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Abstract

Background: Changes in grey matter covariance networks have been reported in preclinical and clinical stages of
Alzheimer’s disease (AD) and have been associated with amyloid-β (Aβ) deposition and cognitive decline. However,
the role of tau pathology on grey matter networks remains unclear. Based on previously reported associations
between tau pathology, synaptic density and brain structural measures, tau-related connectivity changes across
different stages of AD might be expected. We aimed to assess the relationship between tau aggregation and grey
matter network alterations across the AD continuum.

Methods: We included 533 individuals (178 Aβ-negative cognitively unimpaired (CU) subjects, 105 Aβ-positive CU
subjects, 122 Aβ-positive patients with mild cognitive impairment, and 128 patients with AD dementia) from the
BioFINDER-2 study. Single-subject grey matter networks were extracted from T1-weighted images and graph theory
properties including degree, clustering coefficient, path length, and small world topology were calculated.
Associations between tau positron emission tomography (PET) values and global and regional network measures
were examined using linear regression models adjusted for age, sex, and total intracranial volume. Finally, we tested
whether the association of tau pathology with cognitive performance was mediated by grey matter network
disruptions.

Results: Across the whole sample, we found that higher tau load in the temporal meta-ROI was associated with
significant changes in degree, clustering, path length, and small world values (all p < 0.001), indicative of a less
optimal network organisation. Already in CU Aβ-positive individuals associations between tau burden and lower
clustering and path length were observed, whereas in advanced disease stages elevated tau pathology was
progressively associated with more brain network abnormalities. Moreover, the association between higher tau load
and lower cognitive performance was only partly mediated (9.3 to 9.5%) through small world topology.
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Conclusions: Our data suggest a close relationship between grey matter network disruptions and tau pathology in
individuals with abnormal amyloid. This might reflect a reduced communication between neighbouring brain areas
and an altered ability to integrate information from distributed brain regions with tau pathology, indicative of a
more random network topology across different AD stages.
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Introduction
Alzheimer’s disease (AD) is generally thought to start
with the aggregation of amyloid-β (Aβ) in the brain,
followed by deposition of neocortical tau pathology, syn-
aptic dysfunction, atrophy, and cognitive decline [1–3].
However, the sequence and interactions of the patho-
physiological processes and structural brain changes that
occur during this long pre-dementia period are not well
understood. Given that brain network abnormalities can
already be observed in pre-dementia stages and contrib-
ute to cognitive impairment in AD [4–6], further clarifi-
cation on the interrelations between brain connectivity
with key pathological aggregates of AD could increase
our understanding on the pathogenesis of AD. One
method to assess brain connectivity consists of measur-
ing the similarity of cortical grey matter (GM) morph-
ology, based on the notion that brain regions that
engage in similar cognitive or behavioural processes tend
to develop in a homologous way [7–9] through func-
tional coactivation and/or axonal connectivity between
brain regions [10–12]. Previous studies have shown GM
network disruptions in preclinical AD [13–16], mild cog-
nitive impairment [17–21], and AD dementia [5, 22–26].
Moreover, GM network disruptions have been related to
increased Aβ pathology [13, 15, 16, 27], while influences
of tau pathology on GM brain networks remain un-
known. Intraneuronal tau is thought to be more closely
linked to synaptic function, brain integrity and clinical
symptoms, than Aβ plaques [28–31]. Therefore, we
hypothesised that tau pathology may contribute to im-
paired network organisation in AD. In this study, we
tested whether tau deposition (measured with tau-
positron emission tomography [PET]) was associated
with GM network alterations (measured with structural
magnetic resonance imaging [MRI]) in individuals across
the AD spectrum and whether these relationships were
differentially linked with disease severity.

Methods
Participants
We included 533 individuals from the Swedish
BioFINDER-2 study (NCT03174938) who underwent tau-
PET, structural MRI, and lumbar puncture to determine
cerebrospinal fluid (CSF) Aβ42/Aβ40 levels as described
previously [32]. In the present study, we included subjects
> 50 years of age with an abnormal CSF Aβ status,

resulting in three groups along the AD continuum: Aβ-
positive cognitively unimpaired (CU) subjects (preclinical
AD), Aβ-positive patients with mild cognitive impairment
(prodromal AD), and Aβ-positive patients with AD de-
mentia. Diagnosis was made according to clinical diagnos-
tic criteria of the diagnostic and statistical manual of
mental disorders (DSM)-5 [33]. In addition, an Aβ-
negative cognitively unimpaired control group was in-
cluded. All subjects underwent the Mini-Mental State
Examination (MMSE) [34] and delayed word list recall test
from the ADAS-Cog (Alzheimer’s Disease Assessment
Scale - Cognitive Subscale) [35] to assess global cognition
and episodic memory, respectively. The inclusion and ex-
clusion criteria of the BioFINDER-2 sub-cohorts are de-
scribed in more detail in the eMethods section of the
Supplementary material. All participants gave written in-
formed consent to participate in the study. Ethical ap-
proval was given by the regional ethics committee at Lund
University, Sweden. PET imaging procedures were ap-
proved by the Radiation protection committee at Skåne
University Hospital and by the Swedish Medical Products
Agency.

MRI acquisition and pre-processing
T1-weighted images were acquired using a magnetisation-
prepared rapid gradient echo sequence on a 3 T Siemens
MAGNETOM Prisma scanner (Siemens Medical Solu-
tions, Erlangen, Germany) using the following parameters:
178 slices, repetition time: 1950ms, echo time: 3.4 ms, in-
version time: 900ms, flip angle: 9°, 1 mm isotropic voxels.
All images were segmented into grey matter, white matter,
and CSF using the Statistical Parametric Mapping
(SPM12, https://www.fil.ion.ucl.ac.uk/spm/software/
spm12/) running in MATLAB (v2019b). The segmented
grey matter images were resliced to 2 × 2 × 2 mm iso-
tropic voxels to reduce the dimensionality of the data.
Then, the images were parcellated into 100 anatomical
brain regions using the Automated Anatomical Labelling
(AAL3) atlas (all thalamic nuclei combined) [36], which
was warped from standard space to subject space using
subject-specific inverse normalisation parameters. The
quality of these steps was visually assessed and two sub-
jects had to be excluded due to misalignment of the brain
atlas with the GM image. Total intracranial volume (TIV)
was computed as the sum of grey matter, white matter,
and CSF volumes.
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Single-subject grey matter networks
Single-subject grey matter networks were extracted from
the native grey matter images using an automated
template-free approach that has been previously pub-
lished (https://github.com/bettytijms/Single_Subject_
Grey_Matter_Networks) [37]. For each subject, the grey
matter network was built as a set of nodes connected by
edges. The nodes were defined as cubes of 3 × 3 × 3
voxels (6 × 6 × 6 mm3), which size was chosen based on
2 factors: (I) the minimum spatial resolution needed to
still capture cortical folding has shown to be 3 mm [38],
and (II) the practical computational limitations that exist
with large matrices. These cubes keep the 3D structure
of the cortex intact, and thereby contain information on
grey matter intensity as well as spatial information be-
tween the voxels. In order to find the maximum correl-
ation value with a target cube using Pearson correlation
coefficients, each cube was rotated by an angle with
multiples of 45° over all axes, contributing to all positive
connections. Self-connections were set to zero. The
resulting similarity matrix containing all pairwise corre-
lations was binarised using a threshold that reduced the
chance of spurious correlations in the network to 5%.
This corresponded to a significance level of p < 0.05 cor-
rected for multiple comparisons using a permutation-
based procedure [39]. The presence of an edge was indi-
cated when the correlation between each pair of nodes
exceeds this threshold. For regional network analyses,
the corresponding atlas label for each cube was deter-
mined, this enabled averaging the GM network values
and volume across nodes that were labelled according to
that atlas region. A total of four subjects had to be ex-
cluded due to network calculation failure.

