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Abstract

Background: Alzheimer's disease (AD) reserve theory is based on specific individual characteristics that are associated
with a higher resilience against neurodegeneration and its symptoms. A given degree of AD pathology may contribute
to varying cognitive decline levels in different individuals. Although this phenomenon is attributed to reserve, the
biological mechanisms that underpin it remain elusive, which restricts translational medicine research and treatment
strategy development.

Methods: Network-based approaches were integrated to identify AD reserve related genes. Then, AD brain
transcriptomics data were clustered into co-expression modules, and a Bayesian network was developed using
these modules plus AD reserve related phenotypes. The directed acyclic graph suggested that the module
was strongly associated with AD reserve. The hub gene of the module of interest was filtered using the
topological method. Validation was performed in the multi-AD brain transcriptomic dataset.

Results: We revealed that the RALYL (RALY RNA Binding Protein-like) is the hub gene of the module which
was highly associated with AD reserve related phenotypes. Pseudo-time projections of RALYL revealed the
changes in relative expression drivers in the AD and control subjects over pseudo-time had distinct
transcriptional states. Notably, the expression of RALYL decreased with the gradual progression of AD, and this
corresponded to MMSE decline. Subjects with AD reserve exhibited significantly higher RALYL expression than
those without AD reserve.

Conclusion: The present study suggests that RALYL may be associated with AD reserve, and it provides novel
insights into the mechanisms of AD reserve and highlights the potential role of RALYL in this process.
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Background [1-3]. AD risk factors or pathology increases at the same
Alzheimer’s disease (AD) reserve refers to the differences rate in two individuals with a high and low reserve. The
in cognitive processes as a function of AD risk factors number of risk factors or pathology needed before the
(genes, personality, lifestyle, and external environment) cognitive function is greatly affected by a higher reserve,
that explain differential susceptibility to functional im- leading to a later change point of cognitive decline.
pairment during pathology or other neurological insults =~ More pathology will be needed for an individual with a
higher reserve to meet clinical diagnostic criteria for AD,
thus delaying the onset of the disease [2, 4]. There is no
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systems that offer protection from different pathologies
[5]. However, since all human physiologic systems ex-
hibit a reserve, a hypothetical therapeutic strategy could
be used to offset nearly all common AD brain patholo-
gies that alter cognition.

Regarding AD cognitive performance, AD reserve re-
fers to the ability to maintain cognitive function despite
the accumulation of AD pathologies that contribute to
cognitive decline. Increasing numbers of clinical studies
show that, in a large proportion of normal aging, no in-
dividuals with cognitive impairment have sufficient
numbers of plaques and tangles to meet the neuropatho-
logic criteria for AD, and they do not manifest dementia
symptoms during their lifespan [6]. For instance, the first
report by Blessed et al. in 1968 revealed that 6 subjects
had no dementia but exhibited a high amyloid-p count
[7]. In another ROSMAP study, individual trajectories of
cognitive decline were calculated from longitudinal cog-
nitive measures that include up to 20 yearly evaluations.
It was revealed that 46% of the participants had patho-
logic AD but without clinical dementia [8]. Continuous
evidence from epidemiology, imageology, and neuro-
psychology suggests that higher reserve significantly de-
lays the onset of dementia in early AD and suppresses
the rate of cognitive decline in AD advanced stages [9—
12]. Given the high complexity and multifactorial eti-
ology in AD, a method that incorporates the latest evi-
dence from related disciplines is promising in the study
of AD reserve. The reserve is a heuristic to aid in eluci-
dating individual differences in cognition, function, or
clinical status relative to AD and explore potential thera-
peutic strategies. However, the biological mechanisms
that underpin the protective effects have not been fully
elucidated, limiting the development of more effective
preventive and treatment strategies.

Many novel potential AD therapeutic targets have
been identified using transcriptomics, proteomics, and
metabolomics [13]. However, it is difficult to transition
these single isolated molecular targets to a complete
mechanism that causes cognitive decline, characteristic
accumulation of amyloid-p and neurofibrillary tangle
pathology, or the AD reserve. A network-based perspec-
tive provides a more nuanced molecular definition of
AD than a simple single-gene association by developing
a systematic framework with which to assemble dispar-
ate single-gene findings into disease mechanisms [8, 14,
15]. Network or the graph theory approaches can joint
modeling neuropathologic burden, and cognition per-
formance with the target gene has better performance in
capturing the relationship between molecular and differ-
ent stages of the AD reserve process to clarify the poten-
tial underlying mechanisms.

