] and is an accepted bio-
marker for clinical trials [66, 67], yet translating this into
detecting early AD for clinical use requires further work
[68]. However, there are a number of potential methodo-
logical developments in artificial intelligence, PET, and
MRI technology that may lead to more specific and bio-
logically relevant neuroimaging biomarkers [69].
Cerebrovascular risk is a particular focus for neuroim-

aging studies and impacts on cognition in healthy aging
[70]. While silent territorial infarcts are relatively rare,
cerebral small vessel disease is extremely common,
encompassing white matter hyperintensities, lacunes,
widened Virchow-Robin spaces, and cerebral micro-
bleeds [71]. White matter hyperintensities are a frequent
finding associated with cardiovascular risk factors such
as hypertension and smoking. They significantly increase
the risk of stroke, dementia, and overall mortality [72],
especially when lesions become confluent [73]. Stroke it-
self is strongly associated with incident all-cause demen-
tia [74]. Lacunes are found more frequently in
individuals with atrial fibrillation and present an inde-
pendent risk factor for cognitive decline. Cerebral

microbleeds can be due to cardiovascular risk factors deep
in the basal nuclei, while lobar cerebral microbleeds are
reflective of amyloid-angiopathy; they only carry a weak
risk for dementia on a population level [75].
Current consensus practice for assessing MRI scans is

to use visual rating scales, such as the medial temporal
lobe atrophy scale [76], the parietal atrophy scale [77],
the global cortical atrophy scale [78], the age-related
white matter changes [79], and the Fazekas scale for
white matter lesions [80, 81]. Measurement of regional
cortical thickness can also identify presymptomatic
amyloid positive individuals [82]. However, with the ad-
vent of artificial intelligence, new neuroimaging tools for
diagnosis and prognosis are emerging [83–85] that may
provide more sensitive assessments in the near future.
PET has provided a suite of tools for assessing people

with cognitive impairment using specific ligands that bind
to physiological targets. The most well established in clin-
ical practice is 18-Fluorodeoxyglucose (FDG) PET which
has proved useful for predicting cognitive impairment in
Parkinson’s disease [86]. Ligands for beta-amyloid have
found the presence of beta-amyloid increases with age,
reaching 65% in health over 80s [87]. However, a positive
beta-amyloid PET did not correlate to cognition, so the
implications of this finding remains uncertain for predict-
ing risk. It has been shown in genetic forms of AD that
amyloid accumulates 15–20 years prior to symptom onset
and it is thought to be an early critical factor in disease, al-
though changes in amyloid load do not reliably correlate
with cognitive change [62]. Other ligands for tau [88] in-
flammation [89] or synaptic integrity [90] exist, but re-
main in the research domain. The cost and availability of
PET imaging may limit its applicability to BHSs but could
have a role in selected high risk individuals.

Risk profiling
Multidomain measures and risk profiling
A number of dementia risk prediction models have been
developed to determine dementia risk in middle-aged or
older adults [91, 92]. The validity of most risk models is
unknown, as is the degree to which they can be appropri-
ately used in different populations. Prediction models
which have been validated in multiple samples include the
Cardiovascular Risk Factors, Aging and Dementia
(CAIDE) score [93], the Australian National University
Alzheimer’s Disease Risk Index (ANU-ADRI) [94, 95], and
the Brief Dementia Screening Indicator (BDSI) [96]. Basic
characteristics of these models are shown in Table 2. The
CAIDE score assesses long-term risk of dementia in
middle-aged adults, whereas the ANU-ADRI and the
BDSI predict medium-term AD and dementia risk re-
spectively in older adults. The overall accuracy of these
risk prediction models is moderate (range 0.64–0.78), in-
dicating that, although they can be improved upon, they
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can also generate useful predictions. It is notable that 10
of the 12 modifiable risk factors for dementia included in
the 2020 Report of the Lancet Commission are included
in these models [8]. The only modifiable risk factors iden-
tified in that report which are not currently included are
hearing loss and air pollution.
The CAIDE score has a moderate level of discrimina-

tive accuracy over 20 years follow-up (area under the
curve (AUC) = 0.77, 95% CI = 0.71–0.83). The addition
of APOE e4 did not substantially increase accuracy
(AUC = 0.78, 95% CI = 0.72–0.84). When this model
was externally validated, it performed similarly in a mid-
life population (AUC = 0.75) [97] but poorly in late-life
populations with shorter follow-up times (AUC range
0.49–0.57) [95]. When tested in three cohorts, the ANU-
ADRI was found to have moderate levels of