Network properties
Global and regional measures were calculated for each
individual GM network. To assess global network prop-
erties the following measures were computed: network
size (the total number of nodes in the network), degree
(the number of edges), connectivity density (the ratio of
existing connections to the maximum number of pos-
sible connections), clustering coefficient (the fraction of
a node’s neighbours that are also neighbours of each
other), and path length (shortest path length between all
pairs of nodes in the network). To normalise the net-
work properties to random networks, we divided the
average clustering coefficient and path length values by
those values of five randomised reference networks of
identical size and degree distribution, resulting in γ and
λ, respectively [40]. The ratio of γ to λ is defined as the
small-world coefficient σ [41], indicative of the optimal
balance between information segregation and integra-
tion. To assess regional network properties, the degree,
clustering coefficient, and path length were also

calculated for each atlas brain area, i.e. region of interest
(ROI). All network measures were computed with func-
tions from the Brain Connectivity Toolbox (https://sites.
google.com/site/bctnet/) [42], modified for large scale
networks.

PET acquisition and pre-processing
Tau-PET imaging was conducted 70–90min after injec-
tion of 365 ± 20MBq [18F]RO948 on digital GE Discov-
ery MI scanners (General Electric Medical Systems) [43].
Low-dose CT scans were performed immediately prior
to the PET scans for attenuation correction. PET data
was reconstructed using VPFX-S (ordered subset expect-
ation maximisation with time-of-flight and point spread
function corrections) with 6 iterations and 17 subsets
with 3 mm smoothing, standard Z filter, and 25.6-cm
field of view with a 256 × 256 matrix. After list-mode
data was binned into 4 × 5-min time frames, PET images
were motion corrected (rigid transformation using
AFNI, 3dvolreg) [44], summed, and co-registered to
their corresponding T1-weighted MR images. Standar-
dised uptake value ratio (SUVR) images were created
using the inferior cerebellar cortex as a reference region
[32]. We calculated PET data both corrected and uncor-
rected for partial volume errors. Partial volume correc-
tion (PVC) was performed using the geometric transfer
matrix method, as described in [45], PVC findings are
available in the supplementary results section (eFigure 1,
2, eTable2).
To investigate the associations between tau pathology

and network changes across different AD pathological
stages, four composite regions were created based on the
Braak staging scheme for neurofibrillary tangle path-
ology [46], adapted to PET space by [47]. These included
the following brain regions as defined by the AAL atlas
(see Supplementary eMethods 2 for details), and cover
stage I–II (hippocampal formation), stage III–IV (fusi-
form, amygdala, cingulate and inferior and middle tem-
poral cortices), and stage V–VI (widespread neocortical
areas including the orbitofrontal, superior, middle and
inferior frontal, precentral, paracentral, postcentral, pre-
cuneus, inferior and superior parietal, supramarginal, su-
perior temporal, medial and lateral occipital cortices). In
addition, a tau temporal meta-ROI capturing stages I to
IV was calculated using the volume-weighted average of
the corresponding regions [48].

CSF collection and analysis
CSF samples were obtained with a lumbar puncture and
collected into 5 ml LoBind polypropylene tubes handled
according to the Alzheimer’s Association Flow Chart for
lumbar puncture [49]. Concentrations of Aβ42 and Aβ40
were quantified using enzyme-linked immunosorbent as-
says (ELISAs; INNOTEST, Fujirebio). Amyloid-status
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was determined using the Aβ42/Aβ40 ratio with a cutoff
of < 0.089 as defined abnormal in clinical practice at the
Sahlgrenska University Hospital, Mölndal, Sweden [32].

Statistical analyses
Comparisons of demographical and clinical characteris-
tics between groups were performed using chi-squared
tests for categorical variables and one-way ANOVA for
continuous variables.
To analyse the relationship between tau-PET (pre-

dictor) and global network measures (outcome), we
used linear regression models adjusted for age, sex,
and TIV (all models) and connectivity density (for
path length, clustering, γ, λ, and σ), since higher-
order measures have shown to depend on the number
of nodes and edges in the network [50]. The associ-
ation between tau-PET and global network measures
was first tested across the whole sample, and then re-
peated within diagnostic groups with the interaction
term group. Additionally, CSF Aβ42/Aβ40 was added
to the linear regression model to test for an inter-
action effect CSF Aβ42/Aβ40* tau on GM network
changes. Z-scores for the network properties were
calculated using the Aβ-negative control group mean
and standard deviation, to aid comparisons of effect
sizes between network properties. We further investi-
gated the relationship of tau pathology with GM net-
work disruptions at the local level across all AAL
areas. Regional analyses were adjusted for age, sex,

TIV, local GM volume, and for clustering and path
length also local degree. For global network analyses,
we applied a threshold of p < 0.05, corrected for mul-
tiple comparisons using the false discovery rate (FDR)
correction method. For local network analyses, we ad-
justed for multiple testing using a Bonferroni correc-
tion (p < 0.05). Finally, we performed a mediation
analysis using the Mediation package [51], to assess
whether the association of tau pathology with cogni-
tive performance was mediated by GM network dis-
ruptions. For these exploratory analyses, we assessed
the small world coefficient only, as it indicates how
randomly organised the network is, and it can be
considered a summary measure of both γ and λ. Ana-
lyses were performed using R (v4.0.2.) and visualised
using Surf Ice (v2).

Results
Participants
In total, 178 Aβ-negative CU controls, 105 preclinical
AD, 122 prodromal AD, and 128 AD dementia patients
were included in the present study (mean age = 70.5 ±
9.3 years; Table 1). Control subjects were younger and
had a lower prevalence of apolipoprotein E (APOE) ε4
than the other groups. As expected, lower MMSE scores,
lower hippocampal volume, and higher tau-PET SUVr
values were observed in the prodromal AD and AD de-
mentia groups compared to the CU subjects.