We used the gene module to the phenotype network
(MPN) approach to evaluate AD reserve related genes
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that impact cognitive function and pathological change.
A gene module is defined as a cluster of genes with simi-
lar expression profiles in a physiological process. MPN
aids in constructing gene modules and identifies those
that are directly associated with cognitive decline, condi-
tioned on neuropathology, and other large-scale tran-
scriptomic changes in the human AD brain. The aim of
MPN is to evaluate beyond single-gene level associations
when defining robust molecular mechanisms while
avoiding the limitations of pathways derived from single
databases. Modeling transcriptome changes into gene
modules prioritizes specific highly connected genes (hub
genes) within a module for further research. Targeting
and rebuilding such hub genes to homeostasis have been
proposed as a pathway for disease treatment [16, 17].

In this study, an integrative research strategy was uti-
lized in three parts. First, weighted gene co-expression
network analysis (WGCNA) was performed to cluster
AD and differentially expressed genes into gene modules
for the construction of MPN. Second, a Bayesian net-
work integrating gene modules and reserve phenotypes
was used as a directed acyclic graph (DAG) to identify
the gene module that is most strongly associated with
AD reserve. Third, the AD reserve correlated gene was
selected from module hub genes and validated in the
multi-transcriptomics dataset which included the single-
nucleus RNA (snRNA-seq) sequencing dataset. Explor-
ing the relationship between gene expression dynamic
and cognitive changes in Alzheimer’s disease, from a re-
serve perspective, provides insights into the prevention
and treatment of AD. The research strategy of this study
was as presented in Fig. 1.

Materials and methods

Data origin and acquisition

The microarray gene expression data used in construct-
ing gene modules and validation were obtained from the
NCBI GEO database (GSE1297 and GSE28146). Hippo-
campal gene expression of AD human subjects and nor-
mal aging controls of varying severity including 7
incipient, 8 moderate, and 7 severe cases were analyzed.
Clinical trait metadata included hippocampal neurofib-
rillary tangles (NFTs), Braak staging, Mini-Mental State
Examination (MMSE), sex, age, and postmortem interval
(PMI) [18].

The module-phenotype network external validation
data was acquired from two prospective clinical-
pathologic cohort studies on aging and dementia: the
Religious Orders Study (ROS) and the Memory and
Aging Project (MAP). The two studies (collectively re-
ferred to as ROSMAP) share clinical and neuropatho-
logical properties, allowing data pooling. We used
ROSMAP microarray expression and RNA-seq data for
this work.
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Fig. 1 Pipeline of the MPN to prioritize modules and genes directly associated with AD reserve in our study. Gray and yellow block: data download
and organization. Blue block: MPN modeling. Gene module: applied WGCNA to GSE1297 microarray expression data to identify co-expression modules
and calculate the correlation between modules and each phenotype. AD reserve-module network, modules, and phenotypes are combined using
conditional independence relationships (via Bayesian networks) to identify direct relationships among gene modules, AD traits, and reserve. The
module most strongly associated with reserve is the target module and independently validated in the ROSMAP expression data. AD reserve hub
gene: exploring the AD reserve hub genes in the target module and trajectory inference. Green block: RALYL expression validated in multi-AD
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All microarray and bulk RNA-seq raw data for gene ex-
pression were normalized by z-score normalization; a z-
score describes the position of a raw score in terms of its
distance from the mean, when measured in standard devi-
ation units; the z-score is positive if the value lies above
the mean and negative if it lies below the mean. It is useful
to standardize the gene expression matrix of a normal dis-
tribution by converting them into z-scores because it al-
lows to calculate the probability of a score occurring
within a standard normal distribution and compares two
scores that are from different samples (which may have
different means and standard deviations).

The snRNA-seq data was downloaded from the
Single-cell atlas of the Entorhinal Cortex in the Human
Alzheimer’s Disease database [19]. The DroNc-Seq data
on the 10X platform was obtained from the entorhinal
cortex of 6 Alzheimer’s disease patients as well as from
6 sex- and age-matched controls. Using the Grch38
(1.2.0) reference from 10X Genomics, we established a
pre-mRNA reference according to the detailed steps
using 10X Genomics. Cell ranger count was used to ob-
tain raw counts. To disentangle the individual donor
identity of every cell, we used the Bayesian demultiplex-
ing tool vireo (Version 0.1.2) and its associated pipeline.

Construction of WGCNA and identification of modules

Weighted correlation network analysis (WGCNA) was
used to identify clusters (gene modules) of highly corre-
lated genes. These clusters were summarized using the
module eigengene or an intramodular high connected
gene to identify related modules and external sample

traits, as well as to calculate measurements for module
membership. Following the WGCNA framework, we
modeled WGCNA using R (3.6.1) based on the micro-
array data (GSE1297). The Pearson correlation coeffi-
cient was used to determine similarities in gene
expression profiles. The correlation coefficients between
genes weighting by a power function were obtained
through a scale-free network. In terms of co-expression,
gene modules were considered to be densely intercon-
nected gene clusters.