discriminative accuracy for Alzheimer’s disease: Rush
Memory and Aging Project study AUC = 0.64 (95% CI =
0.60–0.68), Kungsholmen Project study AUC = 0.74
(95% CI 0.71–0.77), and Cardiovascular Health Cogni-
tion study AUC = 0.73 (95% CI = 0.69–0.78). The BDSI
was tested in four cohorts including the Cardiovascular
Health Study (CHS), The Framingham Heart Study
(FHS), the Health and Retirement Study (HRS), and the
Sacramento Area Latino Study on Aging (SALSA). The
discrimination accuracy of the final model was moderate
across cohorts: CHS AUC = 0.68 (95% CI = 0.65–0.72),
FHS AUC = 0.77 (95% CI = 0.73–0.82), HRS AUC =
0.76 (95% CI = 0.74–0.77), and SALSA AUC = 0.78
(95% CI = 0.72–0.83).
There have also been attempts to develop new models

in at-risk subpopulations. For example, the Diabetes-

Table 2 Comparison of selected dementia risk models

Cardiovascular Risk Factors,
Aging and Dementia (CAIDE)
score

Australian National University
Alzheimer’s Disease Risk Index
(ANU-ADRI)

Brief Dementia
Screening Indicator
(BDSI)

Development sample age range 39–64 Variable (population based) 65+

Development sample size 1409 903–2496 1125–13889

Mean length of follow-up, years 21 Variable (population based) 6

Accuracy (area under the curve or C-statistic)** 0.77–0.78 0.64–0.74 0.68–0.78

Demographic predictors

Age ● ● ●

Sex ● ●

Education* ● ● ●

Functional impairment

Difficulty with instrumental activities of daily living ●

Health predictors

Systolic blood pressure* ●

Body mass index* ● ●

Total cholesterol ●

Diabetes* ● ●

Stroke ●

Traumatic brain injury* ●

Depression*/depressive symptoms ● ●

Lifestyle predictors

Smoking* ●

Physical activity* ● ●

Social isolation* ●

Cognitively stimulating activities ●

Alcohol* ●

Fish intake ●

Genetic predictors

APOE e4 carrier ●

*Modifiable risk factor identified in the 2020 Report of the Lancet Commission [8]
**Range includes the development and validation test results
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Specific Dementia Risk Score (DSDRS) is a model for type
2 diabetics. The DSDRS was found to have reasonable ac-
curacy in the development (AUC = 0.74) and validation
(AUC = 0.75) cohorts [97]. Disease-specific predictive
models may be important as generic dementia risk predic-
tion models may not work well in specific subpopulations
[98]. Further, not all prediction models for dementia de-
veloped in high-income countries are necessarily applic-
able to low- and middle-income countries [99].

Discussion
Summary
We now have a reasonable idea what the “key” poten-
tially modifiable dementia risk factors are in early-, mid-,
and late- life. It is also likely that further risk factors will
be added to this list in the future. Of course, optimal risk
profiling for identification of patients at high risk of de-
mentia may not necessarily be synonymous with optimal
modifiable risk factor profiling for targeted interventions.
For risk profiling, rare genetic variants for early-onset
dementia have been identified, and common variants for
late-onset dementia, particularly AD, are now known.
Further research is needed to investigate possible gene-
environment interactions. CSF biomarkers are not very
practical in the context of BHSs; however, blood-based
biomarkers may be useful subject to further real-world
validation. Structural MRI is becoming established as a
clinically useful imaging biomarker of dementia patholo-
gies, and advanced imaging may be a useful supplement
to this if available. Existing dementia risk prediction
models offer a practical way of risk profiling individual
users, though there is room for improvement and they
have not yet been optimized for use in BHSs.