Table 1 Subject characteristics

Data are presented as mean ± SD, or n (%); AD, Alzheimer's disease; F, female; MMSE, Mini Mental State Examination (0–30); ApoE, Apolipoprotein E; SUVR,
Standardized uptake value ratio; ApoE 2 missing’s; a significantly different than control; b significantly different than preclinical AD; c significantly different than
prodromal AD; d significantly different than AD dementia at p<0.05; Surface plots display mean [18F]RO948 SUVR images.
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Single-subject grey matter networks
Networks had an average size of 6976 nodes (sd=664)
and an average connectivity density of 16% (sd=1) across
all participants (Table 2). We observed that all grey mat-
ter network metrics showed lower values indicative of
increased network abnormalities with advancing disease
severity (Table 2). Differences between Aβ-negative con-
trols and preclinical AD subjects were subtle and higher-
order network differences lost significance after adjust-
ing for covariates, including age. Compared to Aβ-
negative controls, prodromal AD subjects showed lower
clustering, path length, γ, λ, and small world coefficient
values. Similar changes were observed in AD dementia,
with in addition lower network size and degree com-
pared to controls. In addition, all higher-order metrics
were significantly lower in AD dementia compared to

prodromal AD and significantly lower in prodromal AD
compared to preclinical AD.

Relationship between tau pathology and global grey
matter network measures
Across the whole sample, higher tau-PET values in the
temporal meta-ROI were associated with lower values in
all network properties (range β = − 0.25 to β = − 1.12;
Fig. 1; Table 3), showing strongest associations for γ and
small world values. We observed similar relationships
between GM network measures and tau signal in early
(i.e. stage I/II) and late (i.e. stage V/VI) tau accumulation
regions (Supplementary Results eTable 1).
When repeating the analyses stratified by diagnostic

group, we found more significant associations between
tau-PET and network measures with increasing disease

Table 2 Summary of global network measures

Control
n = 178

Preclinical AD
n = 105

Prodromal AD
n = 122

AD dementia
n =128

Network size 7171.15 (671.92)d 7007.46 (672.18)d 6987.52 (612.17)d 6666.01 (581.66)a, b, c

Degree 1193.11 (148.21) d 1159.10 (139.57)d 1140.61 (133.61)d 1072.01 (138.78)a, b, c

Connectivity density 16.61 (0.98) 16.53 (1.07) 16.30 (0.92) 16.06 (1.27)

Clustering coefficient 0.46 (0.02)c, d 0.46 (0.02)c, d 0.45 (0.02)a, b, d 0.44 (0.02)a, b, c

Path length 1.98 (0.03)c, d 1.97 (0.03)c, d 1.96 (0.03)a, b, d 1.96 (0.03)a, b, c

Gamma 1.58 (0.11)c, d 1.54 (0.12)c, d 1.50 (0.09)a, b, d 1.43 (0.09)a, b, c

Lambda 1.08 (0.01)c, d 1.08 (0.02)c, d 1.07 (0.01)a, b, d 1.06 (0.01)a, b, c

Small world coefficient 1.47 (0.08)c, d 1.43 (0.09)c, d 1.40 (0.07)a, b, d 1.35 (0.07)a, b, c

Data are presented as mean ± SD; AD Alzheimer’s disease; gamma is normalised clustering; lambda is normalised path length; asignificantly different than control;
bsignificantly different than preclinical AD; csignificantly different than prodromal AD; dsignificantly different than AD dementia at p < 0.05 when adjusting for age,
sex, TIV, and connectivity density (clustering, path length, γ, λ, small world-only)

Fig. 1 Scatterplots of the relation between tau-PET SUVR values and global grey matter network measures by disease stage. Standardised beta
estimates are displayed for significant relationships across all participants adjusting for age, sex, TIV, and connectivity density (clustering, path
length, γ, λ, small world-only)
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severity: In preclinical AD, higher tau-PET values in the
meta-ROI were associated with lower clustering values
(β±SE; − 0.58±0.26), path length (− 1.04±0.24), and λ
values (− 1.15±0.47; all p < .05; Fig. 1; Table 3). In pro-
dromal AD, higher tau-PET retention was related to lower
path length (− 0.65±0.23), γ (− 0.65±0.26), λ (− 0.72±0.25),
and small world coefficient values (− 0.63±0.27). In AD
dementia, higher tau PET signal in the temporal meta-
ROI was associated with lower degree (− 0.26±0.10), clus-
tering (− 0.34±0.08), path length (− 0.47±0.14), γ (− 0.72±
0.16), λ (− 0.53±0.15), and small world coefficient values
(− 0.75±0.16). No association between tau-PET values and
global network measures was observed in Aβ-negative
controls. Moreover, no group interaction effects were ob-
served, indicating that the strength of the association be-
tween GM network measures and tau pathology did not
differ significantly between disease stages.
When repeating the same analysis using the three

ROIs specific for different tau stages, no association was
observed between tau-PET values in the hippocampal
formation (Braak I/II) and global network properties in
preclinical AD participants (Supplementary Results
eTable 1), suggesting that using the tau-PET signal in
the temporal meta-ROI is more suitable in relation to
network measures than early tau-accumulation regions.
Tau pathology in limbic (Braak III-IV) and neocortical
(Braak V-VI) areas correlated with decreased degree,
clustering, path length, γ, λ, and small world coefficient
values in prodromal and AD dementia subjects (Supple-
mentary Results eTable 1). Moreover, we observed simi-
lar relationships between GM network measures and tau
signal when repeating the analyses without the Aβ-
negative control group (Supplementary Results eTable
3). Furthermore, there were no significant interactions
between tau pathology and Aβ42/Aβ40 ratio values on
GM network measures, suggesting that the associations
between GM network alterations and tau pathology in
Aβ positive individuals cannot be explained by CSF Aβ
levels (Supplementary Results eTable 3).

Relationship between tau pathology and regional grey
matter network measures
Next, we examined the relationship between tau burden
in the temporal meta-ROI with network measures at a
local level in subjects on the AD continuum to assess a
region-dependent effect. We observed different anatom-
ical patterns of associations for each network measure.
Lower clustering values were associated with higher tau-
PET SUVr values in widespread brain areas, showing the
strongest associations in the precentral cortex, cingulate
gyri, and frontal lobe (all pbonferroni < 0.05; Fig. 2). Asso-
ciations between lower path length values and higher
tau-PET retention were strongest in the cingulate gyri,
precentral cortex, and inferior frontal cortex. Regions
characterised by a lower degree showed also widespread
associations with tau, which was most pronounced in
the hippocampus, parahippocampus, amygdala, medial
occipital cortex, and calcarine cortex (Fig. 2).