WGCNA uses hierarchical clustering to identify gen-
etic modules. We used a hierarchical clustering dendro-
gram for visualization. Modules in the dendrogram were
indicated by different colors. Dynamic tree cutting
methods were used to distinguish between different
modules. During module selection, the adjacency matrix
was used to measure topological similarities that were
converted to a topology overlay matrix (TOM). Then,
modules were detected through cluster analysis [20].
The biological coherence of these modules was validated
from three perspectives: (i) the associations of the mod-
ule eigengene (ME, the first principal component of the
module, represented the global expression level of the
module) to phenotypes obtained from Pearson’s correl-
ation analysis, (ii) the correlation coefficient between
module membership (gene expression levels) with gene
significance (GS, for assessing the association between
genes and phenotypes) was calculated and the p values
obtained, and (iii) Gene Ontology (GO) [21] functional
enrichment analysis.
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Bayesian network structure learning to modeling the
module-phenotype network

A Bayesian network is a probability graphical model that
represents a set of random variables and their condi-
tional dependencies using a directed acyclic graph
(DAG). Bayesian structure learning algorithms (such as
the Hill-Climbing algorithm used in this work) enable
the estimation of the DAG, describing the conditional
dependencies between a set of random variables in a
data-driven manner. We used R (3.6.1) package bnlearn
modeling Bayesian network to determine the DAG that
describes the relationship between three types of vari-
ables: gene modules, whether there is a reserve, and
three main AD traits (Braak staging, NFT counts, and
MMSE score) [22]. Joint gene modules and phenotypic
traits were used to identify which gene module was
strongly associated with reserve trait in DAG.

The classical ensemble Hill-Climbing approach used
in this study was recently shown to be integrated into
Bayesian network structure learning when used to
analyze gene expression data. Structural learning was
performed for a total of 200 times with stochastic
initialization so that learning was not trapped in a local
optimum. The Bayesian model averaging was used to se-
lect the final Bayesian network.

Identification of the hub genes in module 11

The DAG obtained from the Bayesian network structure
learning describes the conditional dependencies between
a set of random variables. Thus, we identified the mod-
ule that was strongly associated with cognitive decline
and reserve phenotypes by analyzing the main parame-
ters of the DAG nodes. The Markov blanket of a node is
the set of nodes consisting of its parent nodes, its chil-
dren nodes, and any other parent nodes of its children
nodes; the Markov blanket renders the node independ-
ent of the rest of the DAG. The Markov blanket for one
module is the best-selected subset of the Bayesian net-
work for that module and represents the characters of
the module; if the Markov blanket of module A does not
contain module B or phenotype X, we can assume that
module A is conditionally independent of module B and
the phenotype X. The association between gene module
and reserve was identified through the Markov blanket.
The more AD trait was comprised in the Markov blan-
ket of a module, the more strongly it was associated with
these traits.

The Bayesian network structure learning framework
described above identified module 11 (M11) as being the
most strongly associated with cognitive decline and re-
serve phenotypes. Therefore, we devised another Bayes-
ian network to prioritize genes in the target module
(which contained 262 genes) for further validation.
Genes in the target module were screened according to
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the following two considerations: (i) There must have
been no latent variables (biological meaning still not
clear genes cannot be used as variables in the network)
acting as confounding factors. Such variables induce
false correlations between the observed variables, thus
introducing bias in the causal network. (ii) Smaller
Bayesian networks were several non-equivalent networks
that equally fit the data and could be used to identify a
set of likely causal networks that fit our biological
knowledge.

Next, we constructed a Bayesian network to represent
conditional dependencies between genes in the module
that were strongly associated with the reserve trait in a
DAG. We used Cytoscape plugin cytoHubba for ranking
nodes in the DAG by utilizing their network features [23].
The hub genes and their subnetworks were obtained by
topological analysis algorithm edge percolated component
(EPC). Global-based categorization method based on per-
colation in random graphs was used to compute how
strongly a protein associates with the other parts of the
network and how significantly an interaction contributes
to the integrity of the network [24].