Practical guidelines
The assessment of risk factors and risk profiling in BHSs
will require a multidisciplinary team, and a balance be-
tween precision and practicality. Individual assessment
of modifiable risk factors is likely to involve multiple
measures and may prove to be time consuming. Some
assessments may be completed in advance of the ap-
pointment and a specialist nurse appointment may also
enrich the information available. The individual will
undergo an assessment tailored to their age, level of risk
following an initial assessment, and local resources avail-
able (see Fig. 2). Comprehensive recommendations for
BHSs, including risk profiling outlined here, will be pre-
sented in a separate article. A follow-up communication
of the user’s results will be required ([3], this issue),
followed by the proposal of an individualized plan for
risk reduction ([4], this issue) and/or cognitive enhance-
ment interventions ([5], this issue) and/or clinical trial
opportunities.

The initial assessment should include the exclusion of
pre-existing dementia. Risk profiling should incorporate
a multidomain risk profiling measure validated for use
with the relevant age group, assessment of additional
risk factors, APOE ɛ4 status if possible, and structural
MRI. To assess long-term dementia risk in middle-aged
individuals aged 39–64, we recommend that BHSs use
the CAIDE score. The CAIDE should not be used for
anyone younger than 39 whose dementia risk will be
negligible over 20 years or in those aged 65 years or
older as accuracy is poor in older adults and better alter-
natives are available. APOE ɛ4 genotyping should be
undertaken if possible to permit use of the full CAIDE
model and as multimodal interventions may be more ef-
fective in e4 carriers [31]. This will allow for targeted al-
location of limited resources when attempting dementia
prevention. To assess medium-term dementia risk in in-
dividuals aged 65 and older, we recommend that BHSs
use the BDSI and the ANU-ADRI which produces a
comparable risk prediction for AD specifically. The
ANU-ADRI also has the practical advantage of incorpor-
ating a larger number of modifiable risk factors such as
smoking and physical activity which can inform targeted
interventions. Additional risk factor assessment should
focus on those factors with the strongest evidence base
and greatest opportunity to intervene, particularly those
outlined in the 2020 Report of the Lancet Commission
[8]. These can be divided into early life (education), mid-
life (hearing loss, TBI, hypertension, alcohol consump-
tion, and obesity), and late-life (diabetes, smoking, air
pollution, depression, social isolation and physical in-
activity) and should be assessed routinely as appropriate
for the user’s age. Some, but not all, of these risk factors
are incorporated into existing dementia risk scores (see
Table 2). Structural MRI should be used in BHSs to en-
able the assessment of non-degenerative pathologies
(e.g., inflammation, tumors), cerebrovascular burden
(particularly cerebral small vessel disease including white
matter hyperintensities and lacunes), and neurodegener-
ative processes (generalized, medial temporal lobe and
hippocampal atrophy). Determination of whether a user
has high dementia risk may be made on the basis of clin-
ical judgment of the initial assessment results or by for-
mally combining the information using a computerized
decision support system, if available.
If initial BHS dementia risk profiling indicates that the

user has a low risk of dementia, then low intensity inter-
ventions can be implemented, for example signposting to
relevant risk reduction public health information and re-
sources or low-cost non-specialist guidance. If however
the initial risk profiling indicates that the user has a high
risk of dementia then additional optional investigations
should be considered if local facilities and resources allow.
Common variant polygenic risk of late-onset AD can be
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tested in middle-aged or older adults. However, rare vari-
ants should only be investigated in users with a family his-
tory of early-onset dementia (< 65 years) in a first-degree
relative in collaboration with clinical geneticists. Advanced
imaging with FDG-PET or amyloid PET may also prove
to be informative in high risk patients to clarify their bur-
den of underlying pathology. Plasma biomarkers may

prove to be a useful additional optional investigation in
high risk users in the near future, though they are not cur-
rently recommended for use in BHSs before further real-
world validation. Future risk profiling tools may therefore
benefit from incorporating richer genetic information
using polygenic risk scores and more advanced biomarker
and imaging findings.

Fig. 2 Proposed workflow for dementia risk profiling in BHSs
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Conclusions
Risk profiling in BHS involves a core assessment com-
prised of multidomain risk prediction models in combin-
ation with additional risk factors, APOE ɛ4 status if
possible, and structural MRI. If resources allow, then
additional investigations including more comprehensive
genetic testing and advanced neuroimaging can be
undertaken in high risk users. Further research is neces-
sary to refine risk profiling and risk reduction ap-
proaches in low- and middle-income countries. Results
can then be communicated to users, a personalized risk
reduction and cognitive enhancement plan formulated,
and clinical trial opportunities identified.
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