Associations with cognitive performance
We performed an exploratory analysis of the relationship
of tau-pathology and small world topology with cogni-
tive performance. Both higher tau-PET retention (β ±
SE; − 8.6±0.37; 5.30±0.34) and lower small world values
(β ± SE; 2.14±0.19; − 1.23±0.15) were significantly re-
lated to lower MMSE scores and more errors on the
ADAS-Cog delayed word recall, respectively (p< 0.05;
Fig. 3). Moreover, small world values remained signifi-
cant when controlling for tau-SUVr values. Mediation
analysis revealed that lower MMSE scores and more re-
call errors associated with tau pathology were partially
mediated by decreased small world values (9.3.0 to
9.5%), but were mostly independent after controlling for
the effect of small world coefficient.

Discussion
In a large well-phenotyped cohort, we observed that
higher tau-PET retention is related to greater GM net-
work disruptions in individuals across the AD continuum.

Table 3 Associations between global network measures and tau-PET

Network property Whole sample Control Preclinical AD Prodromal AD AD dementia

Network size − 0.25 (0.03)*** 0.14 (0.26) − 0.22 (0.18) − 0.17 (0.10) − 0.08 (0.06)

Degree − 0.38 (0.06)*** − 0.37 (0.46) − 0.22 (0.31) − 0.36 (0.17) − 0.26 (0.10)*

Connectivity density − 0.42 (0.13)** − 1.03 (0.97) − 0.04 (0.66) − 0.48 (0.35) − 0.42 (0.21)

Clustering coefficient − 0.57 (0.05)*** − 0.24 (0.38) − 0.58 (0.26)* − 0.26 (0.14) − 0.34 (0.08)***

Path length − 0.87 (0.08)*** − 0.25 (0.62) − 1.04 (0.42)* − 0.65 (0.23)** − 0.47 (0.14)**

Gamma − 1.11 (0.09)*** − 0.23 (0.71) − 0.79 (0.48) − 0.65 (0.25)* − 0.72 (0.16)***

Lambda − 0.98 (0.09)*** − 0.29 (0.69) − 1.15 (0.47)* − 0.72 (0.25)** − 0.53 (0.15)**

Small world coefficient − 0.12 (0.10)*** − 0.21 (0.73) − 0.70 (0.49) − 0.63 (0.27)* − 0.75 (0.16)***

Data are presented as β (SE); Network measures are Z trasformed; gamma is normalised clustering; lambda is normalised path length; SUVr values in temporal
meta-ROI; Model is adjusted for age, sex, TIV, and connectivity density (clustering, path length, γ, λ, small world-only). *p < 0.05, **p <0.01, ***p < 0.001,
FDR corrected.
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More advanced tau-related GM network abnormalities
were observed with increasing disease severity. These find-
ings suggest that tau pathology is associated with a re-
duced communication between neighbouring brain areas
and an altered ability to integrate information from dis-
tributed brain regions indicative of a more random net-
work topology across different AD stages.
Our results show a close relationship between GM

network disruptions and tau pathology in individuals
with abnormal amyloid. With increasing disease severity,
we observed a greater tau load, as well as a greater num-
ber of abnormal GM network measures. As a result, the
association of more network abnormalities with in-
creased tau-PET retention may be largely based on dif-
ferences in disease stage. Furthermore, when stratifying
the analyses for diagnostic groups, we observed that dis-
tinct network measures were sensitive to different as-
pects and severity of neurodegeneration. Specifically,
already in preclinical AD increased tau-PET signal was
associated with network alterations showing lower clus-
tering, lower path length values and normalised path
length λ. These associations were absent in CU individ-
uals with normal amyloid, indicating that the presence
of Aβ might significantly alter tau-related GM connect-
ivity. These findings are in line with prior studies show-
ing deterioration in network properties in preclinical AD
[13, 14, 52]. In prodromal AD more network measures
became abnormal with increasing tau pathology,

additionally including changes in normalised clustering
γ, and small world topology. In AD dementia patients
nearly all network metrics were abnormal, suggesting
that with pronounced neurodegeneration GM networks
exhibit significant topological alterations, which is in line
with previous studies in AD dementia [18, 22, 23]. Over-
all, these findings may indicate that a higher tau burden
is associated with a higher dissimilarity (i.e. asynchron-
ous atrophy) between neighbouring areas, and increased
similarity between distant brain areas as a result of the
progression of atrophy across the cortex, producing an
increase in randomly connected nodes. Suggestive of an
increasingly random network and reduction in small
world organisation with disease progression [4, 42].
When characterising the spatial associations of tau

pathology and GM network changes, tau deposition ap-
peared to be widespread and strongly associated with
lower clustering and path length in several regions of
the default-mode network including the medial pre-
frontal cortex, precuneus, and anterior and posterior
cingulate cortex. These findings may be related to early
amyloid accumulating regions [53, 54]. We see that it is
in these regions that clustering and path length further
relates to tau, while also, more unexpectedly, in late tau
accumulating regions such as the sensory-motor cortex
and occipital lobe, strong associations of lower clustering
and path length with tau were observed. Similar regional
associations of GM network decline over time have been

Fig. 2 Surface plots of standardised β values of the relationship between tau-PET and local clustering, path length, and degree in participants
with abnormal Aβ. Data are presented for regions with a significant correlation at pBonferroni < .05 adjusted for age, sex, TIV, local degree, and local
GM volume
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observed in individuals in presymptomatic stages of fa-
milial AD [55]. For lower degree, most strong correla-
tions were observed in the medial temporal lobe, a
region considered to be the tau epicentre where neuro-
fibrillary tangles originate [46], suggestive of less connec-
tions in the medial temporal lobe with increasing tau-
PET signal.
Previous studies have related alterations in GM net-

works with abnormal amyloid aggregation in cognitively
unimpaired individuals [13, 15, 16, 27], indicating that
structural changes in GM networks are an early event in
the pathophysiology of AD. Moreover, the presence of
Aβ is hypothesised to increase the accumulation of tau
outside of the medial temporal lobe [56–58], which may
further accelerate network decline. As pathological tau
shows reduced ability to stabilise microtubules, contrib-
uting to impaired axonal transport [30, 31], this may
lead to further synaptic loss and neurodegeneration,
resulting in substantial network damage and impaired
cognition [28, 29, 59, 60]. As reflected by our work
showing that both increased tau pathology and a more
random GM network topology were associated with
worse performance on a global cognition and episodic
memory test. Both factors showed an independent

contribution to worse cognitive performance, while me-
diation analyses also indicated that small world topology
party mediated the effect of tau pathology on cognition.