AD reserve hub gene validation and snRNA-seq
developmental trajectory analysis
Processed snRNA-seq data (the expression data and sam-
ple metadata) was downloaded, and the standard quality
control pre-processing workflow performed using Seurat
3.1 [23]. Cells with unique feature counts over 2500 or less
than 200 and cells with > 5% mitochondrial counts were
filtered. After the elimination of unwanted cells from the
dataset, a global-scaling normalization method “LogNor-
malize” was used to normalize the feature expression mea-
surements for each cell by the total expression multiples,
using a scale factor and log-transforms of the result. Major
cell types of the human brain were identified and anno-
tated by interrogating the expression patterns of known
marker genes [19]: neurons (marked by GRIK2, GRIAI,
GRIN2B, and RBFOXI), astrocytes (AQP4 and SLC1A2),
oligodendrocytes (MBP, MOBP, and PLPI), microglia
(HLA-DRA, CX3CRI1, CIQB, and CSFIR), and oligo-
dendrocyte progenitor cells (PCDH15 and MEGFI1I). If
the above markers were found to not exist in one cluster,
or if there were multiple cell markers in one cluster at the
same time, then, the cluster was classified as “unidenti-
fied.” Single-cell developmental trajectories along pseudo-
time were performed by Monocle 2, an R package that or-
ders single-cell transcriptomes and uses machine learning
in an unsupervised manner for reconstruction [24, 25]. It
reveals both known and novel genes that are expressed
along a developmental trajectory [26].

The hub gene for the AD reserve was identified using
the above approach. To study the dynamic characteris-
tics of the hub gene in the AD disease progression, the
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expression levels of the hub gene were determined based
on the clinical diagnoses of patients in GSE1297,
GSE28146, and ROSMAP AD RNA-seq dataset groups.
Expression levels were determined in different groups,
including different AD disease severity (normal aging,
incipient AD, moderated AD, and severe AD), different
disease stages (no cognitively impaired (NCI), mild cog-
nitive impairment (MCI), AD dementia), and subjects
with reserve or loss reserve. MMSE score decline during
clinical follow-up between high and low hub gene ex-
pression subjects was also calculated.

Statistical analysis

All statistical data were analyzed and visualized using
the ggplot2 and ggpubr (ggplot2 Based Publication
Ready Plots) of R (3.6.1). Means were compared using a
t test or one-way ANOVA. Multiple testing of p value
was performed using the Bonferroni method, and ad-
justed p value as reported. The acceptable level of sig-
nificance was established at p < 0.05.

Results

Data cleaning and pre-processing

Procedures for cleaning data (GSE1297 dataset) obtained
from the GEO database and used in constructing the
gene module were as shown in Fig. 1. Using this dataset,
gene expression of human hippocampus on 31 separate
microarrays, primarily based on MMSE criteria, was ana-
lyzed. Subjects were initially categorized into four groups
[18]: 9 controls (MMSE >25), 7 incipient AD (MMSE
20-25), 8 moderate AD (MMSE 14—19), and 7 severe
AD (MMSE < 14). Based on the concept of AD reserve
[2, 27], subjects in GSE1297 were initially categorized
into two groups, termed “reserve” (MMSE > 26, Braak >
3), and “loss reserve” (MMSE < 26). Several borderline
cases (e.g., MMSE = 26) were assigned based on NFT, p-
amyloid plaque, and Braak stage data. Therefore, 5 sub-
jects were allocated in AD reserve, while 26 subjects
were allocated in loss AD reserve.

All 31 GSE1297 subjects were evaluated using the
hierarchical clustering method (Supplements Fig. 2a).
The raw data for gene expression was normalized by z-
scores to obtain the expression matrix. Probes without
corresponding annotation information were eliminated,
and the standard deviation of all gene expressions was
computed to obtain a list sorted by decreasing standard
deviations. Eventually, the top 25% of genes with large
standard deviations were obtained. After data cleaning
and pre-processing, there were 22,283 gene symbols in
the dataset, and the rest of the 3100 genes were sub-
jected to further modeling.

In ROSMAP microarray gene expression, there were
151 AD and no other cause of cognitively impaired par-
ticipants, 57 MCI and no other cause of cognitively
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impaired participants, and 67 no cognitively impaired
(NCI) as assessed by the clinical consensus diagnosis of
ROSMAP clinical codebook that cut off criteria of AD
from physician’s overall cognitive diagnostic results. At
the time of death, all available clinical data were
reviewed by a neurologist with expertise in dementia,
and a summary diagnostic opinion regarding the most
likely clinical diagnosis at the time of death was pro-
vided. The summary of diagnoses was blinded to all
postmortem data. Case conferences including one or
more neurologists and a neuropsychologist gave a con-
sensus on selected cases. According to the AD reserve
criterion (see above), there were 37 subjects with AD re-
serve, whereas 70 subjects with lost AD reserve. A
follow-up on 145 subjects (both had the first diagnostic
MMSE score and last valid MMSE score) was done to
assess the correlation between cognitive decline and tar-
get module.