Limitations
There are some limitations to our study. Firstly, this is a
cross-sectional study that assumes three clinical stages
of disease progression, and future longitudinal studies
are needed to determine the temporal ordering in tau
pathology and associated brain network changes more
accurately. Secondly, for uniformity reasons, ROIs for
both regional tau quantification and network topology
calculation were created according to the AAL atlas. Un-
fortunately, the entorhinal cortex is not available as a
separate region in this brain atlas; hence, in the current
study stage I/II refers to the hippocampus and parahip-
pocampus which includes the entorhinal cortex. This
may have attenuated some of the results, but when test-
ing the accuracy of the temporal meta-ROI in the AAL
atlas with the Desikan-Killiany atlas, we observed a cor-
relation of R = .99, rendering such effects likely to be
minimal. Thirdly, since tau abnormalities are closely re-
lated to Aβ pathology, it is difficult to know how specific
the observed GM network alterations are to tau

Fig. 3 MMSE and ADAS-Cog delayed recall performance in relation to Tau-PET and Small world coefficient. Scatterplot showing the association of tau-
PET SUVR values in the temporal meta-ROI and standardised grey matter network small world values with MMSE scores (top), and the ADAS-Cog
delayed recall (bottom). Mediation analysis showing how small world topology mediates the effect of tau pathology on cognitive performance (right).
Regression coefficients with a 95% confidence interval are displayed. a The effect of tau load on small world topology. b The effect of small world
topology on cognitive performance when controlling for tau. c The total effect of tau on cognition (without controlling for mediation effects). c’ The
direct effect of tau pathology on cognition when adjusting for mediation. c–c’, The mediation effect. *p < 0.05
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pathology. Strengths of our study include a large number
of well-characterised participants. Moreover, the multi-
modal approach of combining structural MRI and tau-
PET imaging aids in understanding fundamental ques-
tions in the AD pathophysiology.

Conclusions
We found that GM network disruptions in AD are
strongly linked with tau burden, already in an early dis-
ease stage when cognition is within the normal range
and becomes increasingly random with clinical progres-
sion. These findings provide more insight into the
pathophysiological processes that contribute to brain
network alterations in AD. An interesting future ap-
proach might lie in further investigating the prognostic
value of GM single-subject networks in predicting cogni-
tive decline and whether it can be implemented in clin-
ical practice.

Abbreviations
AAL: Automated Anatomical Labelling; AD: Alzheimer’s disease; Aβ: Amyloid-
β; APOE: Apolipoprotein E; CSF: Cerebrospinal fluid; CU: Cognitively
unimpaired; DSM: Diagnostic and Statistical Manual of Mental Disorders;
FDR: False discovery rate; GM: Grey matter; MMSE: Mini-Mental State
Examination; MRI: Magnetic resonance imaging; PET: Positron emission
tomography; PVC: Partial volume correction; ROI: Region of interest;
SPM: Statistical Parametric Mapping; SUVR: Standardised uptake value ratio;
TIV: Total intracranial volume

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s13195-021-00876-7.

Additional file 1. Methods e1. Inclusion and exclusion criteria for the
Swedish BioFINDER 2 study. Methods e2. AAL atlas ROIs included in Braak
staging. Results eTable 1. Results eTable 2. Results eTable 3. Results
eFigure 1. Scatterplots of the relation between tau SUVr with PVC and
global grey matter network measures by disease stage. Standardised beta
estimates are displayed for significant relationships across all participants
adjusting for age, sex, TIV, and connectivity density. Results eFigure 2.
Surface plots of standardised β values of the relationship between tau
SUVr with PVC and local clustering, path length, and degree in
participants with abnormal Aβ. Data are presented for regions with a
significant correlation at pBonferroni<.05 adjusted for age, sex, TIV, local
degree, and local GM volume.

Acknowledgements
The authors kindly thank all participants for their contribution.

Authors’ contributions
WP, RO, JP, and OH contributed to the study concept and design. WP
analysed the data. WP, RO, ED, OS, FB, BT, JP, and OH interpreted the data
and revised the manuscript for intellectual content. All authors approved the
final manuscript.

Funding
The BioFINDER study was supported by the Swedish Research Council (2016-
00906), the Knut and Alice Wallenberg foundation (2017-0383), the Marianne
and Marcus Wallenberg foundation (2015.0125), the Strategic Research Area
MultiPark (Multidisciplinary Research in Parkinson’s disease) at Lund
University, the Swedish Alzheimer Foundation (AF-939932), the Swedish
Brain Foundation (FO2019-0326), The Parkinson foundation of Sweden (1280/
20), the Skåne University Hospital Foundation (2020-O000028), Regionalt
Forskningsstöd (2020-0314) and the Swedish federal government under the

ALF agreement (2018-Projekt0279). The precursor of 18F-RO948 was provided
by Roche. WP is supported by a fellowship grant (WE.15-2019-14) by
Alzheimer Nederland. ED is supported by Race Against Dementia (https://
www.raceagainstdementia.com/). FB is supported by the NIHR biomedical
research centre at UCLH. JBP is supported by the Swedish Research Council,
Alzheimerfonden, Stratneuro, Center for Medical Innovation, Stohnes and
Gamla Tjänarinnor. The funding sources had no role in the design and
conduct of the study; in the collection, analysis, interpretation of the data; or
in the preparation, review, or approval of the manuscript. Open Access
funding provided by Lund University.

Availability of data and materials
Anonymised study data for the primary analyses presented in this report are
available on request from any qualified investigator for purposes of
replicating the results.

Declarations

Ethics approval and consent to participate
All participants gave written informed consent to participate in the study.
Ethical approval was given by the regional ethics committee at Lund
University, Sweden. PET imaging procedures were approved by the Radiation
protection committee at Skåne University Hospital and by the Swedish
Medical Products Agency.

Consent for publication
Not applicable.

Competing interests
RO is an associate editor at Alzheimer’s Research & Therapy. FB is a
consultant to Biogen Idec, Merck-Serono, Novartis, Roche, IXICO Ltd, GeN-
euro, and Combinostics. He received grants for Amyloid imaging for the Pre-
vention of Alzheimer Disease (Innovative Medicines Initiative), European
Progression Of Neurological Disease (H2020), UK Multiple Sclerosis Society,
Dutch Multiple Sclerosis Society, National Institute Health Research University
College London Biomedical Research Centre. OH has acquired research sup-
port (for the institution) from AVID Radiopharmaceuticals, Biogen, Eli Lilly,
Eisai, GE Healthcare, Pfizer, and Roche. In the past 2 years, he has received
consultancy/speaker fees from AC Immune, Alzpath, Biogen, Cerveau and
Roche.

Author details
1Alzheimer Center Amsterdam, Department of Neurology, Amsterdam
Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam,
The Netherlands. 2Clinical Memory Research Unit, Department of Clinical
Sciences, Lund University, Malmö, Sweden. 3Department of Radiology &
Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam,
Amsterdam UMC, Amsterdam, The Netherlands. 4Queen Square Institute of
Neurology and Centre for Medical Image Computing, University College
London, London, UK. 5Division of Clinical Geriatrics, Department of
Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm,
Sweden. 6Memory Clinic, Skåne University Hospital, Malmö, Sweden.