Constructing gene module-phenotype network

To model large-scale transcriptome changes into gene
modules, we identified groups of co-expressed genes or
gene modules. Gene modules represented transcriptional
regulatory mechanisms, including transcription factors,
chromatin conformation, and related underlying factors,
such as the proportion of different cell types in the sam-
ple tissue. In developing the gene module, we applied
the WGCNA algorithm to GSE1297 microarray data
which built a scale-free co-expression network; the scale
independence and mean connectivity analysis demon-
strated that when the soft threshold of scale-free co-
expression network was equal to 6, the average degree of
connectivity was close to 0, and the scale independence
was more significant above 0.9 (Supplementary Fig. 1B),
it means 6 is an appropriate soft threshold. By calculat-
ing the correlation coefficient between genes, we classi-
fied the genes with the same expression patterns into
the same module. A total of 11 modules were identified,
ranging between 38 and 853 gene members (assigning
each module a color for reference, Fig. 2a) in terms of
size.

Pearson’s correlation coefficient between the 11 mod-
ules and main AD phenotype (diagnostic group, Braak,
MMSE, NFTs, and reserve) was calculated to identify
modules that were significantly associated with clinical
phenotypes. The influence of covariates (age, sex, and
PMI) was considered in this calculation. The highest as-
sociation in the module trait relationship was found be-
tween module 11 (yellow module) and clinical features
including diagnostic group (cor = -0.63, p=0.3 x 107%),
MMSE (cor =0.66, p=0.1x10"), Braak (cor=-0.42,
p =0.02), and NFTs (cor = - 0.46, p = 0.01) (Fig. 2b). The
expression level of module 11 was positively correlated
with factors that maintain cognitive performance, but
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negatively correlated with AD pathology. We selected 4
AD phenotypes (reserve, MMSE score, Braak score,
NFTs) and all the 11 gene modules for further modeling.

Identifying modules associated with AD reserve in gene
module-phenotype network

To separate a small number of direct module-phenotype
associations from a large number of indirect module-

trait correlations, we used Bayesian network inference
[8] where random variables represented module gene ex-
pression levels and phenotype values. Edges with the
arrow in Bayesian network represented direct condi-
tional dependencies between variables: an arrow from
node A to node B in a Bayesian network indicated that a
value taken by variable node B was dependent on the
value taken by variable node A, conditioned on all the
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other variables in the network (see the “Materials and
methods” section). The resulting Bayesian network con-
sisted of 43 edges and 15 nodes; 11 nodes represented
gene modules and 4 AD phenotype nodes (Fig. 2c). All
the 11 modules were enriched using the Gene Ontology
(GO) analysis (Fig. 2¢ colored bar).

By analyzing the structure (Fig. 2c) and main parame-
ters (Supplementary Table 1) of DAG from the Bayesian
network, the Markov blanket of 4 modules (M6, M7,
M8, and M11) contains reserve, indicating the best-
selected subset of these 4 modules in Bayesian network
contains reserve and the remaining modules were condi-
tionally independent of the reserve. Of the 4 modules,
only M8 and M11 were directly correlated to reserve as
children nodes. Furthermore, relative to M8, MMSE is a
children node of M11, indicating the dependency be-
tween M11 and MMSE. Through GO analysis of M11,
the main enrichment results of the biological processes
in this module were associated with positive regulation
of neurogenesis, and cellular component was associated
with neuronal cell body while molecular function was
associated with cell adhesion molecule binding. Genes in
M11 were more enriched in the nervous system than in
M8. In summary, based on integrated mathematical and
biological evidence, module 11 (M11) was strongly asso-
ciated with cognitive decline (module MMSE) and AD
reserve (module reserve), conditioned on all other corre-
lated modules and those that represent AD phenotype.

The association between module 11 with cognitive de-
cline and AD reserve was externally validated in the in-
dependently processed ROSMAP microarray expression
data. The trajectories of cognitive decline for people with
low or high levels of module 11 expression are illus-
trated in Fig. 3a. Individuals with low module 11 expres-
sion exhibited a significant MMSE decline (multiple ¢
tests, adjusted p =0.00019). Besides, we compared ex-
pression levels between individuals with AD reserve and
loss reserve (multiple ¢ tests, adjusted p = 0.031) (Fig. 3b),
and found that high module 11 expression is a potential
reserve factor.