Received: 2 March 2021 Accepted: 9 July 2021

References
1. Jack CR, Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward

a biological definition of Alzheimer’s disease. Alzheimers Dementia. 2018;
14(4):535–62. https://doi.org/10.1016/j.jalz.2018.02.018.

2. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25
years. EMBO Molecular Medicine. 2016;8(6):595–608. https://doi.org/10.152
52/emmm.201606210.

3. Scheltens P, de Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen
CE, et al. Alzheimer’s disease. Lancet. 2021;6736:1–13.

4. van den Heuvel MP, Sporns O. A cross-disorder connectome landscape of
brain dysconnectivity. Nat Rev Neurosci. 2019;20(7):435–46. https://doi.org/1
0.1038/s41583-019-0177-6.

5. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD, Michael D.
Neurodegenerative Diseases Target Large-Scale Human Brain Networks.
Neuron. 2009;62(1):42–52. https://doi.org/10.1016/j.neuron.2009.03.024.

Pelkmans et al. Alzheimer's Research & Therapy          (2021) 13:138 Page 9 of 11

https://doi.org/10.1186/s13195-021-00876-7
https://doi.org/10.1186/s13195-021-00876-7
https://www.raceagainstdementia.com/
https://www.raceagainstdementia.com/
https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.15252/emmm.201606210
https://doi.org/10.15252/emmm.201606210
https://doi.org/10.1038/s41583-019-0177-6
https://doi.org/10.1038/s41583-019-0177-6
https://doi.org/10.1016/j.neuron.2009.03.024


6. Jones DT, Knopman DS, Gunter JL, Graff-Radford J, Vemuri P, Boeve BF, et al.
Cascading network failure across the Alzheimer’s disease spectrum. Brain.
2016;139(2):547–62. https://doi.org/10.1093/brain/awv338.

7. Alexander-Bloch A, Giedd JN, Bullmore E. Imaging structural co-variance
between human brain regions. Nat Rev Neurosci. 2013;14(5):322–36. https://
doi.org/10.1038/nrn3465.

8. Evans AC. Networks of anatomical covariance. NeuroImage. 2013;80:489–
504. https://doi.org/10.1016/j.neuroimage.2013.05.054.

9. Mechelli A. Structural Covariance in the Human Cortex. J Neurosci. 2005;
25(36):8303–10. https://doi.org/10.1523/JNEUROSCI.0357-05.2005.

10. Alexander-Bloch A, Raznahan A, Bullmore E, Giedd J. The Convergence of
Maturational Change and Structural Covariance in Human Cortical
Networks. J Neurosci. 2013;33(7):2889–99. https://doi.org/10.1523/
JNEUROSCI.3554-12.2013.

11. Gong G, He Y, Chen ZJ, Evans AC. Convergence and divergence of
thickness correlations with diffusion connections across the human cerebral
cortex. NeuroImage. 2012;59(2):1239–48. https://doi.org/10.1016/j.neuroima
ge.2011.08.017.

12. Doucet GE, Moser DA, Rodrigue A, Bassett DS, Glahn DC, Frangou S. Person-
Based Brain Morphometric Similarity is Heritable and Correlates With
Biological Features. Cereb Cortex. 2019;29(2):852–62. https://doi.org/10.1093/
cercor/bhy287.

13. ten Kate M, Visser PJ, Bakardjian H, et al. Gray Matter Network Disruptions
and Regional Amyloid Beta in Cognitively Normal Adults. Front Aging
Neurosci. 2018;10:1–11.

14. Verfaillie SCJ, Slot RER, Dicks E, Prins ND, Overbeek JM, Teunissen CE, et al. A
more randomly organized grey matter network is associated with
deteriorating language and global cognition in individuals with subjective
cognitive decline. Hum Brain Mapp. 2018;39(8):3143–51. https://doi.org/10.1
002/hbm.24065.

15. Voevodskaya O, Pereira JB, Volpe G, Lindberg O, Stomrud E, van Westen D,
et al. Altered structural network organization in cognitively normal
individuals with amyloid pathology. Neurobiol Aging. 2018;64:15–24. https://
doi.org/10.1016/j.neurobiolaging.2017.11.014.

16. Tijms BM, ten Kate M, Wink AM, et al. Gray matter network disruptions and
amyloid beta in cognitively normal adults. Neurobiol Aging. 2016;37:154–60.
https://doi.org/10.1016/j.neurobiolaging.2015.10.015.

17. Dicks E, Tijms BM, ten Kate M, Gouw AA, Benedictus MR, Teunissen CE, et al.
Gray matter network measures are associated with cognitive decline in mild
cognitive impairment. Neurobiol Aging. 2018;61:198–206. https://doi.org/1
0.1016/j.neurobiolaging.2017.09.029.

18. Pereira JB, Mijalkov M, Kakaei E, Mecocci P, Vellas B, Tsolaki M, et al.
Disrupted Network Topology in Patients with Stable and Progressive Mild
Cognitive Impairment and Alzheimer’s Disease. Cereb Cortex. 2016;26(8):
3476–93. https://doi.org/10.1093/cercor/bhw128.

19. Yao Z, Zhang Y, Lin L, Zhou Y, Xu C, Jiang T. Abnormal cortical networks in
mild cognitive impairment and alzheimer’s disease. PLoS Comput Biol. 2010;
6(11):e1001006. https://doi.org/10.1371/journal.pcbi.1001006.

20. Montembeault M, Rouleau I, Provost J-S, Brambati SM. Altered Gray Matter
Structural Covariance Networks in Early Stages of Alzheimer’s Disease. Cereb
Cortex. 2016;26(6):2650–62. https://doi.org/10.1093/cercor/bhv105.

21. Spreng RN, Turner GR. Structural Covariance of the Default Network in
Healthy and Pathological Aging. J Neurosci. 2013;33(38):15226–34. https://
doi.org/10.1523/JNEUROSCI.2261-13.2013.

22. He Y, Chen Z, Evans A. Structural Insights into Aberrant Topological Patterns
of Large-Scale Cortical Networks in Alzheimer’s Disease. J Neurosci. 2008;
28(18):4756–66. https://doi.org/10.1523/JNEUROSCI.0141-08.2008.

23. Tijms BM, Möller C, Vrenken H, Wink AM, de Haan W, van der Flier WM,
et al. Single-Subject Grey Matter Graphs in Alzheimer’s Disease. PLoS One.
2013;8(3):e58921. https://doi.org/10.1371/journal.pone.0058921.

24. Li Y, Wang Y, Wu G, Shi F, Zhou L, Lin W, et al. Discriminant analysis of
longitudinal cortical thickness changes in Alzheimer’s disease using
dynamic and network features. Neurobiol Aging. 2012;33:427.e15–30.