To evaluate the expression dynamics of module 11 in
whole AD disease progression, individuals with NCI,
MCI, and AD diagnosis were assessed by the dimension-
ality reduction algorithm t-SNE [28]. The dimension of
all 262 genes in module 11 was significantly reduced in
three dimensions; thus, we could visualize different AD
stage subjects’ module 11 expression in a 3D image
(Fig. 3c). The image indicated that NCI AD, MCI, and
subjects exhibited independent expression characteristics
and were well divided into dimension-reduced space. In
module 11, the expression levels of NCI, MCI, and AD
are depicted in Fig. 3d. A significant fall from MCI to
AD stage indicated that the transcriptional alterations of
module 11 mainly occur during the conversion of MCI
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to AD (multiple one-way ANOVA, adjusted p =0.72 x
107°).

Hub gene in module 11 and trajectory inference in AD
The Bayesian network structure learning framework de-
scribed above identified module 11 (M11) as the most
strongly associated with cognitive decline and reserve
phenotypes. Therefore, we devised another Bayesian net-
work to prioritize genes in the target module (which
contains 262 genes) for further validation. The Bayesian
network is a probability graphical model that represents
a set of genes and their conditional dependencies.

First, the number of plausible genes was reduced and
genes that were not associated with AD and cognition
were excluded to ensure that the conditional dependen-
cies in the network were of a considerable biological sig-
nificance. Plausible genes were reduced by taking the
top 169 genes (among the 262 genes assigned to target
module) that were (i) associated with AD and cognitive
performance, or played some role in the nervous system,
and (ii) connected to other genes in an initial Bayesian
network of 262 genes. Next, we constructed a Bayesian
network for representing conditional dependencies be-
tween these 169 genes in a DAG (Fig. 4a).

Hub genes in DAG were identified through network
topological analysis, considering the phenomenon that
local centrality measure algorithms do not take into ac-
count the rest of the network. The importance attributed
to its value strongly depended on the network size. Glo-
bal centrality measures that accounted for the whole of
the network and calculated the shortest paths between
all nodes were chosen. Each node was then assigned a
score based on the sum of the shortest paths to find the
nodes that were best placed to rapidly influence the en-
tire network. Edge percolated component (EPC) is one
of the commonly used global centrality measures and
has been found to have a good performance in finding
the essential proteins in the protein interaction network
of yeast [29]. Using EPC, we identified six hub genes
within module 11: SLC9A46, TSPYL5, EBI3, DYNLTS3,
RALYL, and CEPI112; the number of their neighbors’
nodes that were directly connected was 8, 7, 6, 10, 7,
and 7, respectively (Fig. 4b).

Single-nucleus RNA sequencing (snRNA-seq) provides
an alternative method for evaluating AD by profiling
tens of thousands of individual cells. With this approach,
we validated the 6 hub gene expression of module 11 in
subjects with a unique cellular-level view of transcrip-
tional alterations. We found cell type-specific and shared
gene expression, disease-associated cellular subpopula-
tions, and cell trajectory inference. Exploring the vari-
ation of the reserve gene along with the transitions from
one cellular state to another enhanced our understand-
ing of whether this gene is involved in the diversion of
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AD cell fate. We sampled 13,214 cells after quality con-
trol and obtained 13,096 cells with a median of 648 de-
tected genes per cell. First, we visualized single-nuclei
transcriptomes through uniform manifold approxima-
tion and projection (UMAP). The nuclei were separated
into 5 clusters, which we mapped to the 5 prior cell
types: neurons, astrocytes (Ast), oligodendrocytes (Oil),
microglia (Mic), and oligodendrocyte progenitor cells

(OPC), based on previously established cell type-specific
gene sets (see the “Materials and methods” section)
(Fig. 5a). Then, we evaluated the cell-specific expression
of the hub gene in UMAP space (Fig. 5b). There were
only 4 hub genes (SLC9A6, DYNLT3, RALYL, and
CEP112) in single-nucleus gene expression atlas. This
may be attributed to the fact that this data was retrieved
from DroNc-Seq on the 10X platform that highly
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represents the changes in nuclear transcriptomics [30]
but EBI3 and TSPYLS5 are subcellular localized in the
cytoplasm [31, 32]. Notably, RALYL transcription in AD
neurons was significantly changed, and according to the
identified neuron cell clusters, we made the trajectory
inference to illustrate the transcript dynamics in AD dis-
ease progression.