25. John M, Ikuta T, Ferbinteanu J. Graph analysis of structural brain networks in
Alzheimer’s disease: beyond small world properties. Brain Struct Funct. 2017;
222(2):923–42. https://doi.org/10.1007/s00429-016-1255-4.

26. Kim H-J, Shin J-H, Han CE, Kim HJ, Na DL, Seo SW, et al. Using Individualized
Brain Network for Analyzing Structural Covariance of the Cerebral Cortex in
Alzheimer’s Patients. Front Neurosci. 2016;10:1–11.

27. Oh H, Mormino EC, Madison C, Hayenga A, Smiljic A, Jagust WJ. β-
Amyloid affects frontal and posterior brain networks in normal aging.

NeuroImage. 2011;54(3):1887–95. https://doi.org/10.1016/j.neuroimage.2
010.10.027.

28. Ossenkoppele R, Schonhaut DR, Schöll M, Lockhart SN, Ayakta N, Baker SL,
et al. Tau PET patterns mirror clinical and neuroanatomical variability in
Alzheimer’s disease. Brain. 2016;139(5):1551–67. https://doi.org/10.1093/bra
in/aww027.

29. Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, et al.
Correlation of Alzheimer Disease Neuropathologic Changes With Cognitive
Status: A Review of the Literature. J Neuropathol Exp Neurol. 2012;71(5):
362–81. https://doi.org/10.1097/NEN.0b013e31825018f7.

30. Menkes-Caspi N, Yamin HG, Kellner V, Spires-Jones TL, Cohen D, Stern EA.
Pathological Tau Disrupts Ongoing Network Activity. Neuron. 2015;85(5):
959–66. https://doi.org/10.1016/j.neuron.2015.01.025.

31. Coomans EM, Schoonhoven DN, Tuncel H, Verfaillie SCJ, Wolters EE,
Boellaard R, et al. In vivo tau pathology is associated with synaptic loss and
altered synaptic function. Alzheimers Res Ther. 2021;13(1):35. https://doi.
org/10.1186/s13195-021-00772-0.

32. Leuzy A, Smith R, Ossenkoppele R, Santillo A, Borroni E, Klein G, et al.
Diagnostic Performance of RO948 F 18 Tau Positron Emission Tomography
in the Differentiation of Alzheimer Disease From Other Neurodegenerative
Disorders. JAMA Neurol. 2020;77(8):955. https://doi.org/10.1001/jamaneurol.2
020.0989.

33. American Psychiatric Association. Diagnostic and Statistical Manual of
Mental Disorders. Arlington. 2013. https://doi.org/10.1176/appi.books.
9780890425596.

34. Folstein MF, Robins LN, Helzer JE. The Mini-Mental State Examination. Arch
Gen Psychiatry. 1983;40(7):812. https://doi.org/10.1001/archpsyc.1983.01
790060110016.

35. Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease.
Am J Psychiatry. 1984;141:1356–64.

36. Rolls ET, Huang C-C, Lin C-P, Feng J, Joliot M. Automated anatomical
labelling atlas 3. NeuroImage. 2020;206:116189. https://doi.org/10.1016/j.
neuroimage.2019.116189.

37. Tijms BM, Seris P, Willshaw DJ, Lawrie SM. Similarity-based extraction of
individual networks from gray matter MRI scans. Cereb Cortex. 2012;22(7):
1530–41. https://doi.org/10.1093/cercor/bhr221.

38. Kiselev VG, Hahn KR, Auer DP. Is the brain cortex a fractal? NeuroImage.
2003;20(3):1765–74. https://doi.org/10.1016/S1053-8119(03)00380-X.

39. Noble WS. How does multiple testing correction work? Nat Biotechnol.
2009;27(12):1135–7. https://doi.org/10.1038/nbt1209-1135.

40. Maslov S, Sneppen K. Specificity and Stability in Topology of Protein
Networks. Science. 2002;296(5569):910–3. https://doi.org/10.1126/science.1
065103.

41. Humphries MD, Gurney K. Network ‘Small-World-Ness’: A Quantitative
Method for Determining Canonical Network Equivalence. PLoS One. 2008;
3(4):e0002051. https://doi.org/10.1371/journal.pone.0002051.

42. Bullmore E, Sporns O. Complex brain networks : graph theoretical analysis
of structural and functional systems. Nat Rev Neurol. 2009;10(3):186–98.
https://doi.org/10.1038/nrn2575.

43. Yap SY, Frias B, Wren MC, Schöll M, Fox NC, Årstad E, et al. Discriminatory
ability of next-generation tau PET tracers for Alzheimer’s disease. Brain. 2021.
https://doi.org/10.1093/brain/awab120.

44. Cox J.S. RW; H (1996) AFNI: Software for analysis and visualization of
functional magnetic resonance neuroimages. Comput Biomed Res 29:162–
173, 3, DOI: https://doi.org/10.1006/cbmr.1996.0014

45. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET:
principle and validation. J Nucl Med. 1998;39(5):904–11.

46. Braak H, Braak E. Neuropathological stageing of Alzheimer-related
changes. Acta Neuropathol. 1991;82(4):239–59. https://doi.org/10.1007/
BF00308809.

47. Cho H, Choi JY, Hwang MS, Kim YJ, Lee HM, Lee HS, et al. In vivo cortical
spreading pattern of tau and amyloid in the Alzheimer disease spectrum.
Ann Neurol. 2016;80(2):247–58. https://doi.org/10.1002/ana.24711.

48. Ossenkoppele R, Rabinovici GD, Smith R, Cho H, Schöll M, Strandberg
O, et al. Discriminative accuracy of [18F]flortaucipir positron emission
tomography for Alzheimer disease vs other neurodegenerative
disorders. JAMA. 2018;320(11):1151–62. https://doi.org/10.1001/jama.201
8.12917.

49. Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and
plasma biomarkers in Alzheimer disease. Nat Rev Neurol. 2010;6(3):131–44.
https://doi.org/10.1038/nrneurol.2010.4.