The neuron cluster contained 702 cells, and using the
pseudo-time created by the reverse graph ordering, we
produced pseudo-time projections in which we could
compare the changes in relative expression over pseudo-
time for the distinct transcriptional states. We observed
distinct bifurcated architecture of the neuron cell trajec-
tory, implying two different transcriptional states from
the root. Most AD subjects were in state 1, while most
control subjects were in state 2 (Fig. 5c). There were
changes in the expression of hub gene in cell trajectory
with different dynamic characteristics. RALYL and
CEP112 expression were upregulated from root to stage
2 while SLC9A6 was upregulated to stage 1 (Fig. 5d).
Combined with bifurcated neuron trajectory and tran-
scriptional dynamics, we visualized two kinetic trends
for AD and control, one branch located in AD and an-
other in control (Fig. 5e). In summary, among the 6 hub
genes for AD reserve, RALYL was highly expressed in
the neurons of subjects, having similar expression

patterns between AD and control at the beginning of
AD disease developmental trajectory. However, the ex-
pression level decreased since there was a branch point
along with the disease progression.

The dynamic expression feature of RALYL demon-
strated in other human AD brain transcriptomics data-
sets causing there no accepted animal model of AD can
mimic all aspects of AD currently. In AD disease pro-
gression (partition to incipient AD, moderate AD, and
severe AD by clinical diagnosis results), RALYL was
found to maintain the same expression level as in the
normal aging group during the conversion of incipient
AD to moderate AD, but decreased during the develop-
ment of moderate AD to severe AD. Normal aging and
severe AD group showed significant differences in
GSE1297 (multiple one-way ANOVA, adjusted p=
0.0027) and GSE28146 (multiple one-way ANOVA, ad-
justed p =0.032) (Fig. 6a, b). In MCI and AD dementia,
subjects had lower RALYL expression levels compared to
NCI in the ROSMAP RNA-seq dataset (multiple one-
way ANOVA, adjusted p=0.022). Cognitive changes
showed a high expression of RALYL accompanied by an
apparent slow cognitive decline in the duplicate MMSE
tests (first AD diagnostic MMSE and last valid MMSE)
during follow-up (multiple ¢ tests, adjusted p=0.019)
(Fig. 6d). This explains why subjects with AD reserve
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Fig. 5 Hub genes' trajectory inference in single-nuclei sequencing of human AD entorhinal cortex. a UMAP visualization showing the clustering
of single nuclei, colored by the main five types of brain cells. b UMAP visualization showing the location of 4 hub genes within each cell
subcluster of brain cell types; RALYL is highly expressed in AD neurons. ¢ The cell trajectory inference of AD and control in the form of pseudo-
time. The trajectory of AD patients is from root to state 1, while control is from root to state 2 over pseudo-time. d The hub gene has different
expression patterns in state 1 and state 2; SLC9A6 is highly expressed in state 1 while RALYL and CEP112 are highly expressed in state 2. e Pseudo-
time projections of hub genes’ drivers in the AD and control subjects, demonstrating the change in relative expression over pseudo-time for the
distinct transcriptional states, with each point representing a single cell. Significance based on differential testing by cluster identification used to

generate pseudo-time and adjusted for multiple comparisons

had higher RALYL expression than those who lost re-
serve (multiple ¢ test, adjusted p = 0.046) (Fig. 6e).

Discussion

AD reserve theory was postulated to provide an inter-
pretation of how a certain degree of neurodegenerative
pathology may cause varying degrees of symptoms in

different individuals. However, there are several sources
of evidence on cognitive resilience and epidemiologic in-
vestigation for neurodegenerative diseases and AD de-
mentia. Nevertheless, the mechanisms that underpin the
AD reserve protective effects of individual factors remain
poorly understood, limiting the development of more
preventive, treatment, and translational research. In this
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study, we adopted a network-based approach and de-
ployed an MPN in identifying specific gene modules as-
sociated with AD reserve traits. A key feature of our
network-based approach is the identification of unique,
direct gene-clinical phenotype-reserve trait relationships,
rather than simple protein-protein interaction (PPI) ana-
lysis. Furthermore, we validated MPN to ROSMAP co-
hort, measuring the change in cognition over a long
time, the most relevant clinical outcome measure of AD
research. A comprehensive characterization of MPN
may provide critical insights into the underlying poten-
tial AD reserve mechanisms and identify genes that may
serve as reserve molecules in AD disease progression for
therapeutic intervention.

In this study, using bulk brain transcriptomic data model-
ing MPN, we obtained 6 hub genes. The single-nucleus tran-
scriptomic data allowed us to identify cellular processes and
trajectory inference of these hub genes. However, the single-
nucleus data that we used cannot be used to establish MPN
because it does not have specific information on the AD
phenotype. RALYL is the AD reserve correlated with the hub
gene for the module and shows different cell trajectories in
neurons between AD and control. RALYL (RALY RNA
Binding Protein-like) is a protein-coding gene. Diseases asso-
ciated with RALYL include renal cell carcinoma and hepato-
cellular carcinoma [33, 34]. Of note, RALYL is an important
paralog of this gene. Limited information has been published
on its particular role in cognitive performance and AD dis-
ease progression. A few studies have, however, documented
the potential role of RALYL in neurodegenerative disease.
For instance, in RALYL associated with AD or Parkinson’s
disease (PD), human brain samples showed low expression
with low variances (AD/control = 0.550; PD/control = 0.660)
[35]. This observation was seconded in another research that
used substantia nigra tissue samples from PD patients [36].
Moreover, one yeast two-hybrid experiment confirmed the
protein interaction between RALYL and LRRK2 [37], while
the latter was revealed to play an important role in AD lyso-
somal dyshomeostasis [38], in synaptic vesicle trafficking
[39], and in the regulation of neuronal process morphology
in the entire central nervous system [40]. Abundant
Ap pathology has also been found in LRRK2 mutation
carriers and is consistent with comorbid AD path-
ology [41]. Besides AD and PD, RALYL showed single
nucleotide polymorphism in amyotrophic lateral scler-
osis (ALS), a neurodegenerative disease, following a
genome-wide association study (GWAS) [42]. In line
with these findings, we now provide evidence that the
RALYL gene plays a role in AD reserve, and it opens
an avenue for investigating the association of RALYL
with AD.

Our network-based approach analysis not only
highlighted the 6 hub genes in module 11 as the target
genes that were strongly associated with the AD reserve
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but also identified some critical genes in hub genes’ ex-
panded subnetwork. As the child nodes of hub genes,
these genes are directly regulated, including known AD-
related genes (GABRA1, SYNI, SORSC3, STXBP) and
autism risk gene (CHDS). The chromodomain helicase
DNA binding protein 8 gene (CHDS8) provides instruc-
tions in generating a protein that regulates gene activity
(expression) through chromatin remodeling [43]. The
CHDS8 mutation causes autistic-like behaviors [44] and
affects the expression of many other genes involved in
brain development before birth [45]. Above all, the
CHD8 protein and the associated genes regulate the de-
velopment of neural progenitor cells, giving rise to nerve
cells (neurons), and promote growth and division (prolif-
eration), maturation (differentiation), and integration
into the neuronal circuitry (migration) [46—49]. These
functions are all disordered in AD, which necessitates
further exploration of CHD8 function in AD reserve.

In conclusion, AD brain transcriptomics data were
clustered into 11 co-expression gene modules by
WGCNA. A Bayesian network was established based on
these modules and AD reserve related phenotype data.
Module 11, which positively regulates neurogenesis, was
found to be strongly associated with AD reserve through
DAG. Besides, filtration of the hub genes of module 11
by the topological method revealed that of the 6 hub
genes in this module, only RALYL showed significant
transcription changes in AD neurons. These findings
imply that the expression of RALYL decreases with the
gradual progression of AD. Meanwhile, MMSE decline
was correlated with RALYL expression. Thus, subjects
with AD reserve have significantly higher RALYL ex-
pression than those without AD reserve.

Limitations

Before making a consensus on the 2018 NIA-AA re-
search framework [50], the diagnosis and staging of AD
had multiple standards. The clinical traits of AD patients
in different databases were not uniform, especially in the
diagnosis and staging of subjects. Due to ethical and
some other reasons, each database could not disclose the
original diagnosis report of the patient, and we were un-
able to re-stage the subjects according to the latest A/T/
N/x standards [50]. Therefore, we could only use the
clinical characteristics given by the database. For ex-
ample, subjects in GSE1297 and GSE28146 were classi-
fied as incipient AD, moderate AD, and severe AD,
whereas subjects in ROSMAP were classified as NCI,
MCI, and AD. These simple subject classification criteria
reflect the dynamics of RALYL in the disease progression
but inaccurately reflect the dynamic relationship be-
tween RALYL and disease progression related A/T/N/x
markers.
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It is also important to note the limitations of our ap-
proach. The MPN framework increases network accur-
acy by modeling networks at two resolutions (a zoomed-
out module-trait network and a zoomed-in gene net-
work within selected modules). However, higher accur-
acy was obtained by including only a subset of modules
in the inference process, resulting in potential loss of in-
formation. Additionally, although RALYL has been
strictly verified in the human AD brain transcriptomics
data, the mechanism by which it plays a specific role in
AD reserve and the efficiency or capacity of the reserve
should further be explored.

Conclusion

This study demonstrated the RALYL expression dynam-
ics in AD reserve progression and revealed the correl-
ation between RALYL expression and cognitive
performance through network-based approaches. Our
findings provide novel insights into AD reserve and
highlight the potential role of RALYL in this process.
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