Pelkmans et al. Alzheimer's Research & Therapy          (2021) 13:138 Page 10 of 11

https://doi.org/10.1093/brain/awv338
https://doi.org/10.1038/nrn3465
https://doi.org/10.1038/nrn3465
https://doi.org/10.1016/j.neuroimage.2013.05.054
https://doi.org/10.1523/JNEUROSCI.0357-05.2005
https://doi.org/10.1523/JNEUROSCI.3554-12.2013
https://doi.org/10.1523/JNEUROSCI.3554-12.2013
https://doi.org/10.1016/j.neuroimage.2011.08.017
https://doi.org/10.1016/j.neuroimage.2011.08.017
https://doi.org/10.1093/cercor/bhy287
https://doi.org/10.1093/cercor/bhy287
https://doi.org/10.1002/hbm.24065
https://doi.org/10.1002/hbm.24065
https://doi.org/10.1016/j.neurobiolaging.2017.11.014
https://doi.org/10.1016/j.neurobiolaging.2017.11.014
https://doi.org/10.1016/j.neurobiolaging.2015.10.015
https://doi.org/10.1016/j.neurobiolaging.2017.09.029
https://doi.org/10.1016/j.neurobiolaging.2017.09.029
https://doi.org/10.1093/cercor/bhw128
https://doi.org/10.1371/journal.pcbi.1001006
https://doi.org/10.1093/cercor/bhv105
https://doi.org/10.1523/JNEUROSCI.2261-13.2013
https://doi.org/10.1523/JNEUROSCI.2261-13.2013
https://doi.org/10.1523/JNEUROSCI.0141-08.2008
https://doi.org/10.1371/journal.pone.0058921
https://doi.org/10.1007/s00429-016-1255-4
https://doi.org/10.1016/j.neuroimage.2010.10.027
https://doi.org/10.1016/j.neuroimage.2010.10.027
https://doi.org/10.1093/brain/aww027
https://doi.org/10.1093/brain/aww027
https://doi.org/10.1097/NEN.0b013e31825018f7
https://doi.org/10.1016/j.neuron.2015.01.025
https://doi.org/10.1186/s13195-021-00772-0
https://doi.org/10.1186/s13195-021-00772-0
https://doi.org/10.1001/jamaneurol.2020.0989
https://doi.org/10.1001/jamaneurol.2020.0989
https://doi.org/10.1176/appi.books.9780890425596
https://doi.org/10.1176/appi.books.9780890425596
https://doi.org/10.1001/archpsyc.1983.01790060110016
https://doi.org/10.1001/archpsyc.1983.01790060110016
https://doi.org/10.1016/j.neuroimage.2019.116189
https://doi.org/10.1016/j.neuroimage.2019.116189
https://doi.org/10.1093/cercor/bhr221
https://doi.org/10.1016/S1053-8119(03)00380-X
https://doi.org/10.1038/nbt1209-1135
https://doi.org/10.1126/science.1065103
https://doi.org/10.1126/science.1065103
https://doi.org/10.1371/journal.pone.0002051
https://doi.org/10.1038/nrn2575
https://doi.org/10.1093/brain/awab120
https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/10.1007/BF00308809
https://doi.org/10.1007/BF00308809
https://doi.org/10.1002/ana.24711
https://doi.org/10.1001/jama.2018.12917
https://doi.org/10.1001/jama.2018.12917
https://doi.org/10.1038/nrneurol.2010.4


50. van Wijk BCM, Stam CJ, Daffertshofer A. Comparing Brain Networks of
Different Size and Connectivity Density Using Graph Theory. PLoS One.
2010;5(10):e13701. https://doi.org/10.1371/journal.pone.0013701.

51. Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. mediation : R Package for
Causal Mediation Analysis. J Stat Softw. 2014;59:1–38.

52. Dicks E, Vermunt L, van der Flier WM, Barkhof F, Scheltens P, Tijms BM. Grey
matter network trajectories across the Alzheimer’s disease continuum and
relation to cognition. Brain Commun. 2020;2:1–15.

53. Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, et al.
Molecular, Structural, and Functional Characterization of Alzheimer’s Disease:
Evidence for a Relationship between Default Activity, Amyloid, and Memory.
J Neurosci. 2005;25(34):7709–17. https://doi.org/10.1523/JNEUROSCI.2177-
05.2005.

54. Palmqvist S, Schöll M, Strandberg O, Mattsson N, Stomrud E, Zetterberg H,
et al. Earliest accumulation of β-amyloid occurs within the default-mode
network and concurrently affects brain connectivity. Nat Commun. 2017;
8(1):1214. https://doi.org/10.1038/s41467-017-01150-x.

55. Vermunt L, Dicks E, Wang G, et al. Single-subject grey matter network
trajectories over the disease course of autosomal dominant Alzheimer’s
disease. Brain Commun. 2020;2:1–14.

56. Price JL, Morris JC. Tangles and Plaques in Nondemented Aging and
“Preclinical” Alzheimer’s Disease. Ann Neurol. 1999;45(3):358–68. https://doi.
org/10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X.

57. seok BM, Cho H, Lee HS, Choi JY, Lee JH, Ryu YH, et al. Temporal trajectories
of in vivo tau and amyloid-β accumulation in Alzheimer’s disease. Eur J Nucl
Med Mol Imaging. 2020;47(12):2879–86. https://doi.org/10.1007/s00259-020-
04773-3.

58. Jack CR, Wiste HJ, Botha H, et al. The bivariate distribution of amyloid-β and
tau: relationship with established neurocognitive clinical syndromes. Brain.
2019;142(10):3230–42. https://doi.org/10.1093/brain/awz268.

59. Pereira JB, Janelidze S, Ossenkoppele R, et al. Untangling the association of
amyloid-β and tau with synaptic and axonal loss in Alzheimer’s disease.
Brain. 2021;144:310–24. https://doi.org/10.1093/brain/awaa395.

60. Schultz AP, Chhatwal JP, Hedden T, Mormino EC, Hanseeuw BJ, Sepulcre J,
et al. Phases of Hyperconnectivity and Hypoconnectivity in the Default
Mode and Salience Networks Track with Amyloid and Tau in Clinically
Normal Individuals. J Neurosci. 2017;37(16):4323–31. https://doi.org/10.1523/
JNEUROSCI.3263-16.2017.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Pelkmans et al. Alzheimer's Research & Therapy          (2021) 13:138 Page 11 of 11

https://doi.org/10.1371/journal.pone.0013701
https://doi.org/10.1523/JNEUROSCI.2177-05.2005
https://doi.org/10.1523/JNEUROSCI.2177-05.2005
https://doi.org/10.1038/s41467-017-01150-x
https://doi.org/10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X
https://doi.org/10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X
https://doi.org/10.1007/s00259-020-04773-3
https://doi.org/10.1007/s00259-020-04773-3
https://doi.org/10.1093/brain/awz268
https://doi.org/10.1093/brain/awaa395
https://doi.org/10.1523/JNEUROSCI.3263-16.2017
https://doi.org/10.1523/JNEUROSCI.3263-16.2017

	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Participants
	MRI acquisition and pre-processing
	Single-subject grey matter networks
	Network properties
	PET acquisition and pre-processing
	CSF collection and analysis
	Statistical analyses

	Results
	Participants
	Single-subject grey matter networks
	Relationship between tau pathology and global grey matter network measures
	Relationship between tau pathology and regional grey matter network measures
	Associations with cognitive performance

	Discussion
	Limitations
	Conclusions
	Abbreviations
	Supplementary Information